
Fundamenta Informaticae ? (2014) 1001–1014 1001

DOI 10.3233/FI-2012-0000

IOS Press

Membrane Division, Oracles, and the Counting Hierarchy

Alberto Leporati, Luca Manzoni, Giancarlo Mauri,

Antonio E. Porreca, Claudio Zandron
Dipartimento di Informatica, Sistemistica e Comunicazione

Università degli Studi di Milano-Bicocca

Viale Sarca 336/14, 20126 Milano, Italy

{leporati, luca.manzoni,mauri, porreca, zandron}@disco.unimib.it

Abstract. Polynomial-time P systems with active membranes characterise PSPACE by exploit-
ing membranes nested to a polynomial depth, which may be subject to membrane division rules.
When only elementary (leaf) membrane division rules are allowed, the computing power decreases
to PPP = P#P, the class of problems solvable in polynomial time by deterministic Turing machines
equipped with oracles for counting (or majority) problems. In this paper we investigate a variant of
intermediate power, limiting membrane nesting (hence membrane division) to constant depth, and
we prove that the resulting P systems can solve all problems in the counting hierarchy CH, which
is located between PPP and PSPACE. In particular, for each integer k ≥ 0 we provide a lower
bound to the computing power of P systems of depth k.

Keywords: Membrane computing, counting complexity, oracles

1. Introduction

P systems with active membranes [5] are parallel, nondeterministic devices inspired by the function-
ing and internal structure of biological cells, in particular by their hierarchical nesting of membranes.
This feature, together with the ability to generate exponentially many membranes in polynomial time by
membrane division, allows them to solve computationally hard problems efficiently, by trading space for
time. It is known that P systems of polynomial (actually, linear) nesting depth characterise PSPACE in
polynomial time [1, 9]. On the other hand, P systems of membrane nesting depth 1 (which, in particu-
lar, use only elementary division rules, i.e., division rules limited to membranes not containing further
membranes) are known to solve exactly the problems in PPP = P#P [7, 3].

1002 A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy

In an attempt to establish the importance of nesting depth for the efficiency of P systems, as initiated
by Porreca and Murphy [8] for P systems with active membranes without charges, in this paper we anal-
yse P systems using both elementary and non-elementary membrane division, but we limit the depth of
the P system to a constant, independent of the input size. The results show that constant-depth P systems
solve the problems in the counting hierarchy CH in polynomial time and, more precisely, that depth-k
P systems solve the problems in PCkP in polynomial time, where CkP is the k-th level of the hierarchy;
this generalises the result already proved for unitary nesting depth [7]. In particular, we show a way
of trading membrane nesting depth for oracle power: by increasing the former, Turing machines with
oracles for problems higher in the counting hierarchy can be simulated.

After recalling or introducing a few basic notions (Section 2), we describe the techniques we em-
ploy: simulating a nonstandard number of charges (Section 3), a new, single-membrane simulation of
polynomial-space Turing machines and the use of P systems with oracle membranes (Section 4), and a
way to eliminate them by increasing the membrane nesting depth (Section 5, which includes our main
results). We conclude the paper with a short summary and future work (Section 6).

2. Basic notions

In this paper we employ the standard definition and notation for P systems with active membranes [5, 7].
Here we just briefly recall that the available rule types are object evolution [a→ w]αh , send-in communi-
cation a []αh → [b]βh, send-out communication [a]αh → []βh b, membrane dissolution [a]αh → b (not used
in this paper), elementary membrane division [a]αh → [b]βh [c]γh, and (strong) non-elementary division[

[]+h1 · · · []+hk []−hk+1
· · · []−hm

]α
h
→
[
[]δh1 · · · []δhk

]β
h

[
[]ζhk+1

· · · []ζhm
]γ
h

The class of P systems with active membranes using the above types of rules is denoted by AM.
Sometimes another variant of non-elementary division rules, called weak non-elementary division

rules [11], are employed for P systems with active membranes without charges. In this paper we will
employ them for P systems with extended charges (Section 3), in the form [a]αh → [b]βh [c]γh. These rules
are triggered by an object instead of membranes.

Families Π = {Πx : x ∈ Σ?} of recogniser P systems can be used to decide languages L ⊆ Σ?.
Each P system Πx decides the membership of x in L, sends out from the outermost membrane an ob-
ject yes or no and halts; we also require confluence, i.e., that all nondeterministically generated computa-
tions of Πx agree on the result. In this paper we use polynomial-time uniform families of P systems [4, 6],
where Πx is constructed in polynomial time from a P system Πn, common for all strings of length n, and
an input multiset wx encoding the actual input string.

The class of decision problems solved in polynomial time by uniform families of P systems with
active membranes is denoted by PMCAM; the corresponding class for polynomial space is denoted
by PMCSPACEAM. When the membrane nesting depth is at most k, i.e., the membrane structure is a
tree of height at most k, the symbol AM is replaced by AM(k). We also define the class of P systems
with active membranes of constant depth as AM(O(1)) =

⋃
k∈NAM(k).

