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Abstract

Given a finite family of sets, Hall’s classical marriage theorem provides a necessary and
sufficient condition for the existence of a system of distinct representatives for the sets in the
family. Here we extend this result to a geometric setting: given a finite family of objects in
the Euclidean space (e.g., convex bodies), we provide a sufficient condition for the existence of
a system of distinct representatives for the objects that are also distant from each other. For
a wide variety of geometric objects, this sufficient condition is also necessary in an asymptotic
sense (i.e., apart from constant factors, the inequalities are the best possible). Our methods are
constructive and lead to efficient algorithms for computing such representatives.

Keywords: Systems of distinct representatives, Lebesgue measure, lattice packing, lattice
covering, bipartite matching, approximation algorithm.

1 Introduction

Let J be a finite index set, and A = {Aj | j ∈ J} be a finite family of finite sets. A system
of distinct representatives (SDR) for A is an indexed set S = {aj | j ∈ J} of distinct elements
with aj ∈ Aj, ∀j ∈ J . Hall’s classical marriage theorem [11] [15, Ch. 5] provides a necessary and
sufficient condition for the existence of an SDR: A has an SDR if and only if

∀I ⊆ J,
∣
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∣
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i∈I

Ai

∣

∣

∣
≥ |I|.

Hall’s Theorem has been extended to systems of multiple representatives by Halmos and
Vaughan [12]. Let t be a positive integer. A t-wise system of distinct representatives (t-SDR)
for A is an indexed family T = {Bj | j ∈ J} of disjoint subsets with Bj ⊆ Aj and |Bj| = t, ∀j ∈ J .
The Halmos-Vaughan’s Theorem [12] [23, Theorem 22.14] provides a necessary and sufficient con-
dition for the existence of a t-SDR: A has a t-SDR if and only if

∀I ⊆ J,
∣

∣

∣

⋃

i∈I
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∣
≥ t|I|.

Systems of distinct representatives for objects in the Euclidean space appear naturally, perhaps
more naturally than their combinatorial counterparts. Let R be a family of n subsets of a metric
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space. The problem of dispersion in R is that of selecting n points, one in each subset, such that
the minimum inter-point distance is maximized. This problem was introduced by Fiala et al. [10] as
Systems of Distant Representatives, generalizing the classic problem Systems of Distinct

Representatives. An especially interesting version of the dispersion problem, is in a geometric
setting where R is a set of convex bodies (e.g., disks or rectangles in the plane). For instance, given
a set of n disks in the plane, the dispersion problem is that of selecting n points, one from each
disk, such that the minimum pairwise distance of the selected points is maximized. One can think
of the selected points as representatives of the disks, that are far enough from each other.

Dispersion in disks is NP-hard, as Fiala et al. [10] showed that dispersion in unit disks is already
NP-hard. As noted in [9], dispersion in disjoint unit disks is also NP-hard, and even APX-hard;
i.e., unless P = NP, the problem does not admit any polynomial-time approximation scheme. On
the other hand, several constant-ratio approximation algorithms have been proposed for disks and
balls by Cabello [6] and by Dumitrescu and Jiang [9].

While such algorithms can compute representative points for an input set of disks, guaranteed
to be far enough from each other when compared to an optimal solution, one would like to have a
more accurate assessment of the quality of the solution (i.e., separation distance) as a function of the
input family of disks. It is this direction that we pursue here, where we present asymptotically tight
characterizations of the input family in terms of the separation distance between the representative
points for the disks. Moreover, some of our results extend to much more general geometric objects
in place of disks (or balls).

Indeed, while dispersion in disks is relatively well understood, almost nothing is known about
dispersion in other geometric ranges. Here we tackle for the first time the dispersion problem in
families of fat objects and in families of homothets of a convex body. (Our meaning of fatness is in
fact quite broad and does not even require connectedness.)

Moreover, our methods are constructive and lead to efficient algorithms for finding distant or
disjoint representatives. They reduce the geometric problems under consideration to combinatorial
problems on bipartite graphs, which are then solved by using known algorithms for matching.

Notations and definitions. Let [n] denote the set {1, 2, . . . , n}. A geometric object (or object,
for short) is a compact set in R

d (d ≥ 1) with nonempty interior. Note that a geometric object is
measurable, but it is not necessarily convex or even connected. A convex body is a convex geometric
object.

For a geometric object B in R
d, denote by L(B) the Lebesgue measure of B, which is the length

when d = 1, the area when d = 2, and in general the d-volume for any d ≥ 3. For a finite family F
of geometric objects in R

d, denote by L(F) = L(∪B∈FB) the Lebesgue measure of the union of the
geometric objects in F . For simplicity, we will use volume as a synonym for Lebesgue measure for
any d ≥ 1. Throughout the paper, all families of geometric objects considered are finite families,
and by “disjoint objects” we mean “pairwise-disjoint objects”.

