
Wang et al. Advances in Difference Equations        (2020) 2020:281 
https://doi.org/10.1186/s13662-020-02728-4

R E S E A R C H Open Access

Long-time behavior of stochastic
reaction–diffusion equation
with multiplicative noise
Jing Wang1, Qiaozhen Ma1* and Tingting Liu1

*Correspondence:
maqzh@nwnu.edu.cn
1Department of Mathematics,
Northwest Normal University,
Lanzhou, China

Abstract
In this paper, we study the dynamical behavior of the solution for the stochastic
reaction–diffusion equation with the nonlinearity satisfying the polynomial growth of
arbitrary order p ≥ 2 and any space dimension N. Based on the inductive principle,
the higher-order integrability of the difference of the solutions near the initial data is
established, and then the (norm-to-norm) continuity of solutions with respect to the
initial data in H1

0(U) is first obtained. As an application, we show the existence of
(L2(U), Lp(U)) and (L2(U),H1

0(U))-pullback random attractors, respectively.
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1 Introduction
We consider the following stochastic reaction–diffusion equation with multiplicative
noise:

⎧
⎪⎨

⎪⎩

∂u
∂t – �u + f (u) = g(x) + bu ◦ dW

dt , x ∈ U , t ≥ 0,
u(t)|∂U = 0, t ≥ 0,
u(x, 0) = u0(x), x ∈ U ,

(1.1)

where U ⊂ R
N (N ≥ 3) is a bounded smooth domain, b is a positive constant and g ∈

L2(U). “◦” denotes the Stratonovich product and W (t) is a two-sided real-valued Wiener
process on a probability space which will be specified later. The nonlinearity f ∈ C1(R,R)
satisfies the following conditions:

f (0) = 0, f ′(s) ≥ –l, (1.2)

–c2 + c1|s|p ≤ f (s)s, (1.3)

and
∣
∣f (s1) – f (s2)

∣
∣ ≤ c3|s1 – s2|

(
1 + |s1|p–2 + |s2|p–2), (1.4)

where c1, c2, c3, l are some positive constants and p ∈ [2,∞).
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As an important mathematical model, stochastic differential equations can describe
many different physical phenomena when random spatio-temporal forcing term is taken
into account. Some of the key problem for this kind of equation are to establish the ex-
istence and regularity of random attractors. The concept of random attractor was intro-
duced in [1, 2], with notable development given in [3–14]. As applications, most other
authors extensively investigated the existence of random attractors for some stochastic
reaction–diffusion equations; see [15–32] and the references therein.

For instance, provided that g ≡ 0 in (1.1), some significant results have been achieved.
For instance, Coaraballo and Langa [24] obtained the existence of finite dimensional ran-
dom attractor in L2(U) when f (u) = –βu + u3. Li et al. [25] used the quasi-continuity and
omega-limit compactness introduced in [15] to obtain the (L2(U), Lp(U))-random attrac-
tor for the problem (1.1), where f (u) is a polynomial of odd degree with a positive lead-
ing coefficient. Assuming that f (u) = –βu + u3 and b = h(t) in (1.1), Fan and Chen [27]
gave a new method (without transformations) to study the existence of an L2(U)-random
attractor. When the nonlinearity f (u) satisfies the polynomial growth of arbitrary order
p ≥ 2, Wang and Tang [29] showed the existence of (L2(U), H1

0 (U))-random attractor for
the problem (1.1) exploiting the method of the deterministic systems introduced in [33].
When g 
= 0, Zhao [28] proved the existence of H1

0 (U)-random attractors for (1.1) by using
the quasi-continuity ([15]) along with the compactness of an omega-limit set.

Inspired by the above papers, we will continue studying the asymptotic behavior for
the stochastic reaction–diffusion equation with multiplicative noise. Especially, we are
interested in understanding the integrability and continuity of the solutions of Eq. (1.1)
with the forcing term g 
= 0.

On the one hand, we know that obtaining certain higher-order integrability and regu-
larity are significant for better understanding the dynamical systems. When b ≡ 0 and the
forcing term g belongs to L2(U) or H–1(U), the solutions of the equation in the determin-
istic system are at most in H2(U) ∩ L2p–2(U) or H1

0 (U) ∩ Lp(U) and have no regularities.
As regards the stochastic system, if the initial data u0 and forcing term g belong to L2(U),
then the solution u with the initial data u(0) = u0 belongs to L2(U) ∩ H1

0 (U) ∩ Lp(U) only
and has no higher regularity because of the random noise term. Compared with the case
g ≡ 0 mentioned above (from [25]), the case g 
= 0 is even more complicated. The reason
is that the regularity and integrability of the solutions depend not only on the growth ex-
ponent p, but also on the regularity and integrability of g . Therefore, a natural question is:
can we get some higher integrability when g 
= 0?

On the other hand, comparing with verifying the (norm-to-norm) continuity and
asymptotic compactness, it is easy to check the quasi-continuity and the flattening condi-
tions for most of the dynamical systems, especially in the space H1

0 (U) and Lp(U) (p > 2);
see [34, 35] for details. For the deterministic autonomous reaction diffusion equations, the
authors [36] first proved the continuity of solutions in H1

0 (U) for any space dimension N
and any growth exponent p ≥ 2 by the method of differentiating the equation. However,
for the stochastic case, since the Wiener processes W (t) are continuous but are not differ-
entiable functions in R, we cannot use such a method to obtain the continuity in H1

0 (U).
Thus, for any space dimension N and any growth exponent p ≥ 2, we address the question
whether or not we can obtain the continuity of solutions in H1

0 (U) by some new kinds of
estimates.
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In order to answer the above two problems, we follow the ideas from [21] to obtain our
main results, in which the authors investigated the high-order integrability of difference
of solutions and existence of random attractors for the reaction–diffusion equations with
additive noise.

The remainder article is arranged as follows. In Sect. 2, we first recall some definitions
and known results about the pullback random attractors, then we give the well-posedness
of a solution and the existence of random attractors in L2(U). In Sect. 3, we establish the
higher-order integrability of the difference of the solutions near the initial time and get the
continuity of solutions in H1

0 (U). Furthermore, as an application of above continuity and
higher-order integrability results of solutions, we show (L2(U), Lp(U)) and (L2(U), H1

0 (U))
D-pullback random attractors for the problem (1.1).

2 Preliminaries
Throughout the paper, we denote the norm of a Banach space X by ‖ · ‖X . For the sake of
convenience, we denote the norm of Lr(U) (r ≥ 1, r 
= 2) by ‖ · ‖Lr (U). The inner product
and norm of L2(U) will be written as (·, ·) and ‖ · ‖, respectively.

2.1 Random dynamical system
In this subsection, we collect some definitions and known results regarding pullback at-
tractors for random dynamical systems from [1–5, 7, 8, 17, 18, 21, 37].

Next, let (X,‖ · ‖X) be a separable Banach space with Borel σ -algebra B(X). We use
(Ω ,F ,P) and (X, d) to denote a probability space and a completely separable metric space,
respectively. If Y and Z are two nonempty subsets of X, then we use distX(Y , Z) to de-
note their Hausdorff semi-distance, i.e., distX(Y , Z) = supy∈Y infz∈Z ‖y – z‖X for any Y ⊂ X,
Z ⊂ X .

Definition 2.1 Let θ : R × Ω → Ω be a (B(R) × F ,F )-measurable mapping. We say
(Ω ,F ,P, (θt)t∈R) is a metric dynamical system if θ0 is the identity on Ω , θs+t = θt ◦ θs for all
t, s ∈R, and θtP = P for all t ∈R.

Definition 2.2 Let (Ω ,F ,P, (θt)t∈R) be a metric dynamical system. If the cocycle map-
ping Φ : R+ × Ω × X → X satisfies the following properties:

(i) Φ : R+ × Ω × X → X satisfies (B(R+) ×F ×B(X),B(X))-measurable;
(ii) Φ(0,ω, x) = x, ∀ω ∈ Ω , x ∈ X ;

(iii) Φ(t, θsω,Φ(s,ω, x)) = Φ(t + s,ω, x), ∀s, t ∈R
+, x ∈ X , ω ∈ Ω ,

then Φ is called a random dynamical system. Furthermore, Φ is called a continuous ran-
dom dynamical system if Φ is continuous with respect to x for t ≥ 0 and ω ∈ Ω .

Definition 2.3 A set-valued map K : Ω → 2X is called a random set in X if the mapping
ω �→ dist(x, K(ω)) is (F ,B(R)) measurable for all x ∈ X. A random set K : Ω → 2X is called
a random closed set if K(ω) is closed, nonempty for each ω ∈ Ω .

Definition 2.4 A random set K : Ω → 2X is called a bounded random set if there is a
random variable r(ω) ≥ 0, ω ∈ Ω such that

diam
(
K(ω)

)
= sup

{‖x‖X : x ∈ K(ω)
} ≤ r(ω), for all ω ∈ Ω .
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A bounded random set K := {K(ω)}ω∈Ω is said to be tempered (Ω ,F ,P, (θt)t∈R) if for P-
a.e. ω ∈ Ω ,

lim
t→+∞ e–βt diam

(
K(θ–tω)

)
= 0, for all β > 0.

Definition 2.5 Let D be a collection of random sets in X. Then a random set K ∈ D is
called a D-pullback absorbing set for a random dynamical system (θ ,Φ) if for any random
set D ∈D and P-a.e. ω ∈ Ω , there exists T = TD(ω) > 0 such that

Φ
(
t, θ–tω, D(θ–tω)

) ⊆ K(ω), for all t ≥ T .

Definition 2.6 Let D be a collection of random sets in X. Then Φ is said to be D-pullback
asymptotically compact in X if for all P-a.e. ω ∈ Ω , the sequence

{
Φ(tn, θ–tnω, xn)

}∞
n=1 has a convergent subsequence in X

whenever tn → ∞ and xn ∈ K(θ–tnω) with K(ω) ∈D.