For the basic notions of computational complexity and, in particular, counting complexity, we refer
the reader to [2]. We recall that a counting Turing machine (also known as probabilistic or majority
Turing machine) is a nondeterministic Turing machine M with the following acceptance condition: a
string x ∈ Σ? is accepted if and only if the majority of the computations of M on input x are accepting.

A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy 1003

The class of problems solved in polynomial time by counting Turing machines is denoted by PP. The
following lemma shows that we can always assume that counting Turing machines have an odd number
of computations on every input x.

Lemma 2.1. If L ⊆ Σ? is decided by a counting Turing machine M in time t(n), then it is decided
by a counting Turing machine having an odd number of computations on each input x and working in
time Θ(t(n)).

Proof:
Suppose M has c(x) computations on input x, and a(x) of them are accepting. We construct another
counting machine M ′ having 2c(x) + 1 computations, with 2a(x) accepting ones. The machine M ′

behaves as follows: on input x, nondeterministically choose a bit i; if i is 0, then reject; otherwise,
nondeterministically choose another bit, ignore it, and simulate M on input x. Then, we have x ∈ L if
and only if

a(x) >
c(x)

2
⇐⇒ 2a(x) > c(x) ⇐⇒ 2a(x) > c(x) +

1

2
=

2c(x) + 1

2
,

where the last implication holds because both 2a(x) and c(x) are integers. As a consequence, we
have x ∈ L(M ′) if and only if x ∈ L. ut

We can define increasingly stronger complexity classes by using oracle Turing machines. In partic-
ular, by PL (resp., PPL) we denote the class of problems solvable in polynomial time by deterministic
(resp., counting) Turing machines with an oracle for a language L ⊆ Σ?. If X is a complexity class,
then PX is defined as

⋃
L∈X PL; analogously, we have PPX =

⋃
L∈X PPL. Finally, the counting hi-

erarchy is defined as CH =
⋃
k∈N CkP, where C0P = P and Ck+1P = PPCkP for all k ∈ N. We

have P = C0P ⊆ · · · ⊆ CkP ⊆ · · · ⊆ CH ⊆ PSPACE, although no inclusion is known to be proper.
In order to highlight the relationship between membrane nesting depth and oracle power (for Turing

machines) we introduce the notion of P systems with oracles.

Definition 2.2. Let L be a multiset language (i.e., a set of multisets). A P system with active membranes
with an oracle for L is a P system with active membranes with a distinguished label h identifying an
oracle membrane, which must be an elementary membrane. Only send-in rules can be applied to an
oracle membrane (it is “write only”), it can only have neutral or positive charge, and it can be queried
by first setting its charge to positive, sending in further objects without changing the charge, and finally
resetting it to neutral. In the next time step, membrane h sends out either yesL or noL, depending on
whether the multiset contained in h belongs to L. The oracle membrane is simultaneously emptied, thus
allowing further queries. Further oracle membranes h can be created by non-elementary division of an
ancestor membrane during the computation of Π, allowing multiple parallel queries.

We establish the convention that oracle membranes do not contribute to the depth of the membrane
structure. For instance, a single membrane containing an oracle membrane has depth 0 instead of 1. This
convention allows us to express the statements of the results of this paper in a simpler way.

In order to employ P systems with oracles for decision problems, which are usually defined in terms
of strings rather than multisets, we define an encoding of languages as multiset languages that preserve
the ordering of the symbols.

1004 A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy

Definition 2.3. Let L ⊆ Σ? be a (string) language. We define the corresponding multiset language over
the alphabet {σi : σ ∈ Σ, i ∈ N} as L̂ = {s(x) : x ∈ L}, where s(x0 · · ·xn−1) = x0,0 · · ·xn−1,n−1 is
the function indexing each symbol of x with its position.

Observe that, even if the alphabet of L̂ is, in general, infinite, each P system working in polynomial
time never needs more than a polynomial amount of subscripted symbols, since the query multiset is
assembled one object at a time. In the rest of the paper we will write L̂ as L whenever it is clear whether
we are referring to a string language or the corresponding multiset language.

We denote the class of problems solved in polynomial time by P systems with active membranes
(resp., of nesting depth k) with an oracle for L by PMCL

AM (resp., PMCL
AM(k)).

3. Simulating a polynomial number of charges

In Sections 4 and 5 we will describe several simulations of Turing machines by means of P systems.
These simulations involve a large number of auxiliary rules and their corresponding intermediate com-
putation steps; these can be partially simplified if we allow a polynomial number of charges (which we
will refer to as “extended charges”) instead of the usual three. As a matter of fact, we can prove a techni-
cal lemma showing that a membrane using extended charges can be simulated by a standard one, as long
as it is not interacting with other membranes, with a multiplicative logarithmic slowdown. Furthermore,
we also implement the nonstandard rule type [a]αh → [b]βh, a single-object evolution rule that changes the
membrane charge.