For standard terminology regarding lattice packing and lattice covering the reader is referred
to [18, Ch. 3].

We next state our results.

Cubes and boxes.

Theorem 1. Let F be a family of n axis-parallel cubes in R
d, and let t be a positive integer.

Suppose that there exists x > 0 such that the following holds: for any k, 1 ≤ k ≤ n, and for any

subfamily F ′ ⊆ F of size k, the volume of the union of the k cubes in F ′ is at least 2dtkxd. Then
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one can choose tn points, with t points in each of the n cubes in F , such that all pairwise distances

among these points are at least x.

For an axis-parallel box B = I1 × · · · × Id in R
d, let the minimum side length be the minimum

extent of the box over all d coordinate axes, i.e., min{L(I1), . . . , L(Id)}.

Theorem 2. Let F be a family of n axis-parallel boxes in R
d, and let t be a positive integer.

Suppose that there exists x > 0 such that the minimum side length of each box in F is at least x
and the following holds: for any k, 1 ≤ k ≤ n, and for any subfamily F ′ ⊆ F of size k, the volume

of the union of the k boxes in F ′ is at least 2dtkxd. Then one can choose tn points, with t points
in each of the n boxes in F , such that all pairwise distances among these points are at least x.

We would like to highlight the condition that “the minimum side length of each box in F is
at least x” in Theorem 2. Note that this minimum-length condition is not stated in Theorem 1,
although it is used in our proofs of both theorems. The reason that we don’t need to state it
explicitly in Theorem 1 (and similarly for all our other theorems except Theorems 2 and 6) is
because it is redundant: if the sufficient condition, that the volume of the union of the k cubes in
F ′ is at least 2dtkxd, is satisfied for any k, 1 ≤ k ≤ n, and for any subfamily of size k, the case
k = 1 requires that the volume of each cube is at least 2dtxd ≥ xd and so the side length of each
cube is at least x.

Balls and fat objects.

Theorem 3. Let F be a family of n balls in R
d, and let t be a positive integer. Suppose that there

exists x > 0 such that the following holds: for any k, 1 ≤ k ≤ n, and for any subfamily F ′ ⊆ F of

size k, the volume of the union of the k balls in F ′ is at least 2ddd/2tkxd. Then one can choose tn
points, with t points in each of the n balls in F , such that all pairwise distances among these points

are at least x.

Given an orthogonal coordinate system Γ, we say that a geometric object B is α-fat with respect
to Γ for some number 0 < α ≤ 1 if there exist two concentric axis-parallel cubes P and Q, where
P is a homothet of Q with ratio α, such that P ⊆ B ⊆ Q. Note that an axis-parallel cube itself
is 1-fat. (Alternatively we can define fatness in terms of inscribed and circumscribed balls, but we
prefer cubes which yield sharper constants in our bounds.)

Theorem 4. Let F be a family of n α-fat objects in R
d, and let t be a positive integer. Suppose

that there exists x > 0 such that the following holds: for any k, 1 ≤ k ≤ n, and for any subfamily

F ′ ⊆ F of size k, the volume of the union of the k objects in F ′ is at least 2dα−dtkxd. Then one

can choose tn points, with t points in each of the n objects in F , such that all pairwise distances

among these points are at least x.

An asymptotically tight example. Apart from the constants appearing in the volume condi-
tions, the bounds in all the theorems above are asymptotically the best possible. For instance, if
d is fixed, an almost tight example in regard to Theorem 1 is as follows. Consider n axis-parallel
cubes of side length x, whose centers are along one of the coordinate axes. Let the distance be-
tween consecutive centers be cx for some constant 0 < c < 1. Then the union of any k cubes has
volume at least ((k − 1)cx + x)xd−1 = Ω(kxd), and the union of all n cubes has volume exactly
((n − 1)cx + x)xd−1. By a standard packing argument, one can show that for a suitable c = c(d),
the union of the n cubes cannot hold n points with all pairwise distances at least x.
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Indeed, let vold(r) denote the volume of the sphere of radius r in R
d. It is well-known that

vold(r) =



















πd/2

(d/2)!
· rd if d is even,

2 · (2π)(d−1)/2

1 · 3 · · · d · rd if d is odd.

(1)

Requiring that all pairwise distances are at least x implies that the rectangular box obtained by
extending the union of the n cubes by x/2 along every axis in both directions contains n pairwise-
disjoint balls of radius x/2, namely

n vold(x/2) ≤ ((n − 1)cx+ 2x)(2x)d−1. (2)

Consequently, for a suitable

c(d) = Θ

(

d−1/2
(eπ

8d

)d/2
)

,

the inequality (2) does not hold.