Definition 2.7 Let D be a collection of some families of nonempty subsets of X. Then
A = {A(ω)}ω∈Ω ∈ D is called a D-pullback attractor for a random dynamical system Φ if
the following conditions (i)–(iii) are fulfilled:

(i) A is a compact random set, that is, ω �→ dist(x, A(ω)) is measurable for every x ∈ X
and A(ω) is nonempty and compact in X for P-a.e. ω ∈ Ω ;

(ii) A is invariant, that is, Φ(t,ω, A(ω)) = A(θtω), for P-a.e. ω ∈ Ω and every t > 0;
(iii) for every D = {D(ω)}ω∈Ω ∈D,

lim
t→+∞ distX

(
Φ

(
t, θ–tω, D(θ–tω)

)
, A(ω)

)
= 0, P-almost surely,

where distX is Hausdorff semi-metric given by distX(Y , Z) = supy∈Y infz∈Z ‖y – z‖X

for any Y ⊆ X and Z ⊆ X .

Theorem 2.8 ([3]) Let D be an inclusion-closed collection of some families of nonempty
subsets of X. Suppose that Φ be a continuous random dynamical system on X over
(Ω ,F ,P, {θt}t∈R). If there exists a closed random absorbing set K ∈D and Φ is D-pullback
asymptotically compact in X , then Φ has a unique D-random attractor A ∈D,

A(ω) =
⋂

s≥0

⋃

t≥s
Φ

(
t, θ–tω, K(θ–tω)

)
, ω ∈ Ω .

2.2 Well-posedness of random dynamical system generated by (1.1)
We consider the probability space (Ω ,F ,P), where

Ω =
{
ω ∈ C(R,R),ω(0) = 0

}
.

F a is Borel σ -algebra induced by the compact-open topology of Ω and P is the corre-
sponding Wiener measure. Then we will identify ω(t) with W (t), that is,

W (t) = W (t,ω) = ω(t), t ∈R.
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The time shift is simply defined by

θtω(·) = ω(· + t) – ω(t), for all ω ∈ Ω , t ∈ R,

then (Ω ,F ,P, {θt}t∈R) is a metric dynamical system.
Now we convert the problem (1.1) into a deterministic system with a random parameter.

For this purpose, we consider the Ornstein–Uhlenbeck process

z(θtω) = –
∫ 0

–∞
eτ (θtω)(τ ) dτ , t ∈R,

and it solves the Itô equation

dz + z dt = dW (t). (2.1)

From [16, 38], it is known that the random variable z(ω) is tempered, and there exists a θt-
invariant set Ω̃ ⊂ Ω of full P measure such that for every ω ∈ Ω̃ , t �→ z(θtω) is continuous
in t and

lim
t→±∞

|z(θtω)|
|t| = 0, lim

t→±∞
1
t

∫ t

0
z(θsω) ds = 0. (2.2)

Furthermore, there is a tempered random variable r1(ω) > 0 such that

∣
∣z(θtω)

∣
∣ ≤ e

|t|
2 r1(ω). (2.3)

Setting α(ω) = e–bz(ω), it is clear that both α(ω) and α–1(ω) are tempered, α(θtω) is con-
tinuous with respect to t for P-a.e. ω ∈ Ω . Thus, applying Proposition 4.3.3 in [5], we find
that there is a λ1

2 -slowly varying random variable r2(ω) > 0 such that

1
r2(ω)

≤ α(ω) ≤ r2(ω), (2.4)

where r2(ω) satisfies, for P-a.e. ω ∈ Ω ,

e– λ1
2 |t|r2(ω) ≤ r2(θtω) ≤ e

λ1
2 |t|r2(ω), t ∈R. (2.5)

From (2.3)–(2.5), we have

e– λ1
2 |t|r–1

2 (ω) ≤ α(θtω) ≤ e
λ1
2 |t|r2(ω), for P-a.e. ω ∈ Ω , t ∈R, (2.6)

where λ1 is the first eigenvalue of –� with Dirichlet boundary condition.
Choosing r(ω) = max{r1(ω), r2(ω)}, we will, respectively, convert (2.3) and (2.6) into the

forms

∣
∣z(θtω)

∣
∣ ≤ e

|t|
2 r(ω) (2.7)
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and

e– λ1
2 |t|r–1(ω) ≤ α(θtω) ≤ e

λ1
2 |t|r(ω), for P-a.e. ω ∈ Ω , t ∈R, (2.8)

where r(ω) is also tempered.
Next, in order to show that the problem (1.1) generates a random dynamical system, we

let v(t) = α(θtω)u(t) and α(θtω) = e–bz(θtω). Then, applying (2.1), we will convert (1.1) into
the following deterministic equation with random variable:

⎧
⎪⎨

⎪⎩

∂v
∂t – �v + α(θtω)f (α–1(θtω)v) = α(θtω)g(x) + bz(θtω)v, x ∈ U , t ≥ 0,
v(t)|∂U = 0, t ≥ 0,
v(0,ω) = v0(ω) = α(ω)u0.

(2.9)

From [25], it is well known that for P-a.e. ω ∈ Ω , for all v0(ω) ∈ L2(U) and g ∈ L2(U), the
problem (2.9) satisfying the condition (1.2)–(1.4) has a unique solution,

v(·,ω, v0) ∈ C
(
[0,∞), L2(U)

) ∩ Lp([0,∞), Lp(U)
) ∩ L2([0,∞), H1

0 (U)
)
.

Furthermore, v(t,ω, v0) is continuous with respect to v0 in L2(U) for all t > 0 and P-a.e.
ω ∈ Ω . Thus, we know that u(t) = α–1(θtω)v(t) is a solution of (1.1) with u0 = α–1(ω)v0.
Denote the mapping Φ : R+ × Ω × L2(U) → L2(U) by

Φ(t,ω, u0) = u(t,ω, u0) = α–1(θtω)v
(
t,ω,α(ω)u0

)
,

then Φ(t,ω, u0) satisfies conditions (i)–(iii) in Definition 2.2 and is continuous. Therefore,
Φ is a continuous random dynamical system.

2.3 Random attractor in L2(U)
In this subsection, we give some estimates of solutions to obtain our main results.

Lemma 2.9 Assume that g ∈ L2(U) and (1.2)–(1.4) hold. Let D ∈ D and u0 ∈ D(ω). Then
for P-a.e. ω ∈ Ω , there exists TD(ω) > 0 and the tempered functions ρi(ω) > 0 (i = 1, 2, 3)
such that the solution v(t,ω, v0(ω)) of (2.9) with v0(ω) = α(ω)u0(ω) satisfies, for all t >
TD(ω),

∥
∥v

(
t, θ–tω, v0(θ–tω)

)∥
∥2 ≤ ρ1(ω); (2.10)

∫ t+1

t

∥
∥v

(
s, θ–t–1ω, v0(θ–t–1ω)

)∥
∥p

Lp(U) ds ≤ ρ2(ω); (2.11)

and
∫ t+1

t

∥
∥∇v

(
s, θ–t–1ω, v0(θ–t–1ω)

)∥
∥2 ds ≤ ρ3(ω). (2.12)

Proof Taking the inner product of (2.9) with v in L2(U), we find that

1
2

d
dt

‖v‖2 + ‖∇v‖2 = –
(
α(θtω)f

(
α–1(θtω)v

)
, v

)
+

(
α(θtω)g(x), v

)

+
(
bvz(θtω), v

)
. (2.13)
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By using (1.3), we have

(
α(θtω)f

(
α–1(θtω)v

)
, v

) ≥ c1α
2–p(θtω)‖v‖p

Lp(U) – c2|U|α2(θtω). (2.14)

At the same time, applying Hölder’s inequality and Young’s inequality, we conclude that

(
α(θtω)g(x), v

) ≤ α2(θtω)
2λ1

‖g‖2 +
λ1

2
‖v‖2 (2.15)

and

∣
∣
(
bvz(θtω), v

)∣
∣ ≤ b

∣
∣z(θtω)

∣
∣‖v‖2, (2.16)

where λ1 is the first eigenvalue of –� with Dirichlet boundary value in (2.15).
Thus, (2.13)–(2.16) imply that

d
dt

‖v‖2 + 2‖∇v‖2 + 2c1α
2–p(θtω)‖v‖p

Lp(U)

≤ 2c2|U|α2(θtω) +
‖g‖2

λ1
α2(θtω) + λ1‖v‖2 + 2b

∣
∣z(θtω)

∣
∣‖v‖2. (2.17)

Using the Poincaré inequality ‖∇v‖2 ≥ λ1‖v‖2 in the above result, we have

d
dt

‖v‖2 +
(
λ1 – 2b

∣
∣z(θtω)

∣
∣
)‖v‖2 + 2c1α

2–p(θtω)‖v‖p
Lp(U)

≤ 2c2|U|α2(θtω) +
‖g‖2

λ1
α2(θtω). (2.18)

Then, applying Gronwall’s lemma, we get

∥
∥v

(
t,ω, v0(ω)

)∥
∥2 ≤ e2b

∫ t
0 |z(θτ ω)|dτ–λ1t‖v0‖2

+ 2c2|U|
∫ t

0
e2b

∫ t
s |z(θτ ω)|dτ+λ1(s–t)α2(θsω) ds

+
‖g‖2

λ1

∫ t

0
e2b

∫ t
s |z(θτ ω)|dτ+λ1(s–t)α2(θsω) ds. (2.19)

Substituting ω by θ–tω for above inequality and using (2.8), we find that

∥
∥v

(
t, θ–tω, v0(θ–tω)

)∥
∥2 ≤ e2b

∫ t
0 |z(θτ–tω)|dτ–λ1t∥∥v0(θ–tω)

∥
∥2

+ 2c2|U|
∫ t

0
e2b

∫ t
s |z(θτ–tω)|dτ+λ1(s–t)α2(θs–tω) ds

+
‖g‖2

λ1

∫ t

0
e2b

∫ t
s |z(θτ–tω)|dτ+λ1(s–t)α2(θs–tω) ds

≤ e2b
∫ 0

–t |z(θτ ω)|dτ–λ1t∥∥v0(θ–tω)
∥
∥2

+
(

2c2|U| +
‖g‖2

λ1

)

r2(ω)
∫ 0

–∞
e2b

∫ 0
s |z(θτ ω)|dτ ds.
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It is obvious that e2b
∫ 0

–t |z(θτ ω)|dτ is tempered, that is, there exists a random variable r3(ω)
such that e2b

∫ 0
–t |z(θτ ω)|dτ ≤ r3(ω). In fact,

e–βte2b
∫ 0

–t |z(θτ ω)|dτ = e–βte2bt· 1
–t

∫ –t
0 |z(θτ ω)|dτ ≤ e–βte2bt· β

4b = e– βt
2

from (2.2) and z(θtω) is tempered, where β is a positive constant. Notice that D(ω) ∈D is
tempered, then v0(θ–tω) ∈ D(θ–tω) is also tempered. Moreover, it follows from the prop-
erties of the Ornstein–Uhlenbeck process that

∫ 0

–∞
e2b

∫ 0
s |z(θτ ω)|dτ ds < ∞.