This lemma allows us to use P systems with extended charges as a shorthand for (more complicated)
standard P systems. To distinguish the two views of the same system, we will call the former an “high-
level view”, and we will depict their membranes with a darker background. When working with extended
charges and rules, we will also say that we are in “high-level mode”, whereas working with standard
charges and rules will be referred to as “low-level mode” (corresponding to a white background).

Lemma 3.1. Let h be a membrane using p(n) charges (for some polynomial p) and the following types
of rules: object evolution [a→ w]αh , single-object evolution with charge changing [a]αh → [b]βh, and ele-
mentary or weak non-elementary division [a]αh → [b]βh [c]γh. Suppose no object reaches h from its children
membranes (i.e., no send-out or dissolution rules are applied to them), the children membranes remain
neutrally charged, the rules are applied in a deterministic way, and exactly one rule of types [a]αh → [b]βh
or [a]αh → [b]βh [c]γh is applied per step. Then, it is possible to simulate membrane h with standard rules
and using only three charges; each step of h is simulated in Θ(log n) steps.

Proof:
A configuration of a membrane h using an extended charge α (on the left) is implemented as a configu-
ration of a standard membrane h having neutral charge and having every object subscripted by α (on the
right).

a b c
α

h
aα bα cα

0

h

This way, each object stores enough information to simulate the extended charge α; we only need to
ensure that the subscripts are updated consistently across all objects, according to the unique, determin-
istically chosen rule which may change the charge of h. Without loss of generality, we can assume that

A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy 1005

each extended charge α has the form (α0, . . . , αk−1) ∈ {+,−}k with k = dlog p(n)e, i.e., a string
over {+,−} long enough to represent p(n) different values.

First of all, each extended evolution rule [a→ w1 · · · w`]αh is replaced by the rule

[aα → w′1 · · · w′`]0h

The objects on the right-hand side will be eventually rewritten as w1,β, . . . , w`,β , where β is the (ex-
tended) charge of h in its next configuration, as described below.

An extended rule of the form [a]αh → [b]βh is implemented by the following standard rules:

[aα → b′β]0h (1)

[b′β → b′ β0,0 · · · βk−1,k−1 0k]
0
h where (β0, . . . , βk−1) = β (2)

[βi,0]δh → []βih # for i ∈ [0, k − 1] and βi, δ ∈ {+, 0,−} (3)

[βi,j → βi,j−1]δh for i ∈ [0, k − 1], βi, δ ∈ {+, 0,−}, and j ∈ [1, k − 1] (4)

[00]δh → []0h # for δ ∈ {+, 0,−} (5)

[0j → 0j−1]δh for δ ∈ {+, 0,−} and j ∈ [1, k] (6)

Informally, the object aα is rewritten into b′, and then the new charge β = (β0, . . . , βk−1) is written in
the charge of h sequentially, one symbol + or − at a time, finally followed by 0 (represented by 0k in
rule (2)). This sequence of operations requires Θ(k) = Θ(log n) steps, and allows the remaining objects
in h to read and store β as a subscript, using rules of type (7).

An extended elementary or weak non-elementary membrane division rule [a]αh → [b]βh [c]γh is imple-
mented similarly, except that, instead of rule (1), we have

[aα]0h → [b′β]0h [c′γ]0h

and the rules (2)–(6) are also repeated for the object c′γ .
An extended weak non-elementary division rule [a]αh → [b]βh [c]γh can be also implemented in terms of

elementary division and strong non-elementary division rules by having an additional, neutrally charged
membrane h′ placed inside h, and replacing (1) with the following rules:

aα []0h′ → [a′α]0h′ [a′α]0h′ → [bβ]+h′ [cγ]−h′
[
[]+h′ []−h′

]0
h
→
[
[]0h′
]0
h

[
[]0h′
]0
h

[bβ]0h′ → []0h′ b
′
β [cγ]0h′ → []0h′ c

′
γ

Now rule (2) is triggered, for both b′β and c′γ , and the objects contained in the two copies of h acquire the
subscripts β and γ, respectively, as described below.

Finally, if an object a has no rule activated by the extended charge α, we add a (seemingly useless)
extended evolution rule [a → a]αh , which is needed in order to update (in low-level mode) the extended
charge stored in the subscript of a.

