Space complexity of P Systems with Active
Membranes: a Survey

Alberto Leporati, Luca Manzoni, Giancarlo Mauri,
Antonio E. Porreca, Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Universita degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

leporati/luca.manzoni/mauri/porreca/zandron@disco.unimib.it

Abstract. P systems with active membranes are a variant of P systems
where membranes can be created during the computation by division of
existing ones. Using this feature, one can create an exponential number
of membranes in a polynomial time, and use them in parallel to solve
computationally hard problems. This possibility raises many interesting
questions concerning the trade—off between time and space needed to
solve various classes of computational problems by means of membrane
systems. In this paper we give a survey on the results on this topic.

1 Introduction

P systems with active membranes have been introduced in [8] as a variant of P
systems where the membranes play an active role in the computation: an elec-
trical charge, that can be positive (+), neutral (0), or negative (—), is associated
with each membrane; the application of the rules can be controlled by means
of these electrical charges. Moreover, new membranes can be created during the
computation by division of existing ones. A very interesting feature of such sys-
tems is that, using these operations, one can create an exponential number of
membranes in polynomial time, and use them in parallel to solve computation-
ally hard problems.

This possibility raises many interesting questions concerning the trade—off be-
tween time and space needed to solve various classes of computational problems
by means of membrane systems. In order to clarify such relations, a definition
of space complexity for P systems has been proposed [10], on the basis of an hy-
pothetical implementation of P systems by means of real biochemical materials:
every single object and every single membrane requires some constant physical
space.

Research on the space complexity of P systems with active membranes has
shown that these devices, when using a polynomial amount of space, exactly
characterize the complexity class PSPACE, as shown in [11] and [12]. The result
has then been generalized, showing that any Turing machine working in space
£2(n) can be simulated with a polynomial space overhead [1].

2 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

A natural research topic that follows immediately is to clarify the classes of
problems solved by P systems which make use of logarithmic space. The first
natural approach, when considering the use of sublinear space in the frame-
work of membrane systems, is to compare logarithmic space P systems with
Turing machines using the same amount of space. It has been shown [14] that
DLOGTIME-uniform (a standard, weak uniformity condition for families of
Boolean circuits) P systems with active membranes, using a logarithmic amount
of space, are able to simulate logarithmic-space deterministic Turing machines,
and thus to solve all problems in the class L. In [3] it is pointed out that, while
logarithmic-space Turing machines can only generate a polynomial number of
distinct configurations, P systems working in logarithmic space have exponen-
tially many potential ones, and thus they can be exploited to solve computational
problems that are harder than those in L. In particular, polynomial-space Turing
machines can be simulated by means of P systems with active membranes using
only logarithmic auxiliary space, thus obtaining a characterization of PSPACE.

However, an even lower amount of space suffices: P systems using only a
constant amount of space have also been considered; in this case, it turned out
[4] that, quite surprisingly, a constant amount of space is sufficient (and trivially
necessary) to solve all problems in PSPACE. This result challenges our intuition
of space, formalized in the definition of space complexity for P systems adopted
so far. Thus, a more accurate estimate of the space required by a configuration of
a P system was proposed. Using the new space definition, all the results involving
at least a polynomial amount of space, according to the first definition, still hold.
The difference appears only when P systems with severely tight bounds on the
amount of space used during computations are considered.

2 Basic Notions

For a comprehensive introduction to P systems we refer the reader to The Ozford
Handbook of Membrane Computing [9]. The definition of space complexity for P
systems can be found in [10].