Hence, combining with the above results, we set

ρ1(ω) = e–λ1tr3(ω)
∥
∥v0(θ–tω)

∥
∥2 +

(

2c2|U| +
‖g‖2

λ1

)

r2(ω)
∫ 0

–∞
e2b

∫ 0
s |z(θτ ω)|dτ ds,

then (2.10) holds.
Next, we will prove that (2.11) holds. Integrating (2.17) over [t, t + 1] with respect to t

and replacing ω by θ–t–1ω, we obtain

∫ t+1

t
α2–p(θs–t–1ω)

∥
∥v(s)

∥
∥p

Lp(U) ds

≤ 1
2c1

(
∥
∥v(t)

∥
∥2 +

(

2c2|U| +
‖g‖2

λ1

)∫ t+1

t
α2(θs–t–1ω) ds

)

≤ 1
2c1

(∫ t+1

t

(
λ1 + 2b

∣
∣z(θs–t–1ω)

∣
∣
)∥
∥v(s)

∥
∥2 ds

)

. (2.20)

Since

∫ t+1

t
α2–p(θs–t–1ω)

∥
∥v(s)

∥
∥p

Lp(U) ds =
∫ 0

–1
α2–p(θsω)

∥
∥v(s + t + 1)

∥
∥p

Lp(U) ds

≥ r2–p(ω)
∫ 0

–1
e

(p–2)λ1
2 s∥∥v(s + t + 1)

∥
∥p

Lp(U) ds

≥ (
r(ω)e

λ1
2
)2–p

∫ t+1

t

∥
∥v(s)

∥
∥p

Lp(U) ds, (2.21)

we can get

∫ t+1

t

∥
∥v(s)

∥
∥p

Lp(U) ds

≤ (r(ω)e
λ1
2 )p–2

2c1

(
∥
∥v(t)

∥
∥2 +

(

2c2|U| +
‖g‖2

λ1

)∫ 0

–1
α2(θsω) ds

)

+
(r(ω)e

λ1
2 )p–2

2c1

(

λ1

∫ t+1

t

∥
∥v(s)

∥
∥2 ds + 2b

∫ 0

–1

∣
∣z(θsω)

∣
∣
∥
∥v(s + t + 1)

∥
∥2 ds

)

≤ (r(ω)e
λ1
2 )p–2

2c1

(
(
1 + λ1 + 2be

1
2 r(ω)

)
ρ1(ω) +

(

2c2|U| +
‖g‖2

λ1

)

eλ1 r2(ω)
)

,
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by using (2.7), (2.8), (2.10) and combining (2.20) with (2.21). So (2.11) holds if we choose

ρ2(ω) =
(r(ω)e

λ1
2 )p–2

2c1

(
(
1 + λ1 + 2be

1
2 r(ω)

)
ρ1(ω) +

(

2c2|U| +
‖g‖2

λ1

)

eλ1 r2(ω)
)

.

Finally, taking t ≥ TD(ω) and s ∈ (t, t + 1), integrating (2.17) from s to t + 1, it follows that

∥
∥v(t + 1)

∥
∥2 + 2

∫ t+1

s

∥
∥∇v(τ )

∥
∥2 dτ

≤ ∥
∥v(s)

∥
∥2 +

(

2c2|U| +
‖g‖2

λ1

)∫ t+1

s
α2(θτω) dτ

+ λ1

∫ t+1

s

∥
∥v(τ )

∥
∥2 dτ + 2b

∫ t+1

s

∣
∣z(θτω)

∣
∣
∥
∥v(τ )

∥
∥2 dτ . (2.22)

Again integrating (2.22) over [t, t + 1] with respect to s and replacing ω by θ–t–1ω, we infer
that

∫ t+1

t

∥
∥∇v(τ )

∥
∥2 dτ ≤ 1

2

∫ t+1

t

∥
∥v(s)

∥
∥2 ds +

(

c2|U| +
‖g‖2

2λ1

)∫ t+1

t
α2(θτ–t–1ω) dτ

+
λ1

2

∫ t+1

t

∥
∥v(τ )

∥
∥2 dτ + b

∫ t+1

t

∣
∣z(θτ–t–1ω)

∣
∣
∥
∥v(τ )

∥
∥2 dτ

≤ 1
2

∫ t+1

t

∥
∥v(s)

∥
∥2 ds +

(

c2|U| +
‖g‖2

2λ1

)∫ 0

–1
α2(θτω) dτ

+
λ1

2

∫ t+1

t

∥
∥v(τ )

∥
∥2 dτ + b

∫ 0

–1

∣
∣z(θτω)

∣
∣
∥
∥v(τ + t + 1)

∥
∥2 dτ

≤
(

1 + λ1

2
+ 2be

1
2 r(ω)

)

ρ1(ω) +
(

c2|U| +
‖g‖2

2λ1

)

eλ1 r2(ω)

by using (2.7), (2.8) and (2.10). Thus, let

ρ3(ω) =
(

1 + λ1

2
+ 2be

1
2 r(ω)

)

ρ1(ω) +
(

c2|U| +
‖g‖2

2λ1

)

eλ1 r2(ω),

then (2.12) holds. �

Lemma 2.10 Assume that g ∈ L2(U) and (1.2)–(1.4) hold. Let D ∈D and u0(ω) ∈D. Then
for P-a.e. ω ∈ Ω , we have TD(ω) > 0 such that the solution u(t,ω, u0(ω)) of (1.1) satisfies,
for all t > TD(ω),

∥
∥u

(
t, θ–tω, u0(θ–tω)

)∥
∥2 ≤ r2(ω)ρ1(ω) (2.23)

and

∥
∥∇u

(
t, θ–tω, u0(θ–tω)

)∥
∥2 ≤ ρ4(ω). (2.24)

Proof Combining (2.10) with v(t,ω, v0(ω)) = α(θtω)u(t,ω, u0(ω)), we have

∥
∥u

(
t, θ–tω, u0(θ–tω)

)∥
∥2 =

∥
∥α–1(ω)v

(
t, θ–tω, v0(θ–tω)

)∥
∥2 ≤ r2(ω)ρ1(ω).
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Now, multiplying (2.9) by –�v and integrating over U , we find that

1
2

d
dt

‖∇v‖2 + ‖�v‖2 +
(
α(θtω)f

(
α–1(θtω)v(t)

)
, –�v

)

=
(
α(θtω)g(x), –�v

)
+ (bzv, –�v). (2.25)

By using (1.2), Hölder’s inequality and Young’s inequality, we have

(
α(θtω)f

(
α–1(θtω)v(t)

)
, –�v

) ≥ –l‖∇v‖2, (2.26)

∣
∣
(
α(θtω)g(x), –�v

)∣
∣ ≤ α2(θtω)

4
‖g‖2 + ‖�v‖2, (2.27)

and

∣
∣(bzv, –�v)

∣
∣ ≤ b|z|‖∇v‖2. (2.28)

Thus, it follows from (2.25)–(2.28) that

d
dt

‖∇v‖2 ≤ 2l‖∇v‖2 + 2b|z|‖∇v‖2 +
α2(θtω)

2
‖g‖2. (2.29)

Now, taking t ≥ TD(ω) and s ∈ (t, t + 1), integrating (2.29) from s to t + 1, we get

∥
∥∇v(t + 1)

∥
∥2 ≤ 2l

∫ t+1

s

∥
∥∇v(τ )

∥
∥2 dτ + 2b

∫ t+1

s

∣
∣z(θτω)

∣
∣
∥
∥∇v(τ )

∥
∥2 dτ

+
‖g‖2

2

∫ t+1

s
α2(θτω) dτ +

∥
∥∇v(s)

∥
∥2. (2.30)

Integrating (2.30) over [t, t + 1] with respect to s and replacing ω by θ–t–1ω, we deduce that

∥
∥∇v

(
t + 1, θ–t–1ω, v0(θ–t–1ω)

)∥
∥2

≤ (1 + 2l)
∫ t+1

t

∥
∥∇v

(
s, θ–t–1ω, v0(θ–t–1ω)

)∥
∥2 ds

+
‖g‖2

2

∫ t+1

t
α2(θτ–t–1ω) dτ

+ 2b
∫ t+1

t

∣
∣z(θτ–t–1ω)

∣
∣
∥
∥∇v

(
τ , θ–t–1ω, v0(θ–t–1ω)

)∥
∥2 dτ

≤ (1 + 2l)ρ3(ω) +
‖g‖2

2

∫ 0

–1
α2(θτω) dτ

+ 2b
∫ 0

–1

∣
∣z(θτω)

∣
∣
∥
∥∇v

(
τ + t + 1, θ–t–1ω, v0(θ–t–1ω)

)∥
∥2 dτ

≤ (
1 + 2l + 2b

√
er(ω)

)
ρ3(ω) +

eλ1

2
r2(ω)‖g‖2

by using (2.7), (2.8) and (2.12). Choosing

ρ4(ω) =
(
1 + 2l + 2b

√
er(ω)

)
ρ3(ω) +

eλ1

2
r2(ω)‖g‖2,
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and combining with

v(t) = α(t)u(t),

we complete the proof. �

Combining the boundedness of solutions in H1
0 (U) given in Lemma 2.10 with the

Sobolev compact embedding H1
0 (U) ↪→ L2(U), it is easy to obtain the compactness of so-

lutions in L2(U). Thus, by Theorem 2.8 we obtain the following result.