By hypothesis, exactly one rule of the form [a]αh → [b]βh or [a]αh → [b]βh [c]γh is applied per computa-
tion step, and writes the extended charge on the right-hand side one bit at a time. The “primed” objects σ′

contained in h simultaneously store these symbols as a string in their subscript:

[σ′(β0,...,βi−1) → σ′(β0,...,βi−1,βi)
]βih for σ ∈ Γ, i ∈ [0, k − 1], j ∈ [0, i], βj ∈ {+,−} (7)

1006 A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy

When the final object 0k is sent out, restoring the charge of h to neutral, all objects in h have stored the
new charge β = (β0, . . . , βk−1) in their subscript, and lose the prime:

[σ′β → σβ]0h for σ ∈ Γ, β ∈ {+,−}k

The simulation of the next step may now begin. ut

4. Single-membrane P systems with oracles

We now describe a new simulation of deterministic polynomial-time Turing machines, using a single
membrane and with a polynomial slowdown. This result proves that polynomial-time P systems of
depth-0 characterise P.

Lemma 4.1. PMCAM(0) = P.

Proof:
Since the outermost membrane can never divide, depth-0 P systems do not use membrane division rules.
Hence, by the Milano Theorem [10], we have PMCAM(0) ⊆ P.

Let L ∈ P, and let M be a single-tape deterministic Turing machine working in polynomial time
(hence, space) p(n). We define a uniform family ΠM = {ΠM,x : x ∈ Σ?} of depth-0 (i.e., single-
membrane) P systems. In order to do so, we exploit Lemma 3.1, which allows us to use a polynomial
number of charges and extended rules.

Suppose that, in the current configuration, the machine M on input x is in state q, the tape head is
located on cell i ∈ [0, p(n)], and the tape contains the string w = σ0 · · ·σp(n), including trailing blanks.
Assuming, for instance, that w = abbatt, the corresponding configuration of ΠM,x is

a0 b1 b2 a3 t4 t5

(q,i)

M

where the charge stores state and position of M , and the symbols in w correspond to objects indexed by
their position in the string.

For each non-final state q and each tape symbol a, if δ(q, a) = (r, b, d), with d ∈ {−1, 0,+1}, the
P system has the following rule schema:

[ai]
(q,i)
M → [bi]

(r,i+d)
M for i ∈ [0, p(n)] (8)

which updates the relevant portion of the configuration of ΠM,x according to the transition of M . Notice
that only one rule of type (8) can be applied at a time, since the index i uniquely identifies an object.

If the machine reaches an accepting state q, then the extended object σ0 (for σ ranging over the
tape alphabet), which corresponds to the first symbol of the tape of M and, in low-level view, is actu-
ally σ0,(q,i) for some i, is rewritten into yesM :

[σ0,(q,i) → yesM]0M for i ∈ [0, p(n)] (9)

If M is instead in a rejecting state, one of the following rules is applied:

[σ0,(q,i) → noM]0M for i ∈ [0, p(n)] (10)

A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy 1007

At the same time, the remaining objects are deleted by rewriting them into the empty multiset:

[σj,(q,i) → ε]0M for i ∈ [0, p(n)], j ∈ [1, p(n)]

In the next step, the result object yesM (resp., noM) is sent out; this also changes the charge of the
membrane to positive (resp., negative), as this will be useful in a later section.

[yesM]0M → []+M yesM [noM]0M → []−M noM (11)

This halts the computation of ΠM,x, while producing the same output as M .
Hence, each ΠM,x simulates M on input x with a polynomial slowdown. Furthermore, the fam-

ily ΠM is polynomial-time uniform: the rule schemata are all generated from the transition table of M
(which has constant size) by iterating indices over polynomial-size ranges of integers, there is only a
single membrane, and the input multiset is computed by simply subscripting the symbols of x, padded
with a polynomial number of blank symbols, with their position. This proves that P ⊆ PMCAM(0). ut

In fact, a stronger statement holds: Lemma 4.1 relativises to arbitrary oracles.

Theorem 4.2. PMCL
AM(0) = PL for all L ⊆ Σ?.

Proof:
We have PMCL

AM(0) ⊆ PL because we can simulate the external membrane (which cannot divide) as
in the Milano Theorem [10], and simulate the oracle queries performed by the P systems with analogous
queries of the Turing machines, after having removed the subscripts from the query multiset.

For the reverse inclusion, we only need to show how the simulation of Lemma 4.1 can be augmented
in order to simulate the queries performed by an oracle machine M , working in polynomial time (hence,
space) p(n). Without loss of generality, we assume that M does not have a separate query tape, but
instead delimits the query string y with the tape symbols . and / before entering its query state q?. In
the next step, the machine will find itself in state qL, if y ∈ L, or q̄L, if y /∈ L, and the tape head will
be re-positioned on cell 0. We also assume, in order to simplify the proof, that M only interrogates
the oracle with query strings of length at least 2 (the results for the missing strings can be stored in a
constant-size lookup table as part of the finite control of M).