In order to consider general space complexity classes in the framework of P
systems (i.e., including sublinear and, possibly, constant space P systems), we
need to define a meaningful notion of space inspired by sublinear space definition
for Turing machines: two distinct alphabets, an INPUT alphabet and a WORK
alphabet, must be considered in the definition of a P system. The input objects
cannot be rewritten and do not contribute to the size of the configuration of a
P system. The size of a configuration is defined as the sum of the number of
membranes in the current membrane structure and the total number of working
objects they contain. We recall here the basic definitions related to P systems
with active membranes with an input alphabet [14]:

Definition 1. A P system with (elementary) active membranes having initial
degree d > 1 is a tuple IT = (I, A, A, p, wp, , . . . ,wh,, R), where:

— I is an alphabet, i.e., a finite non-empty set of symbols, usually called ob-
jects;

Space complexity of P Systems with Active Membranes: a Survey 3

A is another alphabet, disjoint from I', called the input alphabet;

A is a finite set of labels for the membranes;

1 is a membrane structure (i.e., a rooted unordered tree, usually represented
by nested brackets) consisting of d membranes labelled by elements of A in a
one-to-one way;

— Why .., Why, With hy,... hqg € A, are strings over I' describing the initial

multisets of objects placed in the d regions of u;
R is a finite set of rules over I' U A.

Each membrane possesses, besides its label and position in p, another at-

tribute called electrical charge, which can be either neutral (0), positive (+) or
negative (—) and is always neutral before the beginning of the computation.

A description of the available kinds of rule follows. This description differs

from the original definition [8] only in that new input objects may not be created
during the computation.

Object evolution rules, of the form [a — w]§

They can be applied inside a membrane labelled by h, having charge o and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by the
objects in w). At most one input object b € A may appear in w, and only if

it also appears on the left-hand side of the rule (i.e., if b = a).

Send-in communication rules, of the form a []§ — [b]g

They can be applied to a membrane labelled by h, having charge o and such
that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the charge of h is changed
to 8. If b € A then a = b must hold.

Send-out communication rules, of the form [a]? — []g b

They can be applied to a membrane labelled by h, having charge o and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to 8. If b € A then a = b must hold.

Dissolution rules, of the form [a]? — b

They can be applied to a membrane labelled by h, having charge a and
containing an occurrence of the object a; the membrane h is dissolved and
its contents are left in the surrounding region unaltered, except that an
occurrence of a becomes b. If b € A then a = b must hold.

Elementary division rules, of the form [a]} — [b]g [c]}

They can be applied to a membrane labelled by h, having charge «, con-
taining an occurrence of the object a but having no other membrane inside
(an elementary membrane); the membrane is divided into two membranes
having label h and charges § and +; the object a is replaced, respectively,
by b and ¢ while the other objects in the initial multiset are copied to both
membranes. If b € A (resp., ¢ € A) then a =b and ¢ ¢ A (resp., a = ¢ and
b ¢ A) must hold.

4 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

Each instantaneous configuration of a P system with active membranes is de-
scribed by the current membrane structure, including the electrical charges, to-
gether with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of princi-
ples:

— Each object and membrane can be subject to at most one rule per step,
except for object evolution rules (inside each membrane several evolution
rules can be applied simultaneously).

— The application of rules is mazximally parallel: each object appearing on the
left-hand side of evolution, communication, dissolution or elementary divi-
sion rules must be subject to exactly one of them (unless the current charge
of the membrane prohibits it). The same principle applies to each membrane
that can be involved in communication, dissolution, or elementary division
rules. In other words, the only objects and membranes that do not evolve
are those associated with no rule, or only to rules that are not applicable
due to the electrical charges.

— When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

— In each computation step, all the chosen rules are applied simultaneously
(in an atomic way). However, in order to clarify the operational semantics,
each computation step is conventionally described as a sequence of micro-
steps as follows. First, all evolution rules are applied inside the elementary
membranes, followed by all communication, dissolution and division rules in-
volving the membranes themselves; this process is then repeated to the mem-
branes containing them, and so on towards the root (outermost membrane).
In other words, the membranes evolve only after their internal configuration
has been updated. For instance, before a membrane division occurs, all cho-
sen object evolution rules must be applied inside it; this way, the objects
that are duplicated during the division are already the final ones.

— The outermost membrane cannot be divided or dissolved, and any object
sent out from it cannot re-enter the system again.

A halting computation of the P system I is a finite sequence of configu-
rations C = (Cp,...,C), where Cy is the initial configuration, every C;y; is
reachable from C; via a single computation step, and no rules of IT are applica-
ble in Cy. A non-halting computation C = (C; : ¢ € N) consists of infinitely many
configurations, again starting from the initial one and generated by successive
computation steps, where the applicable rules are never exhausted.