Lemma 2.11 Assume that g ∈ L2(U) and (1.2)–(1.4) hold. Then the continuous random
dynamical system Φ generated by (1.1) has a unique D-random attractor A, that is, for P-
a.e. ω ∈ Ω , A is nonempty, compact, invariant and D-pullback attracting in the topology
of L2(U).

3 Uniform estimates of solutions
In this section, the estimates on the higher order integrability for the difference of solutions
near initial time will be given. At the same time, we also prove other corresponding results.
For the sake of convenience, we choose C as the positive constant which may be different
from line to line or in the same line in our paper.

3.1 Higher order integrability near initial time
Theorem 3.1 Assume that (1.2)–(1.4) hold, and b > 0 and u0i ∈ D(ω) (i = 1, 2) is the initial
data. Then, for any T > 0, any k = 1, 2, . . . and P-a.e. ω ∈ Ω , there exist positive constants
Mk(ω) = M(l, k, b, N , T , r(ω), r3(ω),λ,‖u0i‖), such that

t
N

N–2
∥
∥tbk ū(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k (U)

≤ Mk(ω), for all t ∈ [0, T],

and

∫ T

0

(∫

U

∣
∣tbk+1 ū(t)

∣
∣2( N

N–2 )k+1
dx

) N–2
N

dt ≤ Mk(ω),

where ū(t) = Φ(t,ω)u01 – Φ(t,ω)u02 and

b1 = 1 +
1
2

, b2 = 1 +
1
2

+ 1 and bk+1 = bk +
1 + N

N–2

2( N
N–2 )k+1

for k = 2, 3, . . . . (3.1)

Proof We see that ū(t) satisfies the equation

⎧
⎪⎨

⎪⎩

∂ū
∂t – �ū + f (u1(t)) – f (u2(t)) = bū ◦ dW

dt , (x, t) ∈ U × (0, T),
ū(t)|∂U = 0, t ≥ 0,
ū(0,ω) = u01(ω) – u02(ω),

(3.2)

where ui(t) = Φ(t,ω, u0i(ω)) (i = 1, 2) is the solution of Eq. (1.1) with initial data u0i.
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Due to v(t) = α(θtω)u(t) with α(θtω) = e–bz(θtω), we convert Eq. (3.2) into the equation

⎧
⎪⎨

⎪⎩

∂ v̄
∂t – �v̄ + α(θtω)(f (u1(t)) – f (u2(t))) = bzv̄, (x, t) ∈ U × (0, T),
v̄(t)|∂U = 0, t ≥ 0,
v̄(0,ω) = v01(ω) – v02(ω).

(3.3)

Our proof will be completed in two steps.
We can justify the following estimates by means of the Faedo–Galerkin approximation

procedure.
• For the case k = 1. Taking the inner product of (3.3) with v̄ in L2(U), we find that

1
2

d
dt

‖v̄‖2 + ‖∇ v̄‖2 = –
(
α(θtω)

(
f
(
u1(t)

)
– f

(
u2(t)

))
, v̄

)
+ b|z|‖v̄‖2, t ∈ (0, T). (3.4)

By using (1.2), we have the following estimate:

–
(
α(θtω)

(
f
(
u1(t)

)
– f

(
u2(t)

))
, v̄

) ≤ l‖v̄‖2. (3.5)

It follows from (3.4) and (3.5) that

d
dt

‖v̄‖2 + 2‖∇ v̄‖2 ≤ 2l‖v̄‖2 + 2b|z|‖v̄‖2.

By Gronwall’s lemma, we conclude

∥
∥v̄(t)

∥
∥2 ≤ e2lte2b

∫ t
0 |z(θτ ω)|dτ

∥
∥v̄(0)

∥
∥2. (3.6)

It is obvious that e2b
∫ t

0 |z(θτ ω)|dτ is tempered, that is, there exists a random variable r4(ω)
such that e2b

∫ t
0 |z(θτ ω)|dτ ≤ r4(ω). In fact,

e–βte2b
∫ t

0 |z(θτ ω)|dτ = e–βte2bt· 1
t

∫ t
0 |z(θτ ω)|dτ ≤ e–βte2bt· β

4b = e– βt
2 ,

from (2.2), where β is a proper positive constant.
Then, (3.6) is equivalent to the following form:

∥
∥v̄(t)

∥
∥2 ≤ r4(ω)e2lt∥∥v̄(0)

∥
∥2, ∀t ∈ [0, T]. (3.7)

Furthermore,

∫ T

0

∥
∥∇ v̄(s)

∥
∥2 ds

≤ 1
2
∥
∥v̄(0)

∥
∥2 + l

∫ T

0

∥
∥v̄(s)

∥
∥2 ds + b

∫ T

0
|z|∥∥v̄(s)

∥
∥2 ds

≤ 1
2
∥
∥v̄(0)

∥
∥2 + lr4(ω)

∫ T

0
e2ls∥∥v̄(0)

∥
∥2 ds + br(ω)r4(ω)

∫ T

0
e

s
2 e2ls∥∥v̄(0)

∥
∥2 ds

≤ 1
2
∥
∥v̄(0)

∥
∥2 + lr4(ω)

e2lT – 1
2l

∥
∥v̄(0)

∥
∥2 + br(ω)r4(ω)

e(2l+1)T – 1
2l + 1

∥
∥v̄(0)

∥
∥2

= C
(
l, b, T , r(ω), r4(ω)

)∥
∥v̄(0)

∥
∥2. (3.8)
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And then it follows from ‖v̄‖
L

2N
N–2 (U)

≤ c‖∇ v̄‖ (c is the embedding constant) that

∫ T

0

∥
∥v̄(s)

∥
∥2

L
2N

N–2 (U)
ds ≤ cC

(
l, b, T , r(ω), r4(ω)

)∥
∥v̄(0)

∥
∥2. (3.9)

So,

∫ T

0

∥
∥sb1 v̄(s)

∥
∥2

L
2N

N–2 (U)
ds =

∫ T

0
s2b1

∥
∥v̄(s)

∥
∥2

L
2N

N–2 (U)
ds

≤ T2b1

∫ T

0

∥
∥v̄(s)

∥
∥2

L
2N

N–2 (U)
ds

≤ C
(
l, b, c, b1, T , r(ω), r4(ω)

)∥
∥v̄(0)

∥
∥2. (3.10)

Taking the inner product of (3.3) with |v̄| 2N
N–2 –2 · v̄ in L2(U) again, we obtain

N – 2
2N

d
dt

∥
∥v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
+

2N
N–2 – 1
( N

N–2 )2

∫

U

∣
∣∇∣

∣v̄(t)
∣
∣

N
N–2

∣
∣2 dx

≤ (
l + b|z|)∥∥v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
,

it follows that

d
dt

∥
∥v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
+

2(N + 2)
N

∫

U

∣
∣∇∣

∣v̄(t)
∣
∣

N
N–2

∣
∣2 dx

≤ 2N(l + b|z|)
N – 2

∥
∥v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
. (3.11)

Multiplying both sides of (3.11) with t
3N

N–2 , for a.e. t ∈ (0, T), yields

t
3N

N–2
d
dt

∥
∥v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
+ t

3N
N–2

2(N + 2)
N

∫

U

∣
∣∇∣

∣v̄(t)
∣
∣

N
N–2

∣
∣2 dx

≤ t
3N

N–2
2N(l + b|z|)

N – 2
∥
∥v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
.

At the same time, we see that

d
dt

∥
∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
=

d
dt

∫

U
t

3N
N–2

∣
∣v̄(t)

∣
∣

2N
N–2 dx

= t
3N

N–2
d
dt

∥
∥v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
+

3N
N – 2

t
3N

N–2 –1∥∥v̄(t)
∥
∥

2N
N–2

L
2N

N–2 (U)
.