Translates and homothets of a convex body.

Theorem 5. Let F be a family of n homothets of a convex body C in R
d, and let t be a positive

integer. Suppose that there exists x > 0 such that the following holds: for any k, 1 ≤ k ≤ n, and
for any subfamily F ′ ⊆ F of size k, the volume of the union of the k homothets in F ′ is at least

4dd2dtkxd times the volume of C. Then one can choose tn interior-disjoint translates of xC with t
translates in each of the n homothets of C in F .

The interior-disjoint translates of xC in the homothets of C in Theorem 5 are better viewed as
“disjoint” representatives rather than “distant” representatives in the preceding theorems. Systems
of “disjoint representatives” have been studied by Aharoni and Haxell [1] as matchings of hyperedges
in hypergraphs; see also [16]. Knuth and Raghunathan [14] introduced a closely related concept
called systems of “compatible representatives”, and studied the Metafont labeling problem in
this framework. We next consider a more general algorithmic problem:

Largest Disjoint Representatives

Instance: A convex body C and n geometric objects R1, . . . , Rn in R
d.

Problem: Find n interior-disjoint translates of a scaled copy λC of the convex body C, one
translate in each object, such that the scale factor λ is maximized.

Note that the geometric objects Ri in the problem Largest Disjoint Representatives are
not necessarily homothets of the convex body C. The following theorem gives an approximation
algorithm for this problem:

Theorem 6. Given a lattice Λ in R
d that supports both a lattice covering of Rd by −C and a lattice

packing in R
d of x(C−C), where 0 < x < 1, there is an algorithm based on bipartite matching that

approximates Largest Disjoint Representatives with ratio x− ǫ for arbitrarily small ǫ > 0.

We refer to Figure 1 for two examples. When C is an axis-parallel unit square centered at
the origin in the plane, the square lattice of cell length 1 supports a lattice tiling of the plane by
C, which is both a lattice covering of the plane by −C = C and a lattice packing in the plane
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of (1/2)(C − C) = C. Thus the approximation ratio of the algorithm in Theorem 6 for finding
maximum disjoint squares in a set of n given objects is 1/2 − ǫ. When C is a disk of unit radius
centered at the origin in the plane, the triangular lattice of cell length

√
3 supports both a lattice

covering of R2 by −C = C and a lattice packing in R
2 of (

√
3/4)(C − C) = (

√
3/2)C. Thus the

approximation ratio of the algorithm in Theorem 6 for finding maximum disjoint disks in a set of
n given objects is

√
3/4− ǫ.

Figure 1: Left: When C is a unit square, a square lattice of cell length 1 supports both a lattice covering by
C and a lattice packing of C. Right: When C is a disk of unit radius, a triangular lattice of cell length

√
3

supports both a lattice covering by C and a lattice packing of (
√
3/2)C.

Related results. We did not find any results with similar flavor in the literature with the ex-
ception of some special cases. However, we mention some recent results from the broad category
of dispersion problems and also point to some classical works applying the lattice technique to the
study of convex bodies.

For packing of n axis-parallel congruent squares in a given rectilinear polygon such that the side
length of the squares is maximized, Baur and Fekete [2] presented a 2

3 -approximation algorithm,
and proved that the problem is NP-hard to approximate with ratio larger than 13

14 . Note that this is
a specialized variant of the problem Largest Disjoint Representatives we mentioned earlier,
where the n objects are the same rectilinear polygon. A 2

3 -approximation algorithm for the problem
of packing n unit disks in a rectangle without overlapping an existent set of m unit disks in the
same rectangle, has been obtained by Benkert et al. [3].

Several problems on selecting independent sets of large volume and multiple questions and
techniques in relation to lattices have been considered by Rado for various classes of convex bodies,
in his three papers entitled “Some covering theorems” [20, 21, 22]. In particular, we employ an old
technique of Rado [20, Theorem 10(iii)] in finding large sets of lattice points covered by the union of
a family of geometric objects; see also [4] for a similar application of this technique. Going further
back in time, the first to apply the lattice technique to the study of convex bodies was probably
Minkowski [17]; see also [13, Ch. 24], [18, Ch. 1].

2 Cubes and boxes

The key to our results is recognizing and exploiting the power of lattices. We first deal with the
case of cubes (squares in R

2) that naturally fits in the framework of lattices.
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Figure 2: Illustration for the proof of Lemma 1 in R
2.

Lemma 1. Let Λ be a cubic lattice of cell size x > 0 and let F be a family of axis-parallel boxes of

minimum side length at least x in R
d, d ≥ 1. If the volume of the union of these boxes is at least

2dmxd, for some positive integer m, then they cover at least m lattice points.