P systems can be used as language recognisers (see, e.g. [2]) by employing two
distinguished objects yes and no; exactly one of these must be sent out from the
outermost membrane, and only in the last step of each computation, in order to
signal acceptance or rejection, respectively; we also assume that all computations
are halting. If all computations starting from the same initial configuration are
accepting, or all are rejecting, the P system is said to be confluent. If this is
not necessarily the case, then we have a non-confluent P system, and the overall

Space complexity of P Systems with Active Membranes: a Survey 5

result is established as for nondeterministic Turing machines: it is acceptance iff
an accepting computation exists. Unless otherwise specified, the P systems in
this paper are to be considered confluent.

In order to solve decision problems (i.e., decide languages over an alpha-
bet X)), we use families of recogniser P systems IT = {II, : x € X*}. Each
input z is associated with a P system II, that decides the membership of x in
the language L C X™* by accepting or rejecting. The mapping x — II, must be
efficiently computable for each input length [6].

Definition 2. Let £ and F be classes of functions. A family of P systems IT =
{II; : x € X*} is said to be (€, F)-uniform if and only if

— There exists a function f € F such that f(1") = II,, i.e., mapping the
unary representation of each natural number to an encoding of the P system
processing all inputs of length n, and defining a specific membrane as the
input membrane.

— There exists a function e € € mapping each string x € X* to a multiset
e(r) = w, (represented as a string) over the input alphabet of II,, where
n=|zl.

— For each v € X* we have IT, = II,(w,), i.e., I, is II, with the multiset
encoding x placed inside the input membrane.

Definition 3. If the mapping x — II, is computed by a single polynomial-
time Turing machine, the family IT is said to be F-semi-uniform (where F is a
class of functions). In this case, inputs of the same size may be associated with
P systems having possibly different membrane structures and rules.

Generally, the above mentioned classes of functions £ and F are complexity
classes; in the most common uniformity condition £ and F denote polynomial-
time computable functions, although weaker complexity classes are used for some
results presented in this paper.

Any explicit encoding of IT, is allowed as output of the construction, as
long as the number of membranes and objects represented by it does not exceed
the length of the whole description, and the rules are listed one by one. This
restriction is enforced in order to mimic a (hypothetical) realistic process of
construction of the P systems, where membranes and objects are presumably
placed in a constant amount during each construction step, and require actual
physical space proportional to their number; see also [6] for further details on
the encoding of P systems.

Finally, we describe how space complexity for families of recogniser P systems
is measured, and the related complexity classes [10, 14].

Definition 4. Let C be a configuration of a recogniser P system II. The size |C|
of C is defined as the sum of the number of membranes in the current membrane
structure and the total number of objects from I' (i.e, the non-input objects) they
contain. If C = (Co, . ..,Ck) is a computation of II, then the space required by C
is defined as

|C| = max{|Co|, ..., |Ck]|}

6 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

The space required by IT itself is then obtained by computing the space required
by all computations of II and taking the supremum:

|II| = sup{|C| : C is a computation of II}.

Finally, let IT = {II, : * € X*} be a family of recogniser P systems, and
let s: N — N. We say that IT operates within space bound s iff |IT,| < s(|z|)
for each x € X*.

By (€, F)-MCp(f(n)) (resp. (£, F)-MCSPACEp(f(n))) we denote the class
of languages which can be decided by (€, F)-uniform families of confluent P sys-
tems of type D (in the following we will mainly refer to P systems with ac-
tive membranes, and we denote this by setting D = AM), where each II, €
IT operates within time (resp. space) bound f(|z|). The corresponding class
when we consider semi-uniform families is denoted by (£, F)-MC%(f(n)) (resp.
(€, F)-MCSPACEX(f(n))).

The class of problems that can be solved in [semi-uniform| (£, F)-logarithmic

[*

(respectively polynomial) space is denoted by (€ ,.F)—LMCSPACED] (respec-
tively (£, F)-PMCSPACEL)).