Therefore, for a.e. t ∈ (0, T), we have

d
dt

∥
∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
+

2(N + 2)
N

∫

U

∣
∣∇∣

∣tb1 v̄(t)
∣
∣

N
N–2

∣
∣2 dx

≤ 2N(l + b|z|)
N – 2

∥
∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
+

3N
N – 2

t–1∥∥tb1 v̄(t)
∥
∥

2N
N–2

L
2N

N–2 (U)
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≤ C(l, N , b)
(
1 +

∣
∣z(θtω)

∣
∣ + t–1)∥∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)

≤ C(l, N , b)
(
1 + e

t
2 r(ω) + t–1)∥∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
, (3.12)

where C(l, N , b) = max{ 2Nl
N–2 , 2Nb

N–2 , 3N
N–2 }. Thus, for a.e. t ∈ (0, T),

t
d
dt

∥
∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
≤ C(l, N , b)

(
t + te

t
2 r(ω) + 1

)∥
∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)

≤ C(l, N , b)
(
T + Te

T
2 r(ω) + 1

)∥
∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
(3.13)

and

t
d
dt

∥
∥tb1 v̄(t)

∥
∥2

L
2N

N–2 (U)
= t

d
dt

(∫

U

∣
∣tb1 v̄(t)

∣
∣

2N
N–2 dx

) N–2
N

= t
N – 2

N

(∫

U

∣
∣tb1 v̄(t)

∣
∣

2N
N–2 dx

) N–2
N –1 d

dt
∥
∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)

≤ N – 2
N

(∫

U

∣
∣tb1 v̄(t)

∣
∣

2N
N–2 dx

) N–2
N –1

· C(l, N , b)
(
T + Te

T
2 r(ω) + 1

)∥
∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)

≤ C(l, N , b)
(
T + Te

T
2 r(ω) + 1

)N – 2
N

∥
∥tb1 v̄(t)

∥
∥2

L
2N

N–2 (U)
. (3.14)

For any fixed t ∈ (0, T), integrating (3.14) from 0 to t, we have

∫ t

0
s

d
ds

∥
∥sb1 v̄(t)

∥
∥2

L
2N

N–2 (U)
ds = t

∥
∥tb1 v̄(t)

∥
∥2

L
2N

N–2 (U)
–

∫ t

0

∥
∥sb1 v̄(t)

∥
∥2

L
2N

N–2 (U)
ds

≤ C(l, N , b)
(
T + Te

T
2 r(ω) + 1

)N – 2
N

·
∫ t

0

∥
∥sb1 v̄(s)

∥
∥2

L
2N

N–2 (U)
ds.

Then, using (3.10), we have

t
∥
∥tb1 v̄(t)

∥
∥2

L
2N

N–2 (U)
≤ (

C(l, N , b)
(
T + Te

T
2 r(ω) + 1

)
+ 1

)

·
∫ T

0

∥
∥sb1 v̄(s)

∥
∥2

L
2N

N–2 (U)
ds

≤ (
C(l, N , b)

(
T + Te

T
2 r(ω) + 1

)
+ 1

)

· C
(
l, b, c, b1, T , r(ω), r4(ω)

)∥
∥v̄(0)

∥
∥2

and

t
N

N–2
∥
∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
≤ M′

1(ω), (3.15)
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where

M′
1(ω) =

(
C(l, N , b)

(
T + Te

T
2 r(ω) + 1

)
+ 1

) N
N–2

· (C
(
l, b, T , c, b1, r(ω), r4(ω)

)) N
N–2

∥
∥v̄(0)

∥
∥

2N
N–2 .

Hence, for a.e. t ∈ (0, T), we get

t
N

N–2
∥
∥tb1 ū(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
= t

N
N–2

∥
∥tb1α–1(θtω)v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)

≤ (
α(θtω)

)– 2N
N–2 M′

1(ω)

≤ (
e

λ
2 T r(ω)

) 2N
N–2 M′

1(ω) = M′′
1(ω) (3.16)

from (2.8), (3.15) and v̄(t) = α(θtω)ū(t).
Multiplying (3.12) by t

2N
N–2 and combining with (3.15), we have

t
2N

N–2
d
dt

∥
∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
+ t

2N
N–2

2(N + 2)
N

∫

U

∣
∣∇∣

∣tb1 v̄(t)
∣
∣

N
N–2

∣
∣2 dx

= t
2N

N–2
d
dt

∥
∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
+

2(N + 2)
N

∫

U

∣
∣∇∣

∣tb1+1v̄(t)
∣
∣

N
N–2

∣
∣2 dx

≤ C(l, N , b)
(
t

N
N–2 + t

N
N–2 e

t
2 r(ω) + t

N
N–2 –1)t

N
N–2

∥
∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)

≤ C(l, N , b)
(
t

N
N–2 + t

N
N–2 e

t
2 r(ω) + t

N
N–2 –1)M′

1(ω). (3.17)

Integrating (3.17) over [0, T] with respect to t, we see that

2(N + 2)
N

∫ T

0

∫

U

∣
∣∇∣

∣tb1+1v̄(t)
∣
∣

N
N–2

∣
∣2 dx dt

≤ 2N
N – 2

∫ T

0
t

2N
N–2 –1∥∥tb1 v̄(t)

∥
∥

2N
N–2

L
2N

N–2 (U)
dt

+ C(l, N , b)M′
1(ω)

∫ T

0

(
t

N
N–2 + t

N
N–2 e

t
2 r(ω) + t

N
N–2 –1)dt

≤ 2N
N – 2

M′
1(ω)

∫ T

0
t

N
N–2 –1 dt

+ C(l, N , b)M′
1(ω)

∫ T

0

(
t

N
N–2 + t

N
N–2 e

t
2 r(ω) + t

N
N–2 –1)dt

≤ C
(
l, N , b, T , r(ω)

)
M′

1(ω). (3.18)

At the same time, combining with ‖v̄‖
L

2N
N–2 (U)

≤ c‖∇ v̄‖ with (3.18), we conclude

∫ T

0

(∫

U

(∣
∣tb2 v̄(t)

∣
∣

N
N–2

) 2N
N–2 dx

) N–2
N

dt ≤ c
∫ T

0

∫

U

∣
∣∇∣

∣tb1+1v̄(t)
∣
∣

N
N–2

∣
∣2 dx dt

≤ C
(
l, N , b, T , c, r(ω)

)
M′

1(ω). (3.19)
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Hence, for a.e. t ∈ (0, T), we get

∫ T

0

(∫

U

(∣
∣tb2 ū(t)

∣
∣

N
N–2

) 2N
N–2 dx

) N–2
N

dt

=
∫ T

0

(
α(θtω)

)– 2N
N–2

(∫

U

(∣
∣tb2 v̄(t)

∣
∣

N
N–2

) 2N
N–2 dx

) N–2
N

dt

≤ (
eλ1T r2(ω)

) N
N–2 C

(
l, N , b, T , c, r(ω)

)
M′

1(ω)

≤ C
(
l, N , b, T , c,λ1, r(ω)

)
M′

1(ω) = M′′′
1 (ω) (3.20)

from (2.8), (3.19) and v̄(t) = α(θtω)ū(t).
Set M1(ω) = max{M′′

1(ω), M′′′
1 (ω)}, we show that (A1) and (B1) hold from (3.16) and (3.20).

• Assume that (Ak) and (Bk) hold for k ≥ 2. Next, we will prove that (Ak+1) and (Bk+1)
hold.

Taking the inner product of (3.3) with |v̄|2( N
N–2 )k+1–2 · v̄, we find that

1
2

(
N – 2

N

)k+1 d
dt

∥
∥v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)
+

2( N
N–2 )k+1 – 1

( N
N–2 )2(k+1)

∫

U

∣
∣∇∣

∣v̄(t)
∣
∣( N

N–2 )k+1 ∣
∣2 dx

≤ (
l + b|z|)∥∥v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)
,

that is, for a.e. t ∈ (0, T)

d
dt

‖v̄‖2( N
N–2 )k+1

L2( N
N–2 )k+1

(U)
+ 2

2( N
N–2 )k+1 – 1
( N

N–2 )k+1

∫

U

∣
∣∇∣

∣v̄(t)
∣
∣( N

N–2 )k+1 ∣
∣2 dx

≤ 2(l + b|z|)
( N–2

N )k+1

∥
∥v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)
. (3.21)

Multiplying both sides of (3.21) with t2( N
N–2 )k+1·bk+1 , it follows that

d
dt

(
t2( N

N–2 )k+1·bk+1
∥
∥v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)

)
+ 2

2( N
N–2 )k+1 – 1
( N

N–2 )k+1

∫

U

∣
∣∇∣

∣tbk+1 v̄(t)
∣
∣( N

N–2 )k+1 ∣
∣2 dx

≤ 2(l + b|z|)
( N–2

N )k+1

∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)

+ 2
(

N
N – 2

)k+1

bk+1t2( N
N–2 )k+1·bk+1–1∥∥v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)
,

that is,

d
dt

∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)
+ 2

2( N
N–2 )k+1 – 1
( N

N–2 )k+1

∫

U

∣
∣∇∣

∣tbk+1 v̄(t)
∣
∣( N

N–2 )k+1 ∣
∣2 dx

≤ C(l, N , k, b)
(
1 +

∣
∣z(θtω)

∣
∣ + t–1)∥∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)
, (3.22)

where C(l, N , k, b) = max{ 2l
( N–2

N )k+1 , 2b
( N–2

N )k+1 , 2( N
N–2 )k+1bk+1}.
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Firstly, from (3.22) we deduce that, for all t ∈ [0, T],

t
d
dt

∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(U)

= t
d
dt

(∫

U

∣
∣tbk+1 v̄(t)

∣
∣2( N

N–2 )k+1
dx

) N–2
N

= t
N – 2

N

(∫

U

∣
∣tbk+1 v̄(t)

∣
∣2( N

N–2 )k+1
) N–2

N –1 d
dt

∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)

≤ C(l, N , k, b)
(
T + Te

T
2 + 1

)∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(U)
. (3.23)

Integrating (3.23) over [0, t], for all t ∈ [0, T], we have

t
∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(U)
≤ (

C(l, N , k, b)
(
T + Te

T
2 + 1

)
+ 1

)

·
∫ T

0

∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(U)
dt. (3.24)

Using (2.8) and (Bk), we also find that

∫ T

0

∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(U)
dt

=
∫ T

0

(
α(θsω)

)–2( N
N–2 )k ∥

∥tbk+1 ū(t)
∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(U)
dt

≤ (
eλ1T r2(ω)

)( N
N–2 )k

∫ T

0

∥
∥tbk+1 ū(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(U)
dt

≤ (
eλ1T r2(ω)

)( N
N–2 )k

Mk(ω). (3.25)