Proof. Fix a cell of the lattice, say τ , outside of the configuration. Translate all lattice cells partially
or totally covered by the union of the boxes in F to τ . Since the covered volume is at least 2dmxd,
there exists a point ξ in τ covered at least 2dm times. This means that there exist 2dm distinct
points pi in 2dm distinct cells σi of Λ respectively, 1 ≤ i ≤ 2dm, with the same relative offset as ξ
in τ , that are covered by the union. See Figure 2.

Consider any index i ∈ [2dm]. Since the point pi in the cell σi is covered by some axis-parallel
box with minimum side length at least x, it follows that at least one of the 2d vertices (lattice
points) of σi is also covered by the same box. Select one such covered lattice point for each cell σi
arbitrarily. Observe that each lattice point can be selected at most 2d times, by the 2d adjacent
cells in Λ, if at all. It follows that at least 2dm/2d = m distinct lattice points are covered by the
union, as required.

Proof of Theorem 1. Let Λ be a cubic lattice of cell size x placed arbitrarily, but fixed through-
out the proof. For each cube Q ∈ F , let QΛ be the subset of lattice points covered by Q. We obtain
in this way a family A of subsets over the set of lattice points, one subset QΛ ∈ A for each cube
Q ∈ F . By the volume assumption in the theorem we know that for every k and every subfamily
of k cubes, the volume of the union of these k cubes is at least 2dktxd. In particular, for k = 1 it
implies that each cube Q ∈ F has volume at least 2dtxd > xd, hence its side length is at least x.
Since the volume of the union of any k cubes is at least 2dktxd, it follows from Lemma 1 that the k
cubes Q cover at least tk lattice points, i.e., the union of the corresponding k subsets QΛ has size at
least tk. It then follows by the Halmos-Vaughan Theorem [12] that A has a t-SDR. Equivalently,
one can choose t distinct points from the subset QΛ ∈ A for each cube Q ∈ F , that is, tn points
in total. Moreover, since these points are lattice points, their pairwise distances are at least x, as
required.

Proof of Theorem 2. The proof is analogous to the proof of Theorem 1 with each cube replaced
by a box. The condition that the minimum side length of each box in F is at least x is given
explicitly in the theorem.
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Remarks. Lemma 1 and Theorem 2 can be further generalized, with each axis-parallel box of
minimum side length at least x replaced by the Minkowski sum of an arbitrary point set and an
axis-parallel cube of side length x. The above proofs give in fact a stronger separation, namely the
L∞ distance (rather than the L2 distance) between any two representatives is at least x.

3 Balls and fat objects

To prove Theorem 3, we reduce the case of balls to that of cubes, i.e., we reduce the proof of
Theorem 3 to that of Theorem 1. We start with two lemmas of independent interest that are
reminiscent of the Kneser-Poulsen conjecture for disks [5]:

Lemma 2. Let F be a family of n intervals on the line Ii = [ci − ℓi/2, ci + ℓi/2], 1 ≤ i ≤ n, where
the ith interval Ii is centered at ci and has length ℓi. Let X(F , λ) denote the corresponding family

of n intervals of the same length I ′i = [λci − ℓi/2, λci + ℓi/2], 1 ≤ i ≤ n, which are centered at λci
instead of ci (L(Ii) = L(I ′i), 1 ≤ i ≤ n). Suppose that λ ≥ 1. Then L(F) ≤ L(X(F , λ)).

Proof. Without loss of generality we can assume that the n intervals have distinct centers and that
c1 < · · · < cn. Observe that the intervals in X(F , λ) appear in the same order of the centers as
in F . We proceed by induction on n. For n = 1, there is nothing to prove. Let now n ≥ 2, and
assume that the lemma holds for n − 1 intervals. We can assume without loss of generality that
no interval Ii is completely contained in another interval Ij ∈ F ; indeed, then the inequality in the
lemma follows by induction:

L(F) = L(F \ Ii) ≤ L(X(F \ Ii, λ)) ≤ L(X(F , λ)).

For each j, 1 ≤ j ≤ n, denote by Fj the subfamily of j intervals Ii, 1 ≤ i ≤ j. Then we have
L(Fn−1) ≤ L(X(Fn−1, λ)) by the induction hypothesis. By the previous assumption, for each i,
1 ≤ i ≤ n − 1, the interval In is either completely to the right of Ii, or partially covered by Ii at
the left end of In. In either case, the right endpoint of In is to the right of the right endpoints of
all other intervals Ii, i.e., (cn + ℓn/2) − (ci + ℓi/2) > 0 for 1 ≤ i ≤ n − 1. Since λ ≥ 1, and ci < cn
for 1 ≤ i ≤ n− 1, this further yields

(cn + ℓn/2)− (ci + ℓi/2) ≤ (λcn + ℓn/2)− (λci + ℓi/2), for 1 ≤ i ≤ n− 1.