In [11] it has been shown that recognizer P systems with active membranes
(using three polarizations) are able to solve all problems in PSPACE working
in polynomial space and exponential time. This result shows that recognizer
P systems with active membranes can solve in exponential time and polynomial
space problems that cannot be solved in polynomial time and space, unless
PTIME = PSPACE.

Theorem 1. PSPACE C PMCSPACEp.

Proof. (Sketch) The PSPACE-complete problem Q3SAT is solved by a P system
working in polynomial space. The solution is uniform, in the sense that a fixed
P system is able to solve all the instances of Q3SAT of a given size. ad

In [12] it has been shown that such P systems can be simulated by Turing
machines with only a polynomial increase in space requirements.

Theorem 2. [N]PMCSPACEg] C PSPACE, where [N] denotes optional non-
confluence, and [x] optional semi-uniformity.

Proof. (Sketch) The inclusion PMCSPACE}, C PSPACE is proved by simu-
lating a nondeterministic P system working in polynomial space by a Turing
machine working in polynomial nondeterministic space, which can then be re-
duced to polynomial deterministic space by using Savitch’s theorem [7]. O

Together, the previous results give a precise characterization of the class
PSPACE in terms of space complexity classes for membrane systems.

This result was then generalized in [1], by showing that arbitrary single-tape
Turing machines can be simulated by uniform families of P systems with active

Space complexity of P Systems with Active Membranes: a Survey 7

membranes with a cubic slowdown and quadratic space overhead. As a conse-
quence, the classes of problems solvable by P systems with active membranes
and by Turing machines coincide up to a polynomial with respect to space com-
plexity.

Theorem 3. Let M be a single-tape deterministic Turing machine working in
time t(n) and space s(n), including the space required for its input. Then there ex-
ists a uniform family of confluent P systems II with restricted elementary active
membranes operating in time O(t(n)s(n)logs(n)) and space O(s(n)logs(n))
such that L(IT) = L(M).

Proof. (Sketch) The techniques used in [11] and [12] to simulate Turing machines
via uniform families of P systems do not seem to apply when the space bound
is super-exponential, because membranes are identified by binary numbers. In
fact, when dealing with a super-exponential number of different membrane labels,
such numbers would be made of a super-polynomial number of digits, and such
systems cannot be built in a polynomial number of steps by a deterministic
Turing machine, as required by the notion of polynomial-time uniformity usually
employed.

Instead, multiple copies of a single “dot” object are used to represent the cell
numbers in unary notation, and all membranes representing cells of the Turing
machine have the same label. A configuration of M where ¢ is the state of the
machine, the visited portion of the tape has length m, the string on the visited
portion of the tape is w = wy ... w,, € X, and the head is placed on tape cell
p € {1,...,m}, is encoded as it follows:

— Three membranes labelled by ¢,p, and m contain, respectively, the unary
encoding of ¢,p, and m, that is, as many copies of the dot object as the
corresponding value;

— The i—th cell of the Turing machine M containing the j—th symbol of the
alphabet, is simulated by means of a membrane containing the value K xi+j
in unary notation.

To simulate a computation step of the Turing machine M we first need to
identify, among all membranes labelled by ¢, the one corresponding to the cell
located under the tape head of M. Notice that these membranes are externally
indistinguishable, and they differ only in the unary value contained in it. A
nondeterministically guess among all these membranes is performed, which is
then checked to verify if it is indeed the right one; if this is not the case, then
the membrane is marked, and the process repeated until we eventually find the
correct one.

Once correctly identified the involved membrane, the computation step is
simulated, working on numbers in unary notations through a subroutine that
simulate a register machine to update the configuration of the P system, accord-
ing to the transition step of the Turing machine. O

8 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

From Theorem 3 we obtain inclusions of complexity classes for Turing ma-
chines and P systems when the space bound is at least linear (since we are deal-
ing with single-tape Turing machines). In particular, for every function f(n) €
2(n) the following inclusions hold: TIME(f(n)) C (L,L)-MC_m(O(f(n)?))
and SPACE(f(n)) C (L,L)-MCSPACE 40(O(f(n)?)).