So, from (3.24)–(3.25) we obtain

t
∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(U)
≤ (

C(l, N , k, b)
(
T + Te

T
2 + 1

)
+ 1

)

· (eλ1T r2(ω)
)( N

N–2 )k
Mk(ω). (3.26)

In addition, we can get

(
e–λ1T r–2(ω)

)( N
N–2 )k

t
∥
∥tbk+1 ū(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(U)

≤ t
∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(U)
(3.27)

by using (2.8) and v̄(t) = α(θtω)ū(t). Thus, from (3.26) and (3.27), we arrive at

t
∥
∥tbk+1 ū(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(U)
≤ (

C(l, N , k, b)
(
T + Te

T
2 + 1

)
+ 1

)

· (eλ1T r2(ω)
)2( N

N–2 )k
Mk(ω),
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which implies that

t
N

N–2
∥
∥tbk+1 ū

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)

≤ [(
C(l, N , k, b)

(
T + Te

T
2 + 1

)
+ 1

)(
eλ1T r2(ω)

)2( N
N–2 )k

Mk
] N

N–2

= M′′
k+1(ω). (3.28)

Secondly, after obtaining (3.28), we will prove (Bk+1) by (3.22). Multiplying both sides of
(3.22) by t1+ N

N–2 , we find that

t1+ N
N–2

d
dt

∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)

+ 2
2( N

N–2 )k+1 – 1
( N

N–2 )k+1

∫

U

∣
∣∇∣

∣t
bk+1+

1+ N
N–2

2( N
N–2 )k+1 v̄(t)

∣
∣( N

N–2 )k+1 ∣
∣2 dx

≤ C(l, N , k, b)
(
t + t

∣
∣z(θtω)

∣
∣ + 1

)
t

N
N–2

∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)
. (3.29)

Then, applying (2.8), (3.28) and the definition of bk+2, we obtain

t1+ N
N–2

d
dt

∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)

+ 2
2( N

N–2 )k+1 – 1
( N

N–2 )k+1

∫

U

∣
∣∇∣

∣tbk+2 v̄(t)
∣
∣( N

N–2 )k+1 ∣
∣2 dx

≤ C(l, N , k, b)
(
t + te

t
2 r(ω) + 1

)(
eλ1T r2(ω)

)( N
N–2 )k+1

M′′
k+1(ω). (3.30)

Integrating (3.30) over [0, T] and applying (3.28), we obtain that

2
2( N

N–2 )k+1 – 1
( N

N–2 )k+1

∫ T

0

∫

U

∣
∣∇∣

∣tbk+2 v̄(t)
∣
∣( N

N–2 )k+1 ∣
∣2 dx dt

≤ C(l, N , k, b)
(
eλ1T r2(ω)

)( N
N–2 )k+1

M′′
k+1(ω)

∫ T

0

(
t + te

t
2 r(ω) + 1

)
dt

+
2N – 2
N – 2

∫ T

0
t

N
N–2

∥
∥tbk+1 v̄(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(U)
dt

≤ C(l, N , k, b)
(
eλ1T r2(ω)

)( N
N–2 )k+1(

T2 + T +
(
2TeT + 4

)
r(ω)

)
M′′

k+1(ω)

+
2N – 2
N – 2

T
(
eλ1T r2(ω)

)( N
N–2 )k+1

M′′
k+1(ω)

≤ C
(
l, N , k, b,λ1, T , r(ω)

)
M′′

k+1(ω),

which, combining with (
∫

U |v̄| 2N
N–2 dx)

N–2
N ≤ c

∫

U |∇ v̄|2 dx, leads to

∫ T

0

(∫

U

∣
∣tbk+2 v̄(t)

∣
∣2( N

N–2 )k+2
dx

) N
N–2

dt ≤ c
∫ T

0

∫

U

∣
∣∇∣

∣tbk+2 v̄(t)
∣
∣( N

N–2 )k+1 ∣
∣2 dx dt

≤ C
(
l, N , k, b,λ1, T , c, r(ω)

)
M′′

k+1(ω). (3.31)
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Similar to (3.20), from (3.31) we also obtain

∫ T

0

(∫

U

∣
∣tbk+2 ū(t)

∣
∣2( N

N–2 )k+2
dx

) N
N–2

dt

=
∫ T

0
α–2( N

N–2 )k+1
(θtω)

(∫

U

∣
∣tbk+2 v̄(t)

∣
∣2( N

N–2 )k+2
dx

) N
N–2

dt

≤ (
eλ1T r2(ω)

)( N
N–2 )k+1

C
(
l, N , k, b,λ1, T , c, r(ω)

)
M′′

k+1(ω). (3.32)

Set

Mk+1(ω) = max
{

M′′
k+1,

(
eλ1T r2(ω)

)( N
N–2 )k+1

C
(
l, N , k, b,λ1, T , c, r(ω)

)
M′′

k+1
}

.

Therefore, (3.28) and (3.32) show that (Ak+1) and (Bk+1) hold, respectively. We finished
the proof. �

Theorem 3.2 ((L2, L2+δ) attraction) Assume that (1.2)–(1.4) hold and b > 0. A ∈ D is the
(L2, L2) D-pullback random attractor obtained in Lemma 2.11. Then the random set A ∈D
is also D-pullback attracting in the topology of L2+δ for any δ ∈ [0,∞), that is, for every
random set D ∈D,

lim
t→+∞ distL2+δ

(
φ
(
t, θ–tω, D(θ–tω)

)
, A(ω)

)
= 0, P-almost surely, (3.33)

where distLδ+2 means that

distL2+δ (A, B) = sup
a∈A

inf
b∈B

‖a – b‖L2+δ

for any two subset A, B in L2(U).

Proof The proof is similar to the proof of Theorem 4.5 (from [21]), so we omit it. �

3.2 Lp-Pullback attracting set
In this subsection, we will make uniform estimates for the solutions of Eq. (1.1) so that we
prove the existence of a bounded random absorbing set in Lp(U) (p ≥ 2).

Lemma 3.3 (Random absorbing set in Lp) Assume that (1.2)–(1.4) hold and b > 0. Then
there exists a random absorbing set B ∈ D such that for any random set D ∈ D and P-a.e.
ω ∈ Ω , we have T1

D(ω) > TD(ω) such that

Φ
(
t, θ–tω, D(θ–tω)

) ⊂ B(ω), for all t ≥ T1
D(ω), (3.34)

and

B(ω) is bounded in Lp(U).
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Proof Taking the inner product of (2.9) with |v|p–2v in L2(U), we find that

1
p

d
dt

‖v‖p
Lp(U) + (p – 1)

∫

U
|v|p–2|∇v|2 dx

= –
(
α(θtω)f

(
α–1(θtω)v

)
, |v|p–2v

)
+

(
bvz, |v|p–2v

)

+
(
α(θtω)g(x), |v|p–2v

)
. (3.35)

Using (1.3), Hölder’s inequality and Young’s inequality, we have

(
α(θtω)f

(
α–1(θtω)v

)
, |v|p–2v

) ≥ c4α
2–p(θtω)‖v‖2p–2

L2p–2(U) – c5|U|αp(θtω), (3.36)

where c4, c5 are positive constants, and

(
α(θtω)g(x), |v|p–2v

) ≤ 1
2c4

αp(θtω)‖g‖2 +
c4

2
α2–p(θtω)‖v‖2p–2

L2p–2(U) (3.37)

and

(
bvz, |v|p–2v

) ≤ b|z|‖v‖p
Lp(U). (3.38)

From (3.35)–(3.38), we get

d
dt

‖v‖p
Lp(U) +

c4

2
α2–p(θtω)‖v‖2p–2

L2p–2(U) ≤ c5p|U|αp(θtω) +
p

2c4
αp(θtω)‖g‖2

+ bp|z|‖v‖p
Lp(U). (3.39)

Now, choosing t ≥ TD(ω) (TD(ω) to be the positive number in Lemma 2.9 and integrating
(3.39) over (s, t + 1) with respect to t, we obtain

∥
∥v

(
t + 1,ω, v0(ω)

)∥
∥p

Lp(U) ≤ ∥
∥v

(
s,ω, v0(ω)

)∥
∥p

Lp(U)

+
(

c5p|U| +
p‖g‖2

2c4

)∫ t+1

s
αp(θτω) dτ

+ bp
∫ t+1

s

∣
∣z(θτω)

∣
∣
∥
∥v

(
τ ,ω, v0(ω)

)∥
∥p

Lp(U) dτ . (3.40)

Next, integrating (3.40) over (t, t + 1) with respect to s, we have

∥
∥v

(
t + 1,ω, v0(ω)

)∥
∥p

Lp(U) ≤
∫ t+1

t

∥
∥v

(
s,ω, v0(ω)

)∥
∥p

Lp(U) ds

+
(

c5p|U| +
p‖g‖2

2c4

)∫ t+1

t
αp(θτω) dτ

+ bp
∫ t+1

t

∣
∣z(θτω)

∣
∣
∥
∥v

(
τ ,ω, v0(ω)

)∥
∥p

Lp(U) dτ .
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Replacing ω by θ–t–1ω and using (2.8) and (2.11), we conclude that

‖v(t + 1, θ–t–1ω, v0(θ–t–1ω)‖p
Lp(U)

≤
∫ t+1

t

∥
∥v

(
s, θ–t–1ω, v0(θ–t–1ω)

)∥
∥p

Lp(U) ds

+
(

c5p|U| +
p‖g‖2

2c4

)∫ 0

–1
αp(θτω) dτ

+ bp
∫ 0

–1

∣
∣z(θτω)

∣
∣
∥
∥v

(
τ + t + 1, θ–t–1ω, v0(θ–t–1ω)

)∥
∥p

Lp(U) dτ

≤ ρ2(ω) +
(

c5p|U| +
p‖g‖2

2c4

)

rp(ω)
∫ 0

–1
e– pλ1

2 τ dτ

+ bpe
1
2 r(ω)

∫ t+1

t

∥
∥v

(
τ , θ–t–1ω, v0(θ–t–1ω)

)∥
∥p

Lp(U) dτ

≤ ρ2(ω) +
(

c5p|U| +
p‖g‖2

2c4

)
2

pλ1
e– pλ1

2 rp(ω) + bpe
1
2 r(ω)ρ2(ω),

that is,

‖v(t + 1, θ–t–1ω, v0(θ–t–1ω)‖p
Lp(U) ≤ ρ4(ω). (3.41)

Then, from (3.41), for t ≥ T1
D(ω) ≥ TD(ω),

‖u(t + 1, θ–t–1ω, u0(θ–t–1ω)‖p
Lp(U)

= ‖α–1(θ–1ω)v(t + 1, θ–t–1ω, v0(θ–t–1ω)‖p
Lp(U)

≤ e
pλ1

2 rp(ω)ρ4(ω),

where ρ5(ω) = e
pλ1

2 rp(ω)ρ4(ω), that is, for ω ∈ Ω ,

B(ω) =
{

u ∈ Lp(U) : ‖u‖p
Lp(U) ≤ ρ5(ω)

}
.

