
Unconventional Complexity Classes
in Unconventional Computing

Extended Abstract

Antonio E. Porreca[0000−0003−1544−028X]

Aix-Marseille Université, CNRS, LIS, Marseille, France
antonio.porreca@lis-lab.fr

Abstract. Many unconventional computing models, including some that
appear to be quite different from traditional ones such as Turing machines,
happen to characterise either the complexity class P or PSPACE when
working in deterministic polynomial time (and in the maximally parallel
way, where this applies). We discuss variants of cellular automata and
membrane systems that escape this dichotomy and characterise inter-
mediate complexity classes, usually defined in terms of Turing machines
with oracles, as well as some possible reasons why this happens.

1 Introduction

Unconventional computing models, particularly biologically inspired ones, ap-
peared very early in the history of modern computer science, notably with cellular
automata. Once new a model has been introduced, it is natural to analyse whether
it is universal, in the sense that it can compute anything a Turing machine can;
this happens quite often, since very little is actually needed in order to achieve
universality (for instance, it usually suffices to simulate incrementation and con-
ditional jump instructions [10]). These models are thus unconventional in terms
of mechanism rather than in terms of computing power.

Nonetheless, a “conventional” computing power can be achieved with uncon-
ventional efficiency. This is where computational complexity questions become
relevant. Some unconventional models, mostly sequential ones or parallel ones
with a polynomial number of “processors”, can simulate and be simulated by
deterministic Turing machines with a polynomial-time overhead, and thus in
particular they characterise the complexity class P when working in polynomial
time. Emde Boas refers to those models as the first machine class [3]. This in-
cludes random-access machines with constant-time addition and subtraction [14]
and, as detailed below, traditional cellular automata.

Other models, with less restrictions on parallelism or with more powerful
elementary operations, characterise in polynomial time what deterministic Turing
machines compute in polynomial space. This is called the second machine class [3]
and includes parallel models such as tree-shaped hierarchies of processes generated
by the fork system call under Unix (and running on an unbounded number
of processors), as well as sequential ones such as random-access machines with



constant-time multiplication and division [2], and nondeterministic one such as
alternating Turing machines [14].

Not all unconventional (or conventional, for that matter) computing models
fall either into the first or the second machine class, but it happens often enough
that one might be interested in investigating what features cause this behaviour,
and what can be added, for instance, to a sequential model of the first class in order
to solve more problems efficiently without always obtaining PSPACE1. One way
to do that is to introduce randomisation [14, Chapter 11] or quantum computing
features [19], but we will explicitly exclude these from the present discussion,
both because they are outside the area of expertise of the author, and because
they require an alternative definition of output which takes “wrong guesses” into
account. Rather, let us focus on deterministic models and consider two examples,
from the theory of cellular automata and from membrane computing.

2 Cellular Automata

One-dimensional cellular automata can simulate Turing machines with a poly-
nomial-time slowdown, trivially by having a large enough set of states (or,
equivalently, neighbourhood size) and storing the symbols, state, and tape head
position of the Turing machine being simulated as states of the automaton2 [17].
This is, however, a strictly sequential simulation carried out by a parallel model,
and one might wonder whether cellular automata can be significantly more efficient
when that parallelism is actually exploited. The answer is, however, readily seen
to be negative: for any integer d, a d-dimensional cellular automata starting
from a finite (non-quiescent) initial configuration of diameter 2r can always be
simulated sequentially in polynomial time with respect to r. This happen because
the volume of the smallest sphere containing the non-quiescent portion of the
configuration is polynomial with respect to the radius, specifically O(rd), and
the radius can only increase by one at each computation step of the automaton.
Standard d-dimensional cellular automata are thus first class machines, despite
their parallelism.

In order to solve harder problems we must then switch to cellular automata
over non-hypercubic grids. The classic example from the literature is given
by hyperbolic cellular automata [8]. Switching from Euclidean to hyperbolic
geometry allows us to construct regular pentagonal grids, and the number of
cells contained in a sphere of radius r is not polynomial anymore, but rather
exponential. This allows many more cells to be active in parallel at any given time.
More specifically, an infinite binary tree, whose branches represent communication
channels, can be embedded in the pentagonal grid and exploited in order to
solve PSPACE-complete problems in polynomial time. For instance, consider
the quantified 3SAT problem for a formula of n variables: the idea is to explore
1 Of course, here we work under the hypothesis that P ̸= PSPACE and that the

intermediate complexity classes mentioned later are also distinct from both of them.
2 With a more sophisticated reasoning, one can prove that the rule 110 automaton can

also efficiently simulate Turing machines [13].



the 2n possible truth assignments along 2n distinct paths in the tree, evaluating
the formula under each assignment separately, then propagating the results back
towards the root; during this backpropagation phase, the truth values in two
adjacent paths are combined by conjunction or disjunction, depending on the
alternation of quantifiers in the formula, and the final result is obtained at the
root. This is essentially a simulation of the computation tree of an alternating
Turing machine. As a consequence, a hyperbolic computation space brings cellular
automata to the second machine class.

