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Abstract-This paper proposes debug patterns combined with an
intuitive flow to accelerate and simplify the debugging of SystemC
designs. A debug pattern provides a formalized procedure to fix a
defect (also colloquial bug) that is notified by an always recurring
failure symptom. It helps to focus the user’s attention on a higher
level of abstraction joined with minimal learning effort. The pre-
sented methodology is based upon a non-intrusive high-level Sys-
temC debugging environment and the GNU debugger GDB. The
usability of each pattern is demonstrated by practical examples.

I. INTRODUCTION

Innovative System-on-Chip (SoC) designs require new
approaches to address the associated challenges such as an
increasing design complexity, or the codesign of hard- and
software. System level design methodologies are a promising
approach where many design languages and environments
have been proposed within recent years, e.g. [8], [9]. SystemC
[2] is one of the most popular system level design languages
enabling concepts such as object-orientation, high-level mod-
elling, and concurrency. Unfortunately, language features such
as multithreading and event-based communication increase the
program complexity and introduce nondeterminism in the sys-
tem behavior. Thus, debugging a SystemC design can be chal-
lenging, in particular due to the possible occurrence of
deadlocks or race conditions. Studies revealed that today often
more than 50% of design time is spent verifying a complex
design (meaning to detect, understand, locate, and correct
errors [7]). To shorten this verification gap, we developed an
approach to debug a SystemC design at a higher level of
abstraction working with signals, ports, events, and processes
[4]. Thus, the developer gets quick and concise insight into the
static structure and dynamic behavior of the design without the
burden of gaining a detailed knowledge of the SystemC simu-
lation kernel or operating only at the comparatively low-level
of standard C++ debuggers.

In this paper, we take a step forward and propose a superim-
posed methodology to further accelerate and simplify the
debugging process. We gathered typical SystemC defects
occurring in daily work at AMD to provide a catalog of so
called debug patterns which are based upon our high-level
debugging solution. A debug pattern is a guidance to fix a
defect of an already known defect class. Thus, common
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sources of errors can be systematically excluded.

This paper is organized as follows: Section II discusses
other approaches. Section III describes the different debug lev-
els and propose a flow to apply our debug patterns. Section IV
introduces the high-level debugging environment and how it
supports the user at the different debug levels. In Section V we
introduce the debug patterns found and exemplarily describe
two of them in more detail. Section VI concludes the paper.

II. RELATED WORK

Several existing approaches also propose patterns to auto-
mate debugging. The debugging environment MAD [11] is
based on event graphs which are constructed from recorded
event traces of parallel program runs. A subsequent graph anal-
ysis automatically detects errors and anomalies. MAD allows
specifying of communication patterns which define the
expected behavior of the program. These patterns are checked
against the event graph and the results help the user focus his
attention on the most critical places in the graph. A quite simi-
lar approach of pattern-oriented debugging was proposed by
the TAU programming analysis environment [6] which uses
the event-based debugger Ariadne [5]. Ariadne matches user-
specified models of intended program behavior against the
actual program behavior captured in event traces.

MAD and TAU environments focus on the interprocess
communication of massively parallel programs operating on
monitored traces where the entire debugging process is done in
a post-processing step. In contrast, we do not monitor and eval-
uate traces but provide debugging support directly at run-time
especially tailored to SystemC needs. While both approaches
rely upon proprietary debug tools, our solution is implemented
on top of the Open Source debugger GDB [1].

In [12], the importance of having knowledge of likely
defects is underlined. The authors introduce the notion of a ste-
reotyped bug which describes the fact that the same couple
"symptom(s) + bug" has appeared several times. A symptom
can be an I/O discrepancy, a trace, or a program state. We uti-
lize similar symptoms to select a proper debug pattern. The
paper mentions different tools that perform a recognition of
stereotyped bugs by defining appropriate debug procedures.
But most of these tools are aimed at logic programming sys-
tems where the applied techniques cannot be adopted directly
to an object-oriented programming language like SystemC.

The authors in [13] present some loose hints and generally



accepted approaches to find defects faster such as using the
divide-and-conquer approach to isolate the point of failure, or
evaluating logged trace data. Instead, our patterns are pre-
sented in a formalized way especially aiming at the SystemC
debugging needs. Our environment guides the user through the
debug process and supports him by partially suggesting appli-
cable patterns.