Therefore, B(ω) is a random absorbing set for Φ in Lp(U). �

Theorem 3.4 Assume that (1.2)–(1.4) hold. The (L2, L2) D-pullback random attractor A ∈
D is also a (L2, Lp) D-pullback random attractor, that is, A(ω) is compact in Lp(U) for P-
a.e. ω ∈ Ω , A is Φ-invariant and D-pullback attracting every random set D ∈ D in the
topology of Lp(U).

Proof Using the interpolation inequality, Theorem 3.1, (2.4), (2.8) and (3.7), we have the
following inequality:

‖Φ(t,ω, un(ω) – Φ(t,ω, u0(ω)‖2
LP(U)

≤ ‖Φ(t,ω, un(ω) – Φ(t,ω, u0(ω)‖2–2θ

L2( N
N–2 )k0 (U)

· ‖Φ(t,ω, un(ω) – Φ(t,ω, u0(ω)‖2θ
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≤ M
2–2θ

2( N
N–2 )k0

k (ω)

t
(2–2θ )+ 2–2θ

2( N
N–2 )k0–1

· eλ1θ tr2θ (ω)rθ
4 (ω)e2lθ t∥∥v̄(0)

∥
∥2θ

≤ M̃k(ω)
tr0

· e(2l+λ1)tr4θ (ω)rθ
4 (ω)

∥
∥un(ω) – u0(ω)

∥
∥2θ ,

where r0 is given by Theorem 3.5.
From the above result and Lemma 3.3, it is obvious that the (L2(U), L2(U)) D-pullback

random attractor A ∈D is compact in Lp(U) for P-a.e. ω ∈ Ω . �

3.3 Continuity of solutions in H1
0(U)

Theorem 3.5 Assume that (1.2)–(1.4) hold. If {un(ω)}∞n are bounded in Lp(U) and
un(ω) → u0(ω) in L2(U) as n → ∞, then, P-a.e. ω ∈ Ω , for any t > 0,

Φ
(
t,ω, un(ω)

) → Φ
(
t,ω, u0(ω)

)
, in H1

0 (U) as n → ∞. (3.42)

That is, the following estimate holds:

∥
∥Φ

(
t,ω, un(ω)

)
– Φ

(
t,ω, u0(ω)

)∥
∥2

H1
0 (U)

≤ eλ1tr2(ω)C
(
c3, p, θ , t, r0,λ1,ρ1(ω), M̃(ω), Mk0 , r3(ω),

∥
∥v̄n(0)

∥
∥2), (3.43)

where θ ∈ (0, 1) is the exponent of the interpolation inequality ‖ · ‖L4p–6 ≤ ‖ · ‖L2( N
N–2 )k0

1–θ ‖ · ‖
with k0 ∈N satisfying 2( N

N–2 )k0 > 4p – 6, and r0 = ( N
N–2 ) 2–2θ

2( N
N–2 )k0

+ (2 – 2θ )bk0 .

Proof If we set ūn(t) = Φ(t,ω, un(ω)) – Φ(t,ω, u0(ω)) (n = 1, 2, . . .), then ūn(t) satisfies the
following equation:

⎧
⎪⎨

⎪⎩

∂ūn
∂t – �ūn + f (un(t)) – f (u(t)) = būn(t) ◦ dW

dt , (x, t) ∈ U × (0, t),
ūn(t)|∂U = 0, t ≥ 0,
ūn(0) = un(ω) – u0(ω),

(3.44)

where un(t) = Φ(t,ω, un(ω)) (n = 1, 2) and u(t) = Φ(t,ω, u0(ω)).
Thanks to vn(t) = α(θtω)un(t) and α(θtω) = e–bz(θtω), we may convert Eq. (3.44) into the

following equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ v̄n
∂t – �v̄n + α(θtω)(f (α–1(θtω)vn(t)) – f (α–1(θtω)v(t))) = bzv̄n,

(x, t) ∈ U × (0, t),
v̄n(t)|∂U = 0, t ≥ 0,
v̄n(0) = vn(ω) – v0(ω),

(3.45)

where vn(t) = Φ(t,ω, vn(ω)) (n = 1, 2) and v(t) = Φ(t,ω, v0(ω)).
Firstly, it follows from (3.39) and (3.41) that

c4

2

∫ t

0
α2–p(θsω)

∥
∥vn(s)

∥
∥2p–2

L2p–2(U) ds

≤ ∥
∥vn(0)

∥
∥p

Lp(U) +
(

p
2c4

‖g‖2 + c5p|U|
)∫ t

0
αp(θsω) ds
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+ bp
∫ t

0

∣
∣z(θsω)

∣
∣
∥
∥vn(s)

∥
∥p

Lp(U) ds

≤ ∥
∥vn(0)

∥
∥p

Lp(U) +
(

p
2c4

‖g‖2 + c5p|U|
)

2eλ1t

λ1
rp(ω)

+ bpe
t
2 r(ω)ρ4(ω). (3.46)

Combining (3.46) with the inequality

c4

2
(
e– λ1

2 tr–1(ω)
)p–2

∫ t

0

∥
∥vn(s)

∥
∥2p–2

L2p–2(U) ds

≤ c4

2

∫ t

0
α2–p(θsω)

∥
∥vn(s)

∥
∥2p–2

L2p–2(U) ds,

we obtain
∫ t

0

∥
∥vn(s)

∥
∥2p–2

L2p–2(U) ds

≤ C
(
p, c4, c5, t,λ1, |U|,‖g‖2)(∥∥vn(0)

∥
∥p

Lp(U) + rp(ω)
)
. (3.47)

Therefore, we also obtain a similar estimate about v(t), that is, we have the following
result:

∫ t

0

∥
∥vn(s)

∥
∥2p–2

L2p–2(U) ds +
∫ t

0

∥
∥v(s)

∥
∥2p–2

L2p–2(U) ds ≤ M̃(ω), (3.48)

where M̃(ω) depends on p, c4, c5, t, λ1, |U|, r(ω), ‖g‖2, ‖vn(0)‖p
Lp(U).

In addition, using (3.7), we get

∫ t

0

∥
∥v̄n(s)

∥
∥2 ds ≤ e2lt – 1

2l
r4(ω)

∥
∥v̄n(0)

∥
∥2, ∀t ≥ 0. (3.49)

Using (3.8), for all t ≥ 0,

∫ t

0

∥
∥∇ v̄(s)

∥
∥2 ds ≤ 1

2
∥
∥v̄(0)

∥
∥2 + l

∫ t

0

∥
∥v̄(s)

∥
∥2 ds + b

∫ t

0

∣
∣z(θtω)

∣
∣
∥
∥v̄(s)

∥
∥2 ds. (3.50)

Next, taking the inner product of (3.45) with –�v̄n, we find that

1
2

d
dt

‖∇ v̄n‖2 + ‖�v̄n‖2 = –
(
α(θtω)

(
f
(
α–1(θtω)vn(t)

)
+ (bzv̄n, –�v̄n)

– f
(
α–1(θtω)v(t)

))
,�v̄n

)
. (3.51)

Using the conditions (1.2)–(1.4), the Hölder inequality and the Young inequality, we have

∣
∣
(
α(θtω)

(
f
(
α–1(θtω)vn(t)

)
– f

(
α–1(θtω)v(t)

))
,�v̄n

)∣
∣

≤ c3

∫

U
|v̄n||�v̄n|

(
1 +

∣
∣α–1vn

∣
∣p–2 +

∣
∣α–1v

∣
∣p–2)dx

≤ c3
(
e

λ1
2 tr(ω)

)p–2
∫

U
|v̄n||�v̄n|

(
1 + |vn|p–2 + |v|p–2)dx
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≤ c3
(
e

λ1
2 tr(ω)

)p–2‖v̄n‖L4p–6‖�v̄n‖C(p)
(
1 + ‖vn‖p–2

L2p–3 + ‖v‖p–2
L2p–3

)

≤ c2
3
(
e

λ1
2 tr(ω)

)2p–4 C2(p)
2

(‖vn‖2p–4
L2p–3 + ‖v‖2p–4

L2p–3

)‖v̄n‖2
L4p–6

+
‖�v̄n‖2

2
(3.52)

and

∣
∣(bzv̄n, –�v̄n)

∣
∣ ≤ b2|z|2

2
‖v̄n‖2 +

‖�v̄n‖2

2
. (3.53)

From (3.51)–(3.53), we obtain

d
dt

‖∇ v̄n‖2 ≤ c2
3
(
e

λ1
2 tr(ω)

)2p–4C2(p)‖vn‖2p–4
L2p–3(U)‖v̄n‖2

L4p–6(U)

+ c2
3
(
e

λ1
2 tr(ω)

)2p–4C2(p)‖v‖2p–4
L2p–3(U)‖v̄n‖2

L4p–6(U)

+ b2|z|2‖v̄n‖2. (3.54)

Due to 2( N
N–2 )k → ∞ as k → ∞, we set k0 = [log N

N–2
(2p – 3)] + 1 ∈N such that

2
(

N
N – 2

)k0

> 4p – 6.