In particular,

min
1≤i≤n−1

[(cn + ℓn/2)− (ci + ℓi/2)] ≤ min
1≤i≤n−1

[(λcn + ℓn/2)− (λci + ℓi/2)]. (3)

We consider two cases.

1. If I ′n is disjoint from any other interval in X(Fn−1), the inequality in the lemma follows by
induction:

L(Fn) ≤ L(Fn−1)+L(In) ≤ L(X(Fn−1, λ))+L(In) = L(X(Fn−1, λ))+L(I ′n) = L(X(Fn, λ)).

2. If I ′n overlaps some interval in X(Fn−1), In must overlap the corresponding interval in Fn−1,
and then again by induction and using (3) we have

L(Fn) = L(Fn−1) + min
1≤i≤n−1

[(cn + ℓn/2) − (ci + ℓi/2)]

≤ L(X(Fn−1, λ)) + min
1≤i≤n−1

[(λcn + ℓn/2) − (λci + ℓi/2)] ≤ L(X(Fn, λ)).
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This completes the proof.

Lemma 3. Let F be a family of n axis-parallel boxes in R
d where the ith box Bi is centered at

(ci,1, . . . , ci,d), 1 ≤ i ≤ n. Let X(F , λ) denote the corresponding family of n axis-parallel boxes in

R
d where the ith box is a translate of Bi centered at (λci,1, . . . , λci,d), 1 ≤ i ≤ n. Suppose that

λ ≥ 1. Then L(F) ≤ L(X(F , λ)).

Proof. For 0 ≤ j ≤ d, let Xj(F , λ) denote the family of n boxes in R
d where the ith box is a

translate of Bi centered at (λci,1, . . . , λci,j , ci,j+1, . . . , ci,d), 1 ≤ i ≤ n. Then X0(F , λ) = F and
Xd(F , λ) = X(F , λ). It suffices to show that L(Xj−1(F , λ)) ≤ L(Xj(F , λ)) for all 1 ≤ j ≤ d.

Fix j ∈ [d]. For any family F of axis-parallel boxes and any line H parallel to the jth axis,
denote by F⋓H the family of intervals {B∩H | B ∈ F , B∩H 6= ∅}. For each box inXj−1(F , λ) that
intersects H, the corresponding translate of the box in Xj(F , λ) also intersects H. By Lemma 2 we
have L(Xj−1(F , λ)⋓H) ≤ L(Xj(F , λ)⋓H). Then, by integrating this inequality over all lines that
are parallel to the jth axis and intersect at least one box in Xj−1(F , λ) we get L(Xj−1(F , λ)) ≤
L(Xj(F , λ)), as required.

Proof of Theorem 3. For each ball B ∈ F , denote by PB the axis-parallel cube inscribed in
B, and denote by QB the axis-parallel cube circumscribed about B. Observe that PB and QB are
concentric. Moreover QB is a homothet of PB with ratio λ =

√
d. Let P = {PB | B ∈ F} and

Q = {Q | B ∈ F}.
Consider any k ∈ [n] and an arbitrary subset Fk of k balls in F . Let Pk = {PB | B ∈ Fk}

and Qk = {QB | B ∈ Fk}. We clearly have L(Pk) ≤ L(Fk) ≤ L(Qk). Consider the family
Q′

k = X(Qk, λ) of axis-parallel cubes obtained from Qk by spreading the cubes without changing
their sizes to increase the pairwise distances of their centers by a factor of λ. By Lemma 3, we have
L(Qk) ≤ L(Q′

k). Observe that Q′
k can be also obtained from Pk, by uniformly scaling both the sizes

and the pairwise distances of the cubes by a factor of λ. Hence L(Q′
k) = λdL(Pk) = dd/2L(Pk).

Putting all these together yields L(Fk) ≤ L(Qk) ≤ L(Q′
k) = dd/2L(Pk).

By the volume assumption in the theorem, L(Fk) ≥ 2ddd/2tkxd. Then, from the inequality
L(Fk) ≤ dd/2L(Pk), we have L(Pk) ≥ L(Fk)/d

d/2 ≥ 2dtkxd. This lower bound of 2dtkxd on L(Pk)
holds for any subfamily Pk of k cubes in P. Thus by Theorem 1, one can choose tn points, with
t points in each cube in P, such that all pairwise distances among these points are at least x.
Since the cubes in P are contained in the respective balls in F , it follows that one can choose tn
points, with t points in each ball in F , such that all pairwise distances among these points are at
least x.