III. DEBUGGING AT DIFFERENT LEVELS

A. Debug levels

Due to the introduction of debug patterns and our concept of
a high-level SystemC debugging extension we propose differ-
ent levels and dedicated methods to locate and correct defects
in SystemC designs (Fig. 1).

Strategy level
Debug patterns

provide common procedures for already
known debug problems

SystemC level
High-level debugging extension

exercise high-level breakpoints, access
static and dynamic design information

C++ level
Standard C++ debugger

Increasing level of abstraction

breakpoints, call stack, stopping,
stepping, examining data and sources

Fig. 1. Debugging at different levels

C++ level. At this level standard C++ debuggers are applied
to analyze C++ functions and variables during simulation run.
Unfortunately, they do not understand specific SystemC con-
structs. Instead, a C++ debugger offers different capabilities to
investigate low-level program details which usually include
setting breakpoints, examining the call stack or data, and step-
ping or stopping the program execution.

SystemC level. At this level a high-level debugging envi-
ronment [4] enables the user to debug SystemC programs at
system level. It operates at the level of signals, events, pro-
cesses, and modules where the environment offers high-level
breakpoints and allows to access static and dynamic simulation
information.

Strategy level. At the highest level several debug patterns
guide the debugging process. That means, when a familiar fail-
ure symptom occurs (e.g. the program seems to run forever, or
outputs unexpected and wrong values), the user gets some help
in form of a guide on how to locate a specific defect and how to
fix it.

B. Proposed debug flow

Based on the debug levels of Section A we propose a three-
level strategy to find and correct defects in a SystemC design
(Fig. 2). A defect causes the simulation to behave in an unex-

Simulate design

failure symptom
occurred

Analyze symptom

debugging
environment
suggests pattern

Select (alternative)
debug pattern

Debug
pattern exists?

yes

Bug found?
yes

Fix bug and validate correctness

Debug at
SystemC level

Bug found?
no

Debug at C++ level

A

_{

Fig. 2. Proposed debug flow

pected erroneous way, which is represented by several error
cases:

* program crashes,

+ abnormal long running simulations,

e waveform mismatches,

» unexpected debug messages, or

+ self-detected errors through checkers or assertions.

As in [12] we use such failure symptoms to guide the debug-
ging process. After a detailed analysis of the occurred symp-
tom, the user looks for a suitable debug strategy. Here, the
debugging environment can partially suggest matching debug
patterns or automate some actions in order to find the probable
cause of an observed symptom more quickly. Otherwise the
user manually chooses a particular debug pattern. Next, the
pattern guides the user to locate the point of failure by applying
a specific sequence of high-level SystemC debugging com-
mands. To exactly isolate the point of failure, basic C++
debugger commands can be applied as well. If the defect is
successfully identified, the design is fixed and the simulation is
restarted. Otherwise another matching debug pattern is chosen.
If no known debug pattern is left, the user continues to work at
SystemC and C++ level, respectively.

The usage of debug patterns and high-level debugging com-
mands provides comprehensive debugging support. It helps to
focus the user’s attention on a higher level of abstraction
(while ignoring irrelevant design parts) with

* a partially automated process suggesting applicable debug
patterns,



+ a formalized procedure to fix already known defects using
flow charts combined with a scenario-based guidance, and

* an improved debugger usability, particularly becoming
familiar with the high-level SystemC debugging features.

Thus, bug fixing is simplified and accelerated. Especially
the novice user can exclude and fix many defects before he has
to consult an expert. A further advantage is the intuitive par-
tially automated debugging flow resulting in a purposeful pro-
ceeding. The user can focus on the underlying cause of a
failure instead concentrating on the correct debugger usage or
pattern choice. The main disadvantage of the pattern catalog is
that it only comprises debug patterns for always recurring
SystemC specific failure symptoms most probably caused by
the same defect or class of defects. Consequently each prob-
lem, in particular the rare and tricky failures, cannot be simply
solved using a pattern. Sometimes it only marks the starting
point for an advanced debug session.

IV. HIGH-LEVEL DEBUGGING ENVIRONMENT

Each debug level (Section III) is supported by specific parts
of an integrated and self contained high-level debugging envi-
ronment.