Moreover, by combining the previous results, we can prove equality between
space complexity classes for P systems and Turing machines under some (not
very restrictive) assumptions on the set of space bounds we are interested in.

Theorem 4. Let F be a class of functions N — N such that

— F contains the identity function n — n;
— If s(n) € F and p(n) is a polynomial, then there exists some f(n) € F
with f(n) € Q(p(s(n))).

Then SPACE(F) = (L,L)-MCSPACE 4r((F). In particular, we have the fol-
lowing equalities:

PSPACE = (L,L)-PMCSPACE 4 \(
EXPSPACE = (L, L)-EXPMCSPACE 4 \(
29EXPSPACE = (L, L)-2EXPMCSPACE 4
KEXPSPACE = (L,L)-kEXPMCSPACE 4 /.

Another consequence of the possibility of P systems to simulate Turing ma-
chines with a polynomial overhead and vice versa is that we can translate theo-
rems about the space complexity of Turing machines into theorems about P sys-
tems. As an example, the Savitch’s theorem and the Sapce hierarchy theorem
for Turing machines can be proved almost immediately for large enough space
complexity bounds.

3 Simulating Logarithmic—Space Turing Machines

To consider membrane systems working in logarithmic space is one of the first
natural research topic that has been addressed once obtained the result described
in the previous section. We first recall a result from [14] showing that P systems
with active membranes, using a logarithmic amount of space, are able to simulate
logarithmic-space deterministic Turing machines, and thus to solve all problems
in the class L.

In order to consider such systems, we need to define a uniformity condi-
tion for the families of P systems that is weaker than the usual P uniformity,
to avoid the possibility to solve a problem directly by using the Turing ma-
chine that builds the P systems we use to compute. One such possibility is to
consider DLOGTIME-uniformity, defined on the basis of DLOGTIME Turing
machines [5]. Another problem that the efficient simulation of logarithmic space
Turing machines (or other equivalent models) has to face, is that it cannot use a

Space complexity of P Systems with Active Membranes: a Survey 9

polynomial number of working objects, to avoid violating the logarithmic space
condition.

It has been shown in [14] that such problems can be avoided by a simu-
lation that uses membrane polarization both to communicate objects through
membranes as well as to store some information.

Theorem 5. Consider a deterministic Turing machine M, having an input
tape of length n, and with a work tape of length O(logn). Then, there ex-
ists a (DLOGTIME, DLOGTIME)-uniform family IT of confluent recogniser
P systems with active membranes that works in logarithmic space such that
L(M) = L(IT).

Proof. (sketch) Consider a Turing machine M working in logarithmic space. The
P system I, that simulates M on input of length n is composed of:

— A skin membrane containing a state object object g; ., to indicate that M is
currently in state ¢ and its tape heads are on the i-th and w-th symbols of
the input and work tape, respectively.

— O(logn) nested membranes (INPUT tape membranes) containing, in the
innermost one, the input symbols of M, and O(log(n)) membranes to store
the work tape of M (WORK tape membranes).

— Two sets of membranes, whose size depend on the dimensions of the input
and the working alphabet of M (SYMBOL membranes), respectively.

To simulate a computation step of M, the state object enters the INPUT
membranes, storing the bits corresponding to the actual position of the INPUT
head of M in their polarizations. Only one object (corresponding to the INPUT
symbol actually read) can travel to the outermost membrane by using send-out
rules; the other objects stop moving because they have the wrong charges. Then,
the state object identifies the symbol actually under the WORK head (using the
WORK tape membranes) and proceeds to simulate the transition of M using
the SYMBOLS membranes.

Each P system [T, (simulating each M (z) such that |z| = n) only requires
O(log |z|) membranes and objects besides the input objects; moreover, the family
IT is (DLOGTIME, DLOGTIME)-uniform. The time required by the simula-
tion is O(n-t(n)), where t(n) is the maximum number of steps performed by M
on inputs of length n. O

An immediate corollary of Theorem 5 is that the class of problems solved by
logarithmic-space Turing machines is contained in the class of problems solved by
(DLOGTIME, DLOGTIME)-uniform, logarithmic-space P systems with active
membranes.