Proof of Theorem 4. The proof of this theorem is analogous to the proof of Theorem 3, with
each ball replaced by an α-fat object, where the factor λ is equal to 1/α instead of

√
d.

4 Translates and homothets of a convex body

The next two lemmas follow by affine transformations from Lemmas 1 and 3.

Lemma 4. Let Λ be a lattice in R
d generated by d linearly independent vectors ~u1, . . . , ~ud. Let σ

be the fundamental parallelepiped (cell) of Λ induced by the 2d vectors m1~u1 + · · · + md~ud, where
mi ∈ {0, 1} for 1 ≤ i ≤ d. Let F ′ be a family of parallelepipeds in R

d that are parallel to σ and

have side lengths at least |~ui| along the vectors ~ui, 1 ≤ i ≤ d. If the volume of the union of these

parallelepipeds is at least 2dm times the volume of σ, for some positive integer m, then they cover

at least m lattice points.
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Lemma 5. Let F be a family of n pairwise-parallel parallelepipeds in R
d, where the ith paral-

lelepipeds Pi is centered at (ci,1, . . . , ci,d), 1 ≤ i ≤ n. Let X(F , λ) denote the corresponding family

of n parallelepipeds in R
d where the ith parallelepiped is a translate of Pi centered at (λci,1, . . . , λci,d),

1 ≤ i ≤ n. Suppose that λ ≥ 1. Then L(F) ≤ L(X(F , λ)).

Proof of Theorem 5. The volume assumption in the theorem for k = 1 implies that each
member of F has volume at least 4dd2dtxdL(C) ≥ (4d2x)dL(C), and hence is a homothet of C with
ratio at least 4d2x > 2dx > x. By a lemma of Chakerian and Stein [7], for every convex body C in
R
d, there exist two (not necessarily rectangular) parallelepipeds P and Q homothetic with ratio d

such that P ⊆ C ⊆ Q.
Let Fk ⊆ F be any subfamily of k homothets of C, where 1 ≤ k ≤ n. Let Pk be the correspond-

ing family of homothets of P contained in the homothets of C in Fk, and letQk be the corresponding
family of homothets of Q containing the homothets of C in Fk; |Pk| = |Qk| = |Fk| = k. Note that
L(Q) = ddL(P ). Thus by a similar analysis as in the proof of Theorem 3 that uses Lemma 5 instead
of Lemma 3 (for parallelepipeds instead of axis-parallel boxes), we have L(Fk) ≤ L(Qk) ≤ ddL(Pk).

By the volume assumption in the theorem, L(Fk) ≥ 4dd2dtkxdL(C) ≥ 4dd2dtkxdL(P ). Then,
from the inequality L(Fk) ≤ ddL(Pk), we have L(Pk) ≥ L(Fk)/d

d ≥ 4dddtkxdL(P ). Recall that
each homothet of C in F is at least as large as 2dxC, hence it contains a homothet of P at
least as large as 2dxP . Fix a lattice Λ whose cells are translates of R = 2dxP , with cell volume
2dddxdL(P ). Then the homothets of P in Pk are at least as large as the lattice cells. Moreover,
since 4dddtkxdL(P ) = (2dtk)2dddxdL(P ), it follows by Lemma 4 that the k parallelepipeds in Pk

cover at least tk lattice points. Hence the k homothets of C in Fk cover at least tk lattice points
too. This statement holds for any k and any subfamily Fk ⊆ F of k homothets of C. Then, by
the Halmos-Vaughan Theorem [12], there exist tn lattice points in Λ with t points in each of the n
homothets of C in F .

Each of these tn lattice points is contained in some homothet of C in F . For each such lattice
point p′ contained in some homothet C ′ of C in F , there is a translate of xC that contains p′ and
is contained in C ′ (recall that each homothet in F is at least as large as xC). Any two translates
of xC containing two different lattice points are interior-disjoint. This is because each translate of
xC containing a lattice point is contained in a translate of xQ containing the lattice point. Since
xQ is a translate of dxP = 1

2R, each translate of xQ containing a lattice point is in turn contained
in a translate of R centered at the lattice point. The translates of R centered at different lattice
points are interior-disjoint because the cells of the lattice are translates of R. Thus we obtain tn
interior-disjoint translates of xC with t translates in each of the n homothets of C in F .