A. C++ level

At C++ level the Open Source GNU debugger GDB [1] is
applied. It provides various features for debugging a SystemC
design at C++ level, for example stopping and continuing the
simulation, examining source files, local program variables,
the memory, or the actual program stack.

B.  SystemC level

Studies at AMD indicated several recurring actions to debug
a SystemC design. Each action describes steps in the debugger
to acquire needed information at system level. Based upon
characteristic debug actions, high-level commands were
defined, implemented, and integrated in a high-level debug-
ging environment based on GDB [4]. The environment distin-
guishes two command types: examination and controlling
commands to retrieve static or dynamic simulation informa-
tion, and to provide high-level breakpoints to reach a point of
interest at system level very quickly.

The environment’s most important quality feature is the
non-intrusive extension of the SystemC kernel v2.0.1 and
GDB. To support high-level debugging neither the kernel nor
the debugger sources have to be patched. Furthermore, legacy
designs or (third-party) intellectual property (IP) blocks have
not to be modified.

C. Strategy level

The high-level debugging environment supports the applica-
tion of debug patterns through various features. Goals are a
simplified usage and a widely automated debugging process in
order to relieve the user from standard tasks. This section
describes two features already available.

Scenario-based guidance. Each pattern can be referenced
by a debugging command using the name specified in the pat-
tern catalog (Section V). It initiates a new pattern execution.
The user is guided through the debug procedure by calling the
command nps (next-pattern-step). The following example
illustrates this guidance in the case of the CONCURRENCY
pattern:

(gdb) dp_concurrency

*** CONCURRENCY debug pattern activated

*** find the signal the race problem occurs on
(gdb) nps

*** retrieve the corresponding event

*** ygsing lse_rx "<signal name>"

(gdb) lse_rx "top.rdy_ 1"

---1lse_rx: list all events matching the regex ---

top.rdy_1.m_negedge_event 0x8097858
top.rdy_1l.m_posedge_event 0x8097388
top.rdy_1l.m_value_changed_event 0x8094360

(gdb) nps

*** choose right event and trace its triggering
*** yging dp_sense "<event name>"

(gdb) dp_sense "top.rdy_l.m_negedge_event"

*** restart simulation using <run>

(gdb) run

The scenario-based guidance significantly enhances the
usability of patterns and helps to efficiently apply SystemC
high-level debugging features with minimal learning effort.

Partially automated process. There are situations where
the debugging environment proposes multiple applicable
debug patterns using different information sources:

+ areached program/debugger state,
 aperformed user action, or

* a logged and processed history of released events or trig-
gered processes.

Aborting the current simulation by pressing Ctrl-C while the
debugger seems to hang in one of its processes is a typical
example. Here, the environment suggests to use one of the
LOCK patterns to find the defect causing the process to hang.

V. DEBUG PATTERNS

A. Pattern description
Currently, the catalog consists of seven debug patterns:

*« CONCURRENCY. This pattern helps to identify signal
races caused by nondeterministic process execution.

+ TIMELOCK. The TIMELOCK pattern helps the user to
find defects resulting from infinitely looping processes that
cause simulation freezes.

* DEADLOCK. When two or more processes are each wait-
ing for another to release a resource, this pattern proposes a
procedure to find the deadlock problem.

* LIVELOCK. This pattern guides the user to handle live-
lock problems where two or more processes are working
together, that means constantly changing their states, but



never coming to an end.

* OVERFLOW. A thread stack overflow causes the simula-
tion to dump a core. The OVERFLOW pattern helps to
identify all threads such an overflow has occurred on.

« LOSTEVENT. The LOSTEVENT pattern provides a
debug procedure to detect events that were missed because
of multiple overwriting notify calls.

« PERFORMANCE. An IP integration yields to an unac-
ceptably slowed simulation. This pattern suggests a proce-
dure to determine the bottleneck probably caused by often
released events or multiple activated processes.

Each pattern guides the user step-by-step to identify a defect
possibly causing the observed failure symptom. According to
[3], we describe each debug pattern in the following common
format:

Pattern name

A short and intuitive name for the debug pattern. The second
name put in parentheses is used to reference the pattern in the
debugging environment.

Motivation
The motivation section consists of a short description why the
pattern exists.

Symptoms
This section describes a specific symptom which is typical for
the defect the pattern is aimed at.

Assumption

The assumption specifies the problem or conditions (i.e. a spe-
cific architecture or object composition in the design) that
probably causes the observed symptom.