Corollary 1. L C (DLOGTIME, DLOGTIME)-LMCSPACE 4 1. O

10 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

4 Simulating Polynomial-Space Turing Machines in
Logarithmic Space

The result presented in the previous section only represents a lower bound for the
power of logarithmic-space P systems; as a matter of fact, already in [14] it was
conjectured that it could be improved, as P systems working in logarithmic space
have an exponential number of different configurations, which could possibly be
used to efficiently solve harder problems than those in the class L. It turned
out [3] that this is the case, and that polynomial-space deterministic Turing
machines can be simulated by means of P systems with active membranes using
only logarithmic auxiliary space, thus characterising PSPACE.

The simulation was based on two key ideas. First, input objects (of the
form 7;) are distributed, during the computation, in various substructures. Apart
from an initial phase, the value of 7 is disregarded: the symbol o written on the i-
th tape cell of the Turing machine being simulated can be inferred from the label
of the substructure that contains 7;. The second idea is applied when querying
the symbol under the tape head: the position ¢ of the head is written in binary in
the electrical charges of the membranes composing the substructure where the
object 7; is placed, so that the only input object having the correct subscript
can leave the substructure corresponding to the sought symbol, and reach the
skin membrane. The depth of each substructure is logarithmic, thus allowing to
represent a polynomial number of possible head positions. As a result, we can
simulate any polynomial space computation of a deterministic Turing machine
with only a logarithmic number of symbols (plus a polynomial number of read-
only input symbols) and membranes.

Theorem 6. Let M be a single-tape deterministic Turing machine working in
polynomial space s(n) and time t(n). Then, there exists an (L, L)-uniform fam-
ily IT of P systems with active membranes using object evolution and communi-
cation rules that simulates M in space O(logn) and time O(t(n)s(n)).

Proof. (sketch) Let € X™ be an input string, and let m = [logs(n)] be
the minimum number of bits needed in order to represent the tape cell in-
dices 0,...,s(n) — 1 in binary notation. The P system IT,,, associated with the
input length n, has a membrane structure consisting of an external skin mem-
brane that contains, for each symbol of the tape alphabet of M, the following
set of membranes, linearly nested and listed from the outside in:

— a symbol-membrane;
— a query-membrane;
— for each j € {0,...,m — 1}, a membrane labelled by j,.

An arbitrary configuration of M on input x is encoded by a configuration
of IT,, as follows:

— the outermost membrane contains the state-object g;, (where ¢ is the current
state of M, and i is the current tape head position);

Space complexity of P Systems with Active Membranes: a Survey 11

— if membrane (m — 1), contains the input object 7;, then the i-th tape cell
of M contains the symbol o.

The symbol written on the i-th tape cell of M can be inferred from the label
of the substructure which contains the corresponding input symbol 7;. Notice
that a logarithmic depth membrane structure allows to represent a polynomial
number of possible head positions.

The state-object ¢; queries each membrane substructure, by encoding in bi-
nary the tape position ¢ on the electrical charges of the membranes. Only the
symbol whose subscript is ¢ can reach the skin membrane and be used to conclude
the simulation of a computation step.

The family IT described above is (L, L)-uniform, and each P system IT, uses
only a logarithmic number of membranes and a constant number of objects per
configuration, besides the input objects, which are never rewritten. IT, works in
space O(logn) and in time O(t(n)s(n)). O

As a consequence, we have the following:

Theorem 7. For each class D C AM of P systems with active membranes
using object evolution and communication among their rules we have

(L,L)-LMCSPACEp = (L,L)-PMCSPACEp = PSPACE.

Proof. The inclusion PSPACE C (L,L)-LMCSPACEp follows immediately
from Theorem 6. By definition, the class (L,L)-LMCSPACEp is included in
(L,L)-PMCSPACEp. Finally, to prove the inclusion of (L,L)-PMCSPACEp
in PSPACE it suffices to simulate P systems by means of Turing machines, which
can be carried out with just a polynomial space overhead, as shown in [11,1]. O

This was the first case where the space complexity of P systems and that of
Turing machines differ by an exponential amount. Since, as previously said,
PSPACE had already been proved to be characterised by polynomial-space
P systems, these results also highlight a gap in the hierarchy of space complexity
classes for P systems: super-polynomial space is required in order to exceed the
computational power of logarithmic space.