An interesting variant of cellular automata, introduced by Modanese and
Worsch [12], falls between P and PSPACE in polynomial time. These are shrink-
ing and expanding cellular automata, where a cell can not only update its state
based on its neighbourhood, but also delete itself (shrinking); furthermore, new
cells can be created between two existing ones (expanding). While the full model
once again characterises PSPACE by simulating the computation trees of alter-
nating Turing machines [12], disallowing shrinking decreases the efficiency of the
model. Essentially, in this model the information can only be propagated towards
the leaf of the simulated computation tree, but since the distance between leaves
become exponential in time, the information cannot be propagated back towards
the root, and an unanimity acceptance condition is used instead [11]. As a result,
expanding cellular automata characterise in polynomial time the class of problems
truth-table reducible to NP problems. This is conjecturally weaker than PSPACE,
but large enough to include both NP and coNP and, as such, fits our intuition
of unconventional complexity class.

3 Membrane Computing

Membrane systems [15], also called P systems, are models inspired by the in-
ternal structure and functioning of biological cells. In their basic models, they
consist of a tree-shaped hierarchy of nested membranes containing a multiset
of molecules. The systems evolves inside each membrane by applying multiset-
rewriting rules inspired by biochemical reactions; furthermore, membranes are
selectively permeable, and can send molecules to, or receive them from adjacent
regions. Finally, membranes can divide by fission, and their content is duplicated
(with the exception of the triggering molecules, which differentiates the resulting
membranes). These computation rules are applied, by default, in the maximally
parallel way : if a molecule or membrane can be subject to at least one rule, then
it must do so3.

When no membrane division occurs, but only chemical reactions, the resulting
systems belong to first machine class [20,1]. However, when membranes can divide

3 Strictly speaking, if multiple rules are applicable, then one is chosen nondeterministi-
cally, but a confluence condition is usually imposed when solving decision problems
(all computations must give the same result in the end). In all interesting cases known
to the author, the systems can actually be made deterministic, although a general
proof of this statement is still missing.



at arbitrary nesting depths, thus duplicating whole nested membrane substruc-
tures, exponential-size tree-shaped structures can be created in polynomial time,
which can be exploited in order to simulate alternating Turing machines and
prove, once again, an exact characterisation of PSPACE in polynomial time [18].

By restricting communication in only one direction (from the inside to the
outside, i.e., membranes can send out molecules but never absorb them), similarly
to the restriction on expanding cellular automata, the efficiency of membrane
systems decreases and we obtain a characterisation of PNP in polynomial time [6].
This is the class of problems solved in polynomial time by deterministic Turing
machines with access to an oracle for an NP problem; this can also be viewed
as the class of problems Cook-reducible to NP, which highlights the similarity
with expanding cellular automata even more. Another unconventional complexity
class!

A different constraint we can impose is not related to the direction of com-
munication but rather on the depth of the tree we can build. If communication
is bidirectional, but the membrane systems are required to be shallow (only one
level of nested membranes) or, more generally, if membranes can only divide if
they do not contain further membranes, then we obtain a characterisation [4] of
the complexity class P#P; this is the class of problems solvable in polynomial
time with access to an oracle for a counting problem [14], or equivalently those
Cook-reducible to #P.

4 Conclusions

The examples we described highlight how geometric (Euclidean vs hyperbolic
space) and communication (monodirectional vs bidirectional) constraints can
affect the efficiency of parallel unconventional computing models. Can these
consideration be abstracted and formalised in a more general framework, or at
least generalised to other communication topologies or geometries and for other
computation models?