Participants

Here, all participating high-level debugging commands and
their specific responsibilities in the pattern context are
described.

Debug procedure

The debug procedure summarizes the steps the user has to fol-
low to pinpoint the defect. Here, well-known flowcharts for-
mally document the required procedure. Each pattern usage is
directly supported by the debugging environment.

Example
This section sketches a typical example of how the pattern can
help to find and to correct a defect.

Related patterns

Here, other patterns are itemized that match the observed
symptom and also could be tried to locate the defect as pro-
posed in the debug flow.

B. Pattern catalog
Due to space limitations of this paper we exemplary discuss
the CONCURRENCY and the TIMELOCK pattern only.

CONCURRENCY (dp_concurrency)

Motivation

A typical SystemC design usually consists of different commu-
nicating processes that are running in parallel. The execution
order of processes is not determined during a simulation delta
cycle. This introduces nondeterminism into the program flow
which may lead to race conditions.

Symptom
Simulation runs with the same inputs sometimes produce dif-
ferent results (for a specific signal or bus).

Assumption
There are at least two processes concurrently driving data onto
that signal or bus which showed different results.

Participants

dp_sense  return all processes triggered by the same event
Ipt review the process sensitivity list

Ist explore the source code of a process

Ise_rx get the correct hierarchical event name

Debug procedure

Signal race
occured

Retrieve signal event
name using
Ise_rx <signal name>

hierarchical
event name e

dp_sense <e> and
restart simulation

no ! )
Simulation

stops

yes
list of sensitive
processes

no more
processes

process

Review correctness of
process sensitivity list —
with Ipt

Use Ist to check for
L correct waiting on the
observed event

Fig. 3. CONCURRENCY pattern

Example
Problem. Fig. 4 sketches a situation where the two thread



processes top.bfm._fsm_update and top.bfm._fsm_rst write
to the same signal top.ctrl_w. Both threads are activated by the
ready signal top.rdy_l. Since the SystemC simulation kernel
does not define a deterministic order of thread activations
inside a delta cycle, a race condition can occur on signal
top.ctrl_w.

sc_module bfm

thread
_fsm_update

thread
_fsm_rst

top.ctri_w top.rdy_|

Fig. 4. Exemplary race condition

Debug procedure. Assuming that we already know the cor-
responding hierarchical event name of the signal causing the
problem, we call dp_sense with it and restart the simulation:

(gdb) dp_sense "top.rdy_l.m_negedge_event"
*** CONCURRENCY debug pattern activated
*** regtart simulation using <run>

(gdb) run

When the simulation stops dp_sense reports two thread pro-
cesses sensitive to the observed event:

*** dp_sense ’'top.rdy_1l.m_negedge_event’

*** CONCURRENCY between sensitive processes
top.bfm._fsm_update <static>
top.bfm._fsm_rst <static>

** check correct static sensitivity using lpt

** check correct dynamic sensitiviy using lst

(gdb)

Knowing that thread _fsm_update is correctly activated by
the ready signal, we investigate the sensitivity list of the stati-
cally triggered thread _fsm_rst using Ipt:

(gdb) 1lpt "top.bfm._fsm_rst"

process top.bfm._fsm rst sensitive to
<static> top.fsm_rst_1l.m_negedge_event
<static> top.rdy_l.m_negedge_event
<dynamic> top.write_tx.m_value_changed

We figure out that the sensitivity list falsely includes the
ready signal which turns out to be an environment defect.

Related patterns
LIVELOCK

TIMELOCK (dp_timelock)

Motivation

Event-based communication between concurrent processes can
often lead to a lock condition where a process is caught in an
infinite loop and thus never waits for an event.

Symptom
The simulation infinitely loops or at least appears to do so.
Additionally, the simulation time does not proceed.

Assumption
Because of design specification knowledge the user suspects
one or more processes causing the lock.

Participants
dp_timelock look for hanging processes manually
Ist explore the source code of a process

dstep proceed simulation step-wise

Debug procedure

Hanging
simulation

Abort simulation
with Ctrl-C

!