5 Approximation algorithm for Largest Disjoint Representatives

In this section we prove Theorem 6 by giving an approximation algorithm based on bipartite
matching for the problem Largest Disjoint Representatives. Let Λ be a lattice that supports
both a lattice covering of Rd by translates of −C and a lattice packing in R

d of x(C −C) for some
0 < x < 1. Let ǫ > 0 be arbitrarily small; without loss of generality, 0 < ǫ < x. Put ǫ′ = ǫ

2x . The
algorithm uses a binary search with a decision procedure. Given a candidate scale factor λ, the
decision procedure either reports (correctly) that the scale factor λ is too large, or finds n translates
using a suitable smaller scale factor λ′′ = λ′x, where λ′ = λ(1− ǫ′).

Before the binary search, the algorithm first computes a range [λlow, λhigh] for the candidate
scale factor λ. For each geometric object Ri, 1 ≤ i ≤ n, compute the largest scale factor λi

such that Ri contains a homothet Ci of C with ratio λi. Let λhigh = min{λ1, . . . , λn}, and let
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λlow = λhigh/(4d
2n1/d). The algorithm then conducts a binary search with range [l, h] initialized

to [λlow, λhigh]; for the current range [l, h], the candidate scale factor λ is set to (l + h)/2. If the
decision procedure reports that the candidate scale factor λ is too large, the algorithm updates the
upper bound h to λ; otherwise, it updates the lower bound l to λ. The search stops when the lower
bound l is at least 1− ǫ′ times the upper bound h. The result of the decision procedure on the final
lower bound l is returned.

The decision procedure works as follows. Construct a bipartite graph G with the n objects Ri,
1 ≤ i ≤ n, as n vertices on one side, and with the lattice points in λ′Λ that are covered by the
union of the objects on the other side, such that an object Ri and a lattice point p are connected
by an edge if and only if there exists a translate of λ′′C containing p and contained in Ri. Find
a maximum matching in G. If the size of the maximum matching is less than n, report that the
given scale factor λ is too large. Otherwise, return a translate of λ′′C in each object that contains
the corresponding lattice point.

Correctness. The correctness of the upper bound λhigh of the search range is obvious; we next
refer to the lower bound λlow. Let C be the family of homothets Ci of C with ratio λi contained
in the geometric objects Ri, 1 ≤ i ≤ n. Note that for any k ∈ [n] and for any subfamily of k
homothets of C in C, the volume of the union of the k homothets is at least the volume of each one,
which is at least λd

high times the volume of C. Choose x0 = λhigh/(4d
2n1/d) to satisfy the equality

4dd2dnxd0 = λd
high. With this choice, for any k ∈ [n] and any subfamily Ck of k homothets from C, the

volume of the union of the homothets in Ck is L(Ck) ≥ λd
highL(C) = 4dd2dnxd0L(C) ≥ 4dd2dkxd0L(C).

Then, by Theorem 5, each homothet Ci (hence each object Ri too) contains an interior-disjoint
translate of x0C. Thus the lower bound λlow = x0 = λhigh/(4d

2n1/d) of the search range is also
correct.

We next show the correctness of the decision procedure. Suppose that there exist n interior-
disjoint translates of λC, one in each object, then there exist n disjoint (both interior and boundary)
translates of λ′C = λ(1−ǫ′)C, one in each object. Since Λ is a lattice that supports a lattice covering
of Rd by translates of −C, λ′Λ is a lattice that supports a lattice covering of Rd by translates of
−λ′C. Then each point q in R

d is covered by at least one translate −λ′C + p of −λ′C for some
lattice point p in λ′Λ. Equivalently, each translate λ′C+q of λ′C covers some lattice point p in λ′Λ.
Therefore the n disjoint translates of λ′C cover n distinct lattice points in λ′Λ, one in each object.
Since Λ is also a lattice that supports a lattice packing in R

d of translates of x(C−C), λ′Λ is a lattice
that supports a lattice packing in R

d of translates of λ′x(C−C) = λ′′(C−C). Each translate of λ′′C
that contains a lattice point of λ′Λ is contained in a translate of λ′′(C −C) centered at the lattice
point. Since the translates of λ′′(C−C) centered at different lattice points are interior-disjoint (by
the packing assumption), it follows that the translates of λ′′C containing different lattice points in
λ′Λ are interior-disjoint too. In particular, the algorithm finds n interior-disjoint translates of λ′′C,
one in each object.

If the decision procedure reports that the given scale factor λ is too large, then there do not
exist n interior-disjoint translates of λC, one in each object. Indeed, otherwise the algorithm would
find n interior-disjoint translates of λ′′C, one in each object, as shown in the preceding paragraph.
So the decision procedure reports correctly that the given scale factor λ is too large.

Finally, the binary search and the decision procedure together yield an approximation algorithm
with ratio x(1− ǫ′)(1− ǫ′) > x(1− 2ǫ′) = x− ǫ, as desired.