Another interesting aspect of the results on expanding cellular automata and
membrane systems is that they provide a characterisation of complexity classes
such as PNP and P#P in terms of a concrete, deterministic model of computation;
by this, we do not necessarily mean a realistic model (whenever exponentially
many processors are needed, the shape of the approximately Euclidean space we
live in is always a bottleneck [5]) but a deterministic model whose instantaneous
configurations can be described in full detail, quite unlike the original definition
of these complexity classes in terms of black-box oracles. Can other “abstract”
complexity classes like these be captured by more concrete computing models?

Acknowledgements

This work was partially supported by the EU project MSCA-SE-101131549
“ACANCOS”.



References

1. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: Space complexity
equivalence of P systems with active membranes and Turing machines. Theoretical
Computer Science 529, 69–81 (2014), https://doi.org/10.1016/j.tcs.2013.11.
015

2. Bertoni, A., Mauri, G., Sabadini, N.: A characterization of the class of functions
computable in polynomial time on random access machines. In: STOC ’81 Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing. pp.
168–176 (1981), https://doi.org/10.1145/800076.802470

3. van Emde Boas, P.: Machine models and simulations. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science. Volume A: Algorithms and Complexity,
pp. 1–66. Elsevier (1990)

4. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating
elementary active membranes, with an application to the P conjecture. In: Gheorghe,
M., Rozenberg, G., Sosík, P., Zandron, C. (eds.) Membrane Computing, 15th
International Conference, CMC 2014. Lecture Notes in Computer Science, vol. 8961,
pp. 284–299. Springer (2014), https://doi.org/10.1007/978-3-319-14370-5_18

5. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Tissue P systems
in the Euclidean space. In: Gheorghe, M., Petre, I., Pérez-Jiménez, M.J., Rozenberg,
G., Salomaa, A. (eds.) Multidisciplinary Creativity: Homage to Gheorghe Păun on
His 65th Birthday, pp. 118–128. Editura Spandugino (2015)

6. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Monodirectional
P systems. Natural Computing 15(4), 551–564 (2016), https://doi.org/10.1007/
s11047-016-9565-2

7. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Characterising the
complexity of tissue P systems with fission rules. Journal of Computer and System
Sciences 90, 115–128 (2017), https://doi.org/10.1016/j.jcss.2017.06.008

8. Margenstern, M.: Cellular automata in hyperbolic spaces. In: Adamatzky, A. (ed.)
Advances in Unconventional Computing, pp. 343–389. Springer (2017), https:
//doi.org/10.1007/978-3-319-33924-5_14

9. Martín-Vide, C., Păun, G., Pazos, J., Rodríguez-Patón, A.: Tissue P systems.
Theoretical Computer Science 296(2), 295–326 (2003), https://doi.org/10.1016/
S0304-3975(02)00659-X

10. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
11. Modanese, A.: Complexity-theoretic aspects of expanding cellular automata. Natural

Computing 21, 53–65 (2022), https://doi.org/10.1007/s11047-020-09814-2
12. Modanese, A., Worsch, T.: Shrinking and expanding cellular automata. In: Cook,

M., Neary, T. (eds.) Cellular Automata and Discrete Complex Systems, 22nd
IFIP WG 1.5 International Workshop, AUTOMATA 2016. Lecture Notes in Com-
puter Science, vol. 9664, pp. 159–169. Springer (2016), https://doi.org/10.1007/
978-3-319-39300-1_13

13. Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) Automata, Languages and Programming,
33rd International Colloquium, ICALP 2006. pp. 132–143. Springer (2006), https:
//doi.org/10.1007/11786986_13

14. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
15. Păun, G.: Computing with membranes. Journal of Computer and System Sciences

61(1), 108–143 (2000), https://doi.org/10.1006/jcss.1999.1693



16. Păun, G.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

17. Smith, A.R.: Real-time language recognition by one-dimensional cellular automata.
Journal of Computer and System Sciences 6(3), 233–253 (1972), https://doi.org/
10.1016/S0022-0000(72)80004-7

18. Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: A
characterization of PSPACE. Journal of Computer and System Sciences 73(1),
137–152 (2007), https://doi.org/10.1016/j.jcss.2006.10.001

19. Watrous, J.: Quantum computational complexity. In: Meyers, R.A. (ed.) Ency-
clopedia of Complexity and Systems Science, pp. 7174–7201. Springer (2009),
https://doi.org/10.1007/978-0-387-30440-3_428

20. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P sys-
tems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.)
Unconventional Models of Computation, UMC’2K, Proceedings of the Second In-
ternational Conference, pp. 289–301. Springer (2001), https://doi.org/10.1007/
978-1-4471-0313-4_21