Environment
automatically checks
for a hanging process

process ID
reported

Use Ist to analyze code
lines the process is
currently pending

Call dp_timelock to
manually check for a
hanging process

process ID
reported

wait-stmts no_

found

yes

Use Ist to inspect
code lines of pending
process, check for

Review the
specification to check
prevents reaching whether missing faults, and proceed

wait-statements wait-stmts are correct simulation step-wise

I l [

Examine the current
control flow why it

End <

Fig. 5. TIMELOCK pattern

Example

Problem. Fig. 6 illustrates a system where a device
(top.i_device) communicates with a host (top.i_host) over a
bus. Device and host exchange data using two signal lines,
top.req_data and top.resp_data. Available data packages are
indicated by two ready signals top.req_ready and
top.resp_ready, respectively. If the user models the signal
interaction in a faulty way, the simulation can lock.

Debug procedure. The user aborts the simulation by press-
ing Ctrl-C. Since the debugger does not report any process ID
we manually call dp_timelock to check for a hanging process:



sc_module device < req_ready sc_module host
req_data
SC_METHOD < SC_METHOD
_Ix_tx resp_ready _rx_tx
resp_data

Fig. 6. Exemplary TIMELOCK pattern

Program received signal SIGINT, Interrupt.

(gdb) dp_timelock

*** following process seems to hang
top.i_device._rx_tx

*** TIMELOCK debug pattern activated

*** yge lst to examine process source code

We investigate the source code of the hanging process to
find the root cause of the defect.

(gdb) 1lst "top.i_device._rx_tx"
--1st: list active source of [c]thread/method---
process top.i_device._rx_tx is currently
at /home/hld/project/tb/src/device.cpp:254
in device::_rx_tx

254 void device::_rx_tx() {

255 process_req_data(reqg data.read()) ;
256 resp_data.write(gen_resp_data());

257 resp_ready.write(~resp_ready.read()) ;
258 }i

At first, we cannot detect any failure. Thus, we proceed the
simulation in step-mode using multiple dstep commands:

(gdb) dstep

*** getting breakpoint(s) at next delta cycle

*** runnable process(es) at delta cycle 3563, @14 ns
break @ 'host::_rx tx()’ of "top.i_host._rx_tx’

*** type <continue> to visit breakpoints

(gdb) cont

After some more dstep commands we see that the processes
top.i_host._rx_tx and top.i_device._rx_tx become mutually
active, invoking each other in the same delta cycle. A code
review of the affected modules shows a lack of time-consum-
ing statements within these processes.

Related patterns
DEADLOCK, LIVELOCK

VI. CONCLUSION

Debugging SystemC designs using debug patterns has sev-
eral advantages. First, the tool usability is improved. The user
gets a formalized instruction to efficiently and easily use the
debugger, particularly the high-level SystemC debugging fea-
ture, to find and to correct errors of already known categories.
Thus, especially the novice user can exclude and fix many
defects without the need to consult an expert. Second, the tool
environment partially automates the debugging process by sug-
gesting applicable patterns. As a consequence, the user can
focus on the underlying cause of failure instead of spending too
much attention on the correct tool usage. Third, the scenario-

based pattern guidance provides a comprehensive debugging
support that reduces the learning effort and can be used as a
good starting point to learn to debug more complex problems.
Finally, the experienced user who does not need pattern guid-
ance anymore has the benefit of the pattern tool support. Here,
the partially automated detection of erroneous situations can
accelerate the debug process. The usability of debug patterns is
demonstrated by examples which are based on practical prob-
lems at AMD. To rate the efficiency of our approach Table I
compares the effort one has to invest should high-level debug-
ging (HLD) functionality be replicated with GDB commands.
Note that this is impossible for half of the functionality. For the
other half, the user has to have at least a deep understanding
and a detailed knowledge over the SystemC simulation kernel.

TABLE I
COMPARE HIGH-LEVEL COMMANDS AND GDB DEBUGGING EFFORT

#HLD #GDB Remarks on equivalent GDB functionality
cmds | cmds per
HLD cmd
6 1-9 fully automatically with canned command sequences

10 dyn./min. 4 | partly automatically with manual user intervention

15 1%} additional functionality provided by external helper

functions to retrieve, and to store needed information

Future work will improve the tool support using debug pat-
terns, i.e. through a more sophisticated automated detection of
erroneous situations. Also, it would be useful to provide addi-
tional debugging techniques, i.e. to make it easier to find the
root cause of an error where sophisticated methods like a flow-
back analysis or program slicing technique could be used.
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