5 Constant—Space P systems

After considering P systems with active membranes working in logarithmic
space, a natural question arises concerning the power of such systems using only
a constant amount of space. Surprisingly it turned out that constant space is
sufficient to simulate polynomial-space bounded deterministic Turing machines,
as proved in [4]:

Theorem 8. (L,L)-MCSPACE 4((O(1)) = PSPACE.

12 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

Proof. (sketch) Let L € PSPACE, and let M be a Turing machine deciding L
in space p(n). We can construct a family of P systems IT = {II, : x € X*} such
that L(IT) = L by letting F'(1") = II,,, where II,, is the P system simulating M
on inputs of length n, and

E(-rO T xn—l) =11 Tpn—1,n-1 Up - I—|p(n)71a

i.e. by padding the input string x with p(n) —n blank symbols Ul before indexing
the result with the positions of the symbols on the tape.

The simulation relies on two main ideas. As in the previous proof of The-
orem 6, input objects of the form 7; are distributed in substructures, and the
symbol written on the i-th tape cell of M can be inferred from the label of the
substructure where the corresponding input symbol 7; is placed. The second idea
is that it is possible to “read” a subscript of an input object 7; without rewriting
it and by using only a constant number of additional objects and membranes:
in particular, a timer object is used to change the charge of a membrane after
a requested amount of steps. Any other object that was counting together with
the timer is able to observe the charge of the membrane, and thus obtain the
designed value.

Since at each computation step only a constant number of working objects
and membranes are present, then the simulation requires, according to defini-
tion 4, a constant amount of space. Moreover, both F' and E can be computed in
logarithmic space by Turing machines, since they only require adding subscripts
having a logarithmic number of bits to rules or strings having a fixed structure,
and the membrane structure is fixed for all IT,,. This proves the inclusion of
PSPACE in (L,L)-MCSPACE 4(O(1)), while the reverse inclusion is proved
in [11]. a

6 Rethinking the Definition of Space

The result of Theorem 8 shows that all problems in PSPACE can be solved
by constant-space P systems with active membranes. This rises some natural
questions about the definition of space complexity for P systems adopted until
now [10]. Does counting each non-input object and each membrane as unitary
space really capture an intuitive notion of the amount of space used by a P
system during a computation? Is it fair to allow a polynomial padding of the
input string when encoding it as a multiset?

In [4], it was highlighted that the constant number of non-input objects
appearing in each configuration of the simulation actually encode ©(logn) bits
of information, since they are taken from an alphabet I' of polynomial size.
According to the original definition of space recalled in Section 2, each of these
objects would only require unitary space, whereas the binary representation of
the subscript ¢ requires logp(n) = ©(logn) bits. It may be argued that this
amount of information needs a proportional amount of physical storage space.
Similarly, each membrane label contains ©(log|A|) bits of information, which
must also have a physical counterpart.

Space complexity of P Systems with Active Membranes: a Survey 13

The information stored in the positions of the objects within the membrane
structure is also not taken into account by Definition 4. However, the information
on the location of the objects is part of the system and it is not stored elsewhere,
exactly as the information on the location of the tape head in a Turing machine,
which is not counted as space.

Due to the above considerations, in [4] an alternative definition of space was
proposed:

Definition 5. Let C be a configuration of a P system II. The size |C| of C is de-
fined as the number of membranes in the current membrane structure multiplied
by log |A|, plus the total number of objects from I' (i.e, the non-input objects)
they contain multiplied by log |I|.

Adopting this stricter definition does not significantly change space com-
plexity results involving polynomial or larger upper bounds, i.e., the complex-
ity classes PMICSPACE 4ri, EXPMCSPACE 4, and larger ones remain un-
changed.

As for padding the input string, one may argue that this operation provides
the P system with some “free” storage, since input objects are not counted by Def-
inition 4. The proof of Theorem 8 exploits the ability to encode an input string of
length n as a polynomially larger multiset in a substantial way, as allowed by the
most common uniformity conditions, including P and LOGSPACE-uniformity,
but also weaker ones such as AC? or DLOGTIME-uniformity.