Suppose ΠM,x simulates M on input x, and suppose M has just entered its query state q?. Then,
the P system has the following configuration, where as an example we assume the tape contains the
string ab.bba/t:

a0 b1 .2 b3 b4 a5 /6 t7
0

L

(q?,i)

M

By means of the left delimiter object .`−1, the index of the first symbol of the query string (namely, `) is
stored in the charge of M , using the rule

[.`−1]
(q?,i)
M → [.`−1]

(q?,i,`)
M for i ∈ [0, p(n)], ` ∈ [1, p(n)]

In our example, this leads to the following configuration:

a0 b1 .2 b3 b4 a5 /6 t7
0

L

(q?,i,3)

M

1008 A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy

Analogously, in the next time step the right delimiter object /r+1 stores the index of the last symbol of
the query string (namely, r) in the charge of M :

[/r+1]
(q?,i,`)
M → [/r+1]

(q?,i,`,r)
M for i ∈ [0, p(n)], ` ∈ [1, p(n)], r ∈ [0, p(n)− 1]

We thus obtain the configuration

a0 b1 .2 b3 b4 a5 /6 t7
0

L

(q?,i,3,5)

M

The objects σj corresponding to the symbols of the query string (that is, those with j ∈ [`, r]) rewrite
themselves; in the rest of the proof the symbol σ is implicitly quantified across the tape alphabet of the
Turing machine.

[σj → σ′j σj−`,j−`]
(q?,i,`,r)
M for i ∈ [0, p(n)], ` ∈ [1, p(n)], r ∈ [0, p(n)− 1], j ∈ [`, r − 1]

[σr → σ′r σ̃r−`,r−`]
(q?,i,`,r)
M for i ∈ [0, p(n)], ` ∈ [1, p(n)], r ∈ [0, p(n)− 1]

where σ′j is “primed” in order to disable further applications of the rule, and σk,t represents the k-th
symbol of the query string, counting from 0; t is the number of steps to be waited before sending σk,t
into membrane L. The last symbol of the query string σ̃r−`,r−` is also marked with a tilde.

Simultaneously, the remaining objects in membrane M are also primed; furthermore, the first ob-
ject σ0 (which is never part of the query string) also produces the object z, whose role will be described
later. The corresponding rules are

[σj → σ′j]
(q?,i,`,r)
M for i ∈ [0, p(n)], ` ∈ [1, p(n)], r ∈ [0, p(n)− 1], j ∈ [1, `− 1] ∪ [r + 1, p(n)]

[σ0 → σ′0 z]
(q?,i,`,r)
M for i ∈ [0, p(n)], ` ∈ [1, p(n)], r ∈ [0, p(n)− 1]

which produce the configuration below, which is depicted both in high-level view and low-level view,
with α = (q?, i, 3, 5).

b0,0 b1,1 ã2,2 z
0

L

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7

(q?,i,3,5)

M

b0,0,α b1,1,α ã2,2,α zα
0

L

a′0,α b
′
1,α .

′
2,α b

′
3,α b

′
4,α a

′
5,α /

′
6,α t′7,α

0

M

All the objects in M now rewrite themselves by deleting the subscript α = (q?, i, `, r), and we proceed
in low-level mode:

[σ′i,α → σ′i]
0
M for i ∈ [0, p(n)], α ∈ {q?} × [0, p(n)]3

[σk,t,α → σk,t]
0
M for k ∈ [0, p(n)− 2], t = k, α ∈ {q?} × [0, p(n)]3

[σ̃k,t,α → σ̃k,t]
0
M for k ∈ [0, p(n)− 2], t = k, α ∈ {q?} × [0, p(n)]3

[zα → z]0M for α ∈ {q?} × [0, p(n)]3

This leads to the configuration

b0,0 b1,1 ã2,2 z
0

L

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7

0

M

A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy 1009

While the charge of M is neutral, only the objects σk,t and σ̃k,t have applicable rules. These objects are
sent into L as σk, in the order given by the subscript k and using t as a timer; the first object to enter also
sets the charge of L to positive, and the last one, the only one marked with the tilde, resets it to neutral,
thus triggering the oracle query. The corresponding rules are

σ0,0 []0L → [σ0]+L
σk,0 []+L → [σk]

+
L for k ∈ [1, p(n)− 2]

σ̃k,0 []+L → [σk]
0
L for k ∈ [1, p(n)− 2] (12)

[σk,t → σk,t−1]0M for k ∈ [1, p(n)− 2], t ∈ [1, k]

[σ̃k,t → σ̃k,t−1]0M for k ∈ [1, p(n)− 2], t ∈ [1, k]

These rules produce the following sequence of configurations:

b1,0 ã2,1 b0

+

L

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 z

0

M

ã2,0 b0 b1

+

L

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 z

0

M

b0 b1 a2

0

L

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 z

0

M

Resetting the charge of L to zero activates the oracle, which produces the result object yesL (resp., noL)
inside membrane M , indicating that y ∈ L (resp., y /∈ L). Membrane L is also emptied in the process.
The result object is then sent out fromM as a “junk” object #, while setting the charge to positive (resp.,
negative):