Exploiting the interpolation inequality, we have

‖v̄n‖L4p–6 ≤ ‖v̄n‖1–θ

L2( N
N–2 )k0 (U)

‖v̄n‖θ ,

where θ ∈ (0, 1) depends on p, k0.
Thus, we conclude that

d
dt

‖∇ v̄n‖2 ≤ c2
3
(
e

λ1
2 tr(ω)

)2p–4C2(p)
(‖vn‖2p–4

L2p–3(U) + ‖v‖2p–4
L2p–3(U)

)

· ‖v̄n‖2–2θ

L2( N
N–2 )k0 (U)

‖v̄n‖2θ + b2|z|2‖v̄n‖2, for a.e. (0, t). (3.55)

Set

r0 =
(

N
N – 2

)
2 – 2θ

2( N
N–2 )k0

+ (2 – 2θ )bk0 .

Multiplying both sides of (3.55) with tr0 , we get

tr0
d
dt

‖∇ v̄n‖2 ≤ c2
3
(
e

λ1
2 tr(ω)

)2p–4C2(p)
(‖vn‖2p–4

L2p–3(U) + ‖v‖2p–4
L2p–3(U)

)

· (t
N

N–2
∥
∥tbk0 v̄n

∥
∥2( N

N–2 )k0

L2( N
N–2 )k0 (U)

) 2–2θ

2( N
N–2 )k0 ‖v̄n‖2θ

+ tr0 b2|z|2‖v̄n‖2, (3.56)

where bk0 is given by (3.1).
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Moreover, due to Theorem 3.1, we know that there exists a constant Mk0 (ω) such that

(
s

N
N–2

∥
∥sbk0 v̄n(s)

∥
∥2( N

N–2 )k0

L2( N
N–2 )k0 (U)

) 2–2θ

2( N
N–2 )k0

≤ (
e

λ1s
2 r(ω)Mk0 (ω)

)2–2θ , n = 1, 2, . . . , s ∈ [0, t]. (3.57)

So, for n = 1, 2, . . . , from (3.56)–(3.57) we obtain the following estimate:

sr0
d
ds

∥
∥∇ v̄n(s)

∥
∥2 ≤ c2

3
(
eλ1sr2(ω)

)p–θ–1C2(p)M2–2θ
k0

∥
∥vn(s)

∥
∥2p–4

L2p–3(U)

∥
∥v̄n(s)

∥
∥2θ

+ c2
3
(
eλ1sr2(ω)

)p–θ–1C2(p)M2–2θ
k0

∥
∥v(s)

∥
∥2p–4

L2p–3(U)

∥
∥v̄n(s)

∥
∥2θ

+ sr0 b2∣∣z(θsω)
∣
∣2∥∥v̄n(s)

∥
∥2. (3.58)

Next, multiplying both sides of (3.58) with s, for a.e. s ∈ [0, t], we find that

s1+r0
d
ds

∥
∥∇ v̄n(s)

∥
∥2 ≤ c2

3
(
eλ1tr2(ω)

)p–θ–1C2(p)M2–2θ
k0 t

∥
∥vn(s)

∥
∥2p–4

L2p–3(U)

∥
∥v̄n(s)

∥
∥2θ

+ c2
3
(
eλ1tr2(ω)

)p–θ–1C2(p)M2–2θ
k0 t

∥
∥v(s)

∥
∥2p–4

L2p–3(U)

∥
∥v̄n(s)

∥
∥2θ

+ t1+r0 b2∣∣z(θsω)
∣
∣2∥∥v̄n(s)

∥
∥2. (3.59)

Integrating (3.59) over [0, t] with respect to s, for n = 1, 2, . . . , we have

t1+r0
∥
∥∇ v̄n(t)

∥
∥2

≤ c2
3
(
eλ1tr2(ω)

)p–θ–1C2(p)M2–2θ
k0 t

∫ t

0

∥
∥vn(s)

∥
∥2p–4

L2p–3(U)

∥
∥v̄n(s)

∥
∥2θ ds

+ c2
3
(
eλ1tr2(ω)

)p–θ–1C2(p)M2–2θ
k0 t

∫ t

0

∥
∥v(s)

∥
∥2p–4

L2p–3(U)

∥
∥v̄n(s)

∥
∥2θ ds

+ (1 + r0)tr0

∫ t

0

∥
∥∇ v̄n(s)

∥
∥2 ds + t1+r0 b2etr2(ω)

∫ t

0

∥
∥v̄n(s)

∥
∥2 ds

= I1 + I2 + I3. (3.60)

Note that we can obtain that
∫ t

0

∥
∥vn(s)

∥
∥2p–4

L2p–3(U)

∥
∥v̄n(s)

∥
∥2θ ds

≤
(∫ t

0

∥
∥vn(s)

∥
∥2p–3

L2p–3(U) ds
) 2p–4

2p–3
(∫ t

0

∥
∥v̄n(s)

∥
∥2θ (2p–3) ds

) 1
2p–3

(3.61)

by the Hölder inequality for I1. Combining with (3.48), (3.49), (3.61) and the interpolation
inequality, we have

∫ t

0

(∥
∥vn(s)

∥
∥2p–4

L2p–3(U) +
∥
∥v(s)

∥
∥2p–4

L2p–3(U)

)∥
∥v̄n(s)

∥
∥2θ ds

≤
(∫ t

0

∥
∥vn(s)

∥
∥2p–3

L2p–3(U) ds +
∫ t

0

∥
∥v(s)

∥
∥2p–3

L2p–3(U) ds
) 2p–4

2p–3
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·
(∫ t

0

∥
∥v̄n(s)

∥
∥2θ (2p–3) ds

) 1
2p–3

≤
(∫ t

0

∥
∥vn(s)

∥
∥(1–θ )(2p–3)

L2p–2(U)

∥
∥vn(s)

∥
∥θ (2p–3) ds

+
∫ t

0

∥
∥v(s)

∥
∥(1–θ )(2p–3)

L2p–2(U)

∥
∥v(s)

∥
∥θ (2p–3) ds

) 2p–4
2p–3

· e2lθ (2p–3)t – 1
2lθ (2p – 3)

r4(ω)
∥
∥v̄n(0)

∥
∥2θ

≤ C
(
p, θ ,ρ1(ω), M̃(ω), r4(ω)

)e2lθ (2p–3)t – 1
2lθ (2p – 3)

∥
∥v̄n(0)

∥
∥2θ .

So

I1 ≤ c2
3t

(
eλ1tr2(ω)

)p–θ–1C2(p)M2–2θ
k0 C

(
p, θ ,ρ1(ω), M̃(ω), r4(ω)

)

· e2lθ (2p–3)t – 1
2lθ (2p – 3)

∥
∥v̄n(0)

∥
∥2θ . (3.62)

For the estimates of I2, I3, applying (3.49)–(3.50), we deduce that

I2 ≤ (1 + r0)tr0

(
1
2
∥
∥v̄n(0)

∥
∥2 +

(
l + be

T
2 r(ω)

)
∫ t

0

∥
∥v̄n(s)

∥
∥2 ds

)

≤ (1 + r0)tr0

(
1
2
∥
∥v̄n(0)

∥
∥2 +

(
l + be

T
2 r(ω)

)e2lt – 1
2l

r4(ω)
∥
∥v̄n(0)

∥
∥2

)

(3.63)

and

I3 ≤ t1+r0 b2etr2(ω)
e2lt

2l
r4(ω)

∥
∥v̄n(0)

∥
∥2. (3.64)

Thus it follows from (3.62)–(3.64) that (3.60) holds. That is,

∥
∥∇ v̄n(t)

∥
∥2 ≤ C

(
c3, p, θ , t, r0,λ1,ρ1(ω), M̃(ω), Mk0 , r4(ω),

∥
∥v̄n(0)

∥
∥2). (3.65)

Applying v̄n(t) = α(θtω)ūn(t) and (3.65), we can get

∥
∥∇ūn(t)

∥
∥2 =

∥
∥∇(

α–1(θtω)v̄n(t)
)∥
∥2 ≤ eλ1tr2(ω)

∥
∥∇ v̄n(t)

∥
∥2

≤ eλ1tr2(ω)C
(
c3, p, θ , t, r0,λ1,ρ1(ω), M̃(ω), Mk0 , r4(ω),

∥
∥v̄n(0)

∥
∥2).

Thus, we finish the proof of (3.43), which implies that (3.42) holds. �

Theorem 3.6 ((L2, H1
0 ) attraction) Assume that (1.2)–(1.4) hold. A ∈ D is the (L2, L2) D-

pullback random attractor obtained in Lemma 2.11. Then, the random set A ∈ D is also
D-pullback attracting in the topology of H1

0 (U), that is, for every random set D ∈D,

lim
t→+∞ distH1

0

(
φ
(
t, θ–tω, D(θ–tω)

)
, A(ω)

)
= 0, P-almost surely. (3.66)
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Proof Based on Theorem 3.1 and Theorem 3.5, we can utilize the same approach with
Theorem 5.5 of [21] and obtain this result. So we omit it. �

Combining Theorem 3.5 with Theorem 3.6 and the existence of the absorbing set
(Lemma 2.10) in H1

0 (U), we easily find the existence of a (L2, H1
0 ) D-pullback random at-

tractor.

Theorem 3.7 The (L2, L2) D-pullback random attractor A is also a (L2, H1
0 ) D-pullback

random attractor.
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