The simulation described in the previous section would require logarithmic
space according to Definition 5. Also the space bounds of the simulation of
polynomial-space Turing machines by means of logarithmic-space P systems with
active membranes described in Section 4 also increase to ©(lognloglogn), since
in that case each configuration of the P systems contains ©(logn) membranes
with distinct labels and O(1) non-input objects. Both simulations would be
limited to linear-space Turing machines, rather than polynomial-space ones, if
input padding were disallowed.

7 Final Remarks

In this paper we survey recent results concerning complexity of P systems with
active membranes. The results showed that such P systems can be simulated
by Turing machines with only a polynomial increase in space requirements and,
moreover, that arbitrary single-tape Turing machines can be simulated by uni-
form families of P systems with active membranes with a cubic slowdown and
quadratic space overhead. This leads to prove equalities among space complexity
classes for P systems and Turing machines (as long as the sets of space bounds
satisfies some reasonable properties). In particular, complexity classes defined
in terms of polynomial, exponential, double exponential, ..., n-fold exponential
space coincide for the two kinds of device.

It has also been shown that the class PSPACE can also be characterized
by P systems with active membranes using logarithmic space or even constant

14 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

amount of space. In view of the last result, a new definition of space for P systems
has been proposed, that also take into account the number of bits necessary to
encode the non-input objects and the labels of the membranes. While the new
definition does not change any result involving an amount of space which is
polynomial or larger, it changes the result for sublinear space. In particular,
according to the new definition the simulation used to prove that constant space
P systems with active membranes characterize PSPACE would now require
logarithmic space.

References

1. A. Alhazov, A. Leporati, G. Mauri, A.E. Porreca, C. Zandron, Space complexity
equivalence of P systems with active membranes and Turing machines, Theoretical
Computer Science, 529, 2014, 69-81.

2. E. Csuhaj-Varju, M. Oswald, Gy. Vaszil, P automata, Handbook of Membrane Com-
puting. Gh. Paun et al. (Eds.), Oxford University Press, 2010, 144-167.

3. A. Leporati, G. Mauri, A.E. Porreca, C. Zandron, A Gap in the space hierarchy of
P systems with active membranes, Journal of Automata, Languages and Combina-
torics 19 (2014) 1-4, 173-184.

4. A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron, Constant—space P
systems with Active Membranes, Fundamenta Informaticae, to appear.

5. D.A. Mix Barrington, N. Immerman, H. Straubing, On uniformity within NC*.
Journal of Computer and System Sciences 41(3), 1990, 274-306.

6. N. Murphy, D. Woods, The computational power of membrane systems under tight
uniformity conditions, Natural Computing 10(1), 2011, 613-632.

7. Christos H. Papadimitriou, Computational Complexity, Addison-Wesley, 1993.

8. Gh. Paun, P systems with active membranes: Attacking NP-complete problems, J.
of Automata, Languages and Combinatorics 6(1), 2001, 75-90.

9. Gh. Paun, G. Rozenberg and A. Salomaa (Eds.), Handbook of Membrane Comput-
ing, Oxford University Press, 2010.

10. A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, Introducing a space complexity
measure for P systems, Int. J. of Comp., Comm. & Control 4(3), 2009, 301-310.
11. A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, P Systems with Active Mem-

branes: Trading Time for Space, Natural Computing 10(1), 2011, 167-182.

12. A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, P systems with active membranes
working in polynomial space, Int. J. Found. Comp. Sc., 22(1), 2011, 65-73.

13. A.E. Porreca, G. Mauri, C. Zandron, Complexity classes for membrane systems,
RAIRO-Theor. Inform. and Applic. 40(2), 2006, 141-162.

14. A.E. Porreca, C. Zandron, A. Leporati, G. Mauri, Sublinear Space P systems with
Active Membranes, Membrane Computing: 13th International Conference, LNCS,
CMC 2012, Springer, Berlin, 2013, 342-357.