Running time. The running time of the above algorithm is not necessarily polynomial. Specif-
ically, although polynomial-time algorithms for bipartite matching are well-known (see e.g. [8,
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Ch. 26] and [19]), the size of the bipartite graph G constructed by the decision procedure may not
be polynomial in the “input size” of the problem, which is the total size necessary to encode the
convex body C and the n geometric objects Ri, 1 ≤ i ≤ n. For example, when the convex body C
and the objects Ri are axis-parallel squares, they can be encoded efficiently by specifying the coor-
dinates of their corners. If an object Ri is very large compared to λ′′C, then the number of lattice
points p in λ′Λ that are covered by some translate of λ′′C contained in Ri could be exponential in
the input size.

This issue can be addressed as follows. First, instead of taking all lattice points in λ′Λ that are
covered by the union of the objects as the vertices on one side of the bipartite graph, we only take,
for each object Ri, a set Si of up to n lattice points p in λ′Λ that are covered by some translate
of λ′′C contained in Ri (that is, if the number of such lattice points exceeds n, we take any n of
them and ignore the rest). We thus collect a set S = S1 ∪ · · · ∪ Sn of at most n2 lattice points.
Next, we add edges to connect the n objects and the at most n2 lattice points following the same
rule as before, i.e., an object Ri and a lattice point p ∈ S are connected by an edge if and only if
there exists a translate of λ′′C containing p and contained in Ri. We thus have a reduced bipartite
graph G′ with O(n2) vertices and O(n3) edges.

We claim that G′ has a matching of size n if and only if G has a matching of size n. The direct
implication is trivial since G′ is a subgraph of G. Now consider the reverse implication. Suppose
there is a matching of size n in G. If an edge e in the matching connects an object Ri to a lattice
point q /∈ Si, then the size of Si must be exactly n (since if |Si| were smaller than n, then q would
be part of Si). Thus we can replace the edge e by another edge e′ that connects Ri to some lattice
point p ∈ Si not incident to any edge in the matching. By repeating this replacement step at most
n times, at most once for each object, we obtain a matching of size n in G′.

Recall that the decision procedure takes one of two different actions depending only on whether
the bipartite graph G has a matching of size n. From the above claim, it follows that the correctness
of the algorithm is unaffected when we replace G by the reduced bipartite graph G′.

We have shown that the running time of the algorithm can be made polynomial in the input
size provided we can compute, in polynomial time, a set Si of up to n lattice points for each object
Ri. This is achievable in many natural scenarios. We give two simple examples:

1. When the geometric objects Ri are rectilinear polygons and the convex body C is an axis-
parallel square (correspondingly the lattice Λ is a square lattice with x = 1/2), we can use the
standard sweep-line technique to enumerate, for each rectilinear polygon Ri of mi vertices,
the first n lattice points satisfying the containment constraint, in lexicographical order of
their x and y coordinates, with running time polynomial in both mi and n. This yields an
approximation ratio of 1/2− ǫ.

2. When the geometric objects Ri and the convex body C are all disks (correspondingly, the
lattice Λ is a triangular lattice with x =

√
3/4), we can use a priority queue to enumerate

the first n lattice points contained in Ri, in increasing order of their distances to the center
of Ri, in O(n log n) time. This yields an approximation ratio of

√
3/4 − ǫ = 0.433 . . . − ǫ; it

is interesting to compare this ratio to the current best approximation ratio of 3/8 = 0.375
for the related dispersion problem of finding n points in n disks, one point in each disk, to
maximize the minimum inter-point distance [6].

6 Conclusion

One can compute distant (respectively disjoint) representatives as guaranteed by Theorems 1–4
(respectively Theorem 5). Translating the proofs of these theorems into algorithms requires some

11



additional effort. Specifically, it amounts to computing systems of distinct representatives for the
corresponding families of finite sets of lattice points for a fixed x (as in the approximation algorithm
in Theorem 6, computing systems of distinct representatives is equivalent to computing maximum-
cardinality matchings in bipartite graphs, and admits polynomial-time algorithms). Finding the
largest x (within a factor of 1+ε) that yields distinct representatives is easily conducted by a binary
search. Fortunately, exactly as in the combinatorial setting of systems of distinct representatives,
for computing systems of distant or disjoint representatives there is no need to check inequalities for
an exponential number of subsets as they appear listed in the conditions of Theorems 1 through 5.

Regarding Theorem 6, the approximation algorithm requires a lattice satisfying certain prop-
erties. This leads to the algorithmic question of how to find such a lattice. Two fundamental steps
are: (i) checking whether a given lattice supports a lattice packing of a given convex body; and
(ii) checking whether a given lattice supports a lattice covering by a given convex body.
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