[yesL]0M → []+M # [noL]0M → []−M # (13)

The corresponding configurations (assuming y ∈ L) are

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 yesL z

0

L

0

M
a′0 b

′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 z

0

L

+

M

When the charge of M becomes positive (resp., negative), the objects in M lose the prime and gain the
subscript (qL, 0) (resp., (q̄L, 0)), denoting the transition of M to state qL (resp., q̄L) and the resetting of
the position of the tape head to the first cell. Simultaneously, the object z is sent out as #, resetting the
charge of M to neutral. The corresponding rules are

[σ′j → σj,(qL,0)]
+
M for j ∈ [0, p(n)] (14)

[σ′j → σj,(q̄L,0)]
−
M for j ∈ [0, p(n)] (15)

[z]+M → []0M # (16)

[z]−M → []0M # (17)

The resulting configuration can also be seen as a high-level configuration (as shown below), which
corresponds to the configuration of the Turing machine M after the oracle query.

a0,(qL,0) b1,(qL,0) .2,(qL,0) b3,(qL,0)
0

L

b4,(qL,0) a5,(qL,0) /6,(qL,0) t7,(qL,0)

0

M

a0 b1 .2 b3 b4 a5 /6 t7
0

L

(qL,0)

M

1010 A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy

Since performing the oracle query on ΠM,x only incurs in a polynomial slowdown (due to the sequential
input into membrane L) with respect to the same process on M , the statement of the lemma follows. ut

Remark 4.3. The simulations of Lemma 4.1 and Theorem 4.2 do not only work for polynomial-time
Turing machines, but more generally for polynomial-space ones. Therefore, for all L ⊆ Σ? we have the
inclusion PSPACEL ⊆ PMCSPACELAM(0), and in particular PSPACE ⊆ PMCSPACEAM(0).

5. Trading membrane nesting depth for oracle power

We can now show how an oracle for a language in PPL can be simulated by P systems with an oracle
for L at the cost of a unitary increase in membrane nesting depth.

Lemma 5.1. PMCPPL

AM(0) ⊆ PMCL
AM(1) for each L ⊆ Σ?.

Proof:
The simulation of deterministic Turing machines M with oracles of Theorem 4.2 can be easily adapted
to simulate counting Turing machines with oracles, as long as membrane M is not the outermost one of
the system, thus enabling membrane division rules.

First of all, binary nondeterministic choices can be simulated by complementing the rule schema (8)
with the (elementary or non-elementary) division rule schema

[ai]
(q,i)
M → [bi]

(r,i+d1)
M [ci]

(s,i+d2)
M for i ∈ [0, p(n)]

for each nondeterministic choice δ(q, a) = {(r, b, d1), (s, c, d2)} of the Turing machine. This produces
two copies of membraneM , which simulate in parallel two distinct computations of the Turing machine.

When all computations of M have ended, which we may assume without loss of generality to be all
of the same length, the P system will have generated as many copies of membrane M as the number
of computations, each of them simultaneously sending out an instance of yes or no, according to the
result of the corresponding computation. Simulating a counting machine requires us to check whether
the number of yes objects is greater than the number of no objects.

By Theorem 4.2 we have PMCPPL

AM(0) = PPPL
, hence every problem in PMCPPL

AM(0) can be solved
by a family of depth-0 P systems Π = {Πx : x ∈ Σ?} having an external membrane M0, where a
deterministic Turing machine is simulated, containing an oracle membrane for L1 ∈ PPL. Let M1 be
a polynomial-time counting Turing machine deciding L1; we assume (Lemma 2.1) that M1 always has
an odd number of computations. We replace the oracle membrane L1 of each Πx with a membrane, also
called M1, simulating the machine M1, which in turn contains an oracle membrane for L, a potentially
less complex language than L1. This increases the nesting depth of Πx by one, as shown below.

0

L1

0

M0

0

L

0

M1

0

M0

We now show how to define membrane M1 in such a way that it behaves as an oracle for membrane M0,
except for the time needed to respond to its queries (which increases from one step to a polynomial
number of steps).

A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy 1011

First of all, we change the last step of the oracle querying procedure from (12) to

σ̃k,0 []+M1
→ [σ̃k]

0
M1

for k ∈ [1, p(n)− 2]

This leads to the following configuration:

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 z b0 b1 ã2

0

L

0

M1

0

M0

In the next computation step, the query string objects in M1 acquire the subscript (q0, 0), where q0 is the
initial state of the Turing machine M1; the last object σ̃k also pads the input multiset to length q(k + 1)
(the space required by M1 on inputs of length k + 1) with as many blank objects as needed in order to
perform the simulation:

[σj → σj,(q0,0)]
0
M1

for j ∈ [0, p(n)]

[σ̃k → σk,(q0,0)tk+1,(q0,0) · · · tq(k+1)−1,(q0,0)]
0
M1

for k ∈ [0, p(n)]

For instance, if the Turing machine M1 needs three extra blank symbols (q(3) = 6), this produces the
following configuration, also shown in high-level view:

b0,(q0,0) b1,(q0,0) a2,(q0,0)
0

L

t3,(q0,0) t4,(q0,0) t5,(q0,0)

0

M1

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 z

0

M0

b0 b1 a2 t3 t4 t5
0

L

(q0,0)

M1

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 z

0

M0

Now there are no applicable rules for membrane M0. Membrane M1 simulates the computation of the
machine M1 (possibly including queries to the oracle for L). At the end of the simulation of this oracle
query, all the copies of membrane M1 that have been generated have, as in the proof of Lemma 4.1, a
configuration of the form

a0 b1 b2 a3 t4 t5
0

L

(qyes,i)

M1

a0,(qyes,i) b1,(qyes,i) b2,(qyes,i)
0

L

a3,(qyes,i) t4,(qyes,i) t5,(qyes,i)

0

M1

Instead of just rewriting σ0,(qyes,i) (resp., σ0,(qno,i)) into yesM1
(resp., noM1), we replace rules (9) and (10)

with

[σ0,(qyes,i) → yesM w]0M for i ∈ [0, p(n)]

[σ0,(qno,i) → noM w]0M for i ∈ [0, p(n)]

which also produce a timer object w. The configuration of the whole system, assuming the Turing
machine M1 has produced five computations (four of them accepting), is then

yesM1
w

0

L

0

M1

noM1 w
0

L

0

M1

yesM1
w

0

L

0

M1

yesM1
w

0

L

0

M1

yesM1
w

0

L

0

M1

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 z

0

M0

1012 A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy

The rules in (11) send out the result and change the charge of the membranes M1, while the object w is
primed by means of the rule

[w→ w′]0M1

leading to

w′
0

L

+

M1

w′
0

L

−

M1

w′
0

L

+

M1

w′
0

L

+

M1

w′
0

L

+

M1

yesM1
noM1 yesM1

yesM1
yesM1

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 z

0

M0

Now the P system compares the number of accepting and rejecting simulated computations of M1 by
pairing positive membranes M1 with objects noM1 , and negative membranes M1 with objects yesM1

, by
using send-in rules that reset the charges to neutral:

noM1 []+M1
→ [#]0M1

yesM1
[]−M1

→ [#]0M1

In the mean time, object w′ is primed again:

[w′ → w′′]+M1
[w′ → w′′]−M1

After this step, all the non-neutral membranes M1 (at least one will exist, since the number of computa-
tions of M1 is odd) will have the same charge, positive if accepting computations are the majority, and
negative otherwise:

w′′
0

L

+

M1

w′′ #
0

L

0

M1

w′′
0

L

+

M1

w′′
0

L

+

M1

w′′ #
0

L

0

M1

yesM1
yesM1

yesM1
a′0 b

′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 z

0

M0

The objects w′′ and # inside neutral membranes M1 are now deleted, while the objects w′′ in positive
(resp., negative) membranes M1 are sent out as yesL1

(resp., noL1) while resetting the charge to neutral:

[w′′ → ε]0M1
[#→ ε]0M1

[w′′]+M1
→ []0M1

yesL1
[w′′]−M1

→ []0M1
noL1

We obtain the following configuration:

0

L

0

M1

0

L

0

M1

0

L

0

M1

0

L

0

M1

0

L

0

M1

yesL1
yesL1

yesL1
yesM1

yesM1
yesM1

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 z

0

M0

A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy 1013

The objects yesL1
(resp., noL1) are the query results needed byM0, although possibly in multiple copies.

Hence, a single copy of yesL1
(resp., noL1) is sent out by rules (13). This leads to the configuration

0

L

0

M1

0

L

0

M1

0

L

0

M1

0

L

0

M1

0

L

0

M1

yesL1
yesL1

yesM1
yesM1

yesM1

a′0 b
′
1 .
′
2 b
′
3 b
′
4 a
′
5 /
′
6 t′7 z

+

M0

When the charge of M0 changes, the remaining copies of yesM1
and yesL1

(resp., noM1 and noL1) are
deleted

[yesM1
→ ε]+M0

[yesL1
→ ε]+M0

[noM1 → ε]−M0
[noL1 → ε]−M0

At the same time, rules (14)–(17) are applied, and we reach the configuration

0

L

0

M1

0

L

0

M1

0

L

0

M1

0

L

0

M1

0

L

0

M1

a0 b1 .2 b3 b4 a5 /6 t7

(qL,0)

M0

which corresponds to the configuration reached by M0 when an actual oracle for L1 replaces M1.
Notice that several copies of M1 (empty and with neutral charge) now occur in the configuration of

the P system. However, when performing another query, only one of them will be selected, by the first
object entering it and setting its charge to positive. ut

By iterating Lemma 5.1 from PMC
CkP
AM(0) we obtain, for all k ∈ N, the chain of inclusions

PMC
CkP
AM(0) ⊆ PMC

Ck−1P
AM(1) ⊆ · · · ⊆ PMCPPP

AM(k − 1) ⊆ PMCP
AM(k).

Furthermore, notice that a P oracle can always be ignored by a polynomial-time, depth-0 P system (i.e.,
it can be simulated without the need for queries), since P ⊆ PMCAM(0), and the corresponding oracle
membrane can be removed from the P system; hence, PMCP

AM(k) ⊆ PMCAM(k). This proves the
following lemma.

Lemma 5.2. PMC
CkP
AM(0) ⊆ PMCAM(k) for each k ∈ N.

By combining Theorem 4.2 and Lemma 5.2 we obtain our main result.

Theorem 5.3. PCkP ⊆ PMCAM(k) for each k ∈ N.

By taking the union for all k ∈ N on both sides of the inclusion and observing that PCkP is al-
ways included in PPCkP = Ck+1P, this implies that constant-depth P systems with active membranes
working in polynomial time are at least as powerful as the counting hierarchy.

Corollary 5.4. CH ⊆ PMCAM(O(1)).

1014 A. Leporati et al. / Membrane Division, Oracles, and the Counting Hierarchy

6. Conclusions

We have proved that P systems with active membranes of constant depth working in polynomial time
solve all problems in the counting hierarchy CH. In particular, membrane nesting depth k is at least as
powerful as PCkP. Is this an actual characterisation of CH, that is, does CH include PMCAM(O(1))?
And, if so, does the reverse inclusion PMCAM(k) ⊆ PCkP, currently known to hold for the first two
levels (Lemma 4.1 and [3]), also hold for all k ≥ 2? We conjecture that this is indeed the case, even in
the presence of dissolution rules, and plan to pursue this line of investigation in the near future.

Acknowledgements This work was partially supported by Fondo d’Ateneo (FA) 2013 of Università
degli Studi di Milano-Bicocca: “Complessità computazionale in modelli di calcolo bioispirati: Sistemi a
membrane e sistemi a reazioni”.

References
[1] Alhazov, A., Martı́n-Vide, C., Pan, L.: Solving a PSPACE-complete problem by recognizing P systems with

restricted active membranes, Fundamenta Informaticae, 58(2), 2003, 67–77.

[2] Hemaspaandra, L. A., Ogihara, M.: The Complexity Theory Companion, Texts in Theoretical Computer
Science, Springer, 2002.

[3] Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., Zandron, C.: Simulating elementary active membranes,
with an application to the P conjecture, in: 15th International Conference on Membrane Computing, Pro-
ceedings (M. Gheorghe, P. Sosı́k, Š. Vavrečková, Eds.), 2014, 251–266.

[4] Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions,
Natural Computing, 10(1), 2011, 613–632.

[5] Păun, Gh.: P systems with active membranes: Attacking NP-complete problems, Journal of Automata,
Languages and Combinatorics, 6(1), 2001, 75–90.

[6] Pérez-Jiménez, M. J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular
computing with membranes, Natural Computing, 2(3), 2003, 265–284.

[7] Porreca, A. E., Leporati, A., Mauri, G., Zandron, C.: P systems simulating oracle computations, in:
Membrane Computing, 12th International Conference, CMC 2011 (M. Gheorghe, Gh. Păun, A. Salomaa,
G. Rozenberg, S. Verlan, Eds.), vol. 7184 of Lecture Notes in Computer Science, Springer, 2012, 346–358.

[8] Porreca, A. E., Murphy, N.: First steps towards linking membrane depth and the Polynomial Hierarchy, in:
Eight Brainstorming Week on Membrane Computing (M. A. Martı́nez-del-Amor, Gh. Păun, I. Pérez-Hurtado,
A. Riscos-Núñez, Eds.), number 1/2010 in RGNC Reports, Fénix Editora, 2010, 255–266.

[9] Sosı́k, P., Rodrı́guez-Patón, A.: Membrane computing and complexity theory: A characterization of PSPACE,
Journal of Computer and System Sciences, 73(1), 2007, 137–152.

[10] Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes,
in: Unconventional Models of Computation, UMC’2K, Proceedings of the Second International Conference
(I. Antoniou, C. S. Calude, M. J. Dinneen, Eds.), Springer, 2001, 289–301.

[11] Zandron, C., Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M. J.: On the computational efficiency of
polarizationless recognizer P systems with strong division and dissolution, Fundamenta Informaticae, 87,
2008, 79–91.

