
Non-Intrusive High-level

SystemC Debugging*

Frank Rogin1, Erhard Fehlauer1,
Steffen Rülke1, Sebastian Ohnewald2,

Thomas Berndt2

1 Fraunhofer IIS / EAS
01069 Dresden, Germany

{rogin,fehlauer,ruelke}@eas.iis.fraunhofer.de
2 AMD / Dresden Design Center (DDC)

01109 Dresden, Germany
sebastian.ohnewald@amd.com

thomas.berndt@amd.com

Abstract

We present a non-intrusive high-level SystemC debug-
ging approach to be used with SystemC v2.0.1 and GNU
debugger gdb. Our approach is integrated into an indus-
trial design flow and enables developers to debug designs
at high level working with signals, ports, events, and pro-
cesses. Thus, one gets quick and concise insight into
static structure and dynamic behavior of the design with-
out the burden of gaining detailed knowledge of the
underlying SystemC simulation kernel. Only minor trans-
parent changes to SystemC kernel source code are
required, whereas there is no need to touch the flow or the
designs. Practical experiences show promising results.

1 Introduction

System level design methodologies promise to address
major challenges in modern System-on-Chip (SoC)
designs. System level design embraces various abstrac-
tion levels, different components (IP, SW/HW), diverse
tools, and methodologies which further complicate design
comprehension. Studies revealed that today often more
than 50% of design time is spent to verify a complex
design that means to identify, understand, localize, and
correct errors [Che03].

Many system level languages and design environments
were proposed over the last years, e.g. [BWH03,
GZD00]. One of the most popular languages of this type
is SystemC [SCI06]. It has become a de facto standard in
industry and in the academic field. SystemC provides
concepts such as object-orientation, concurrency, and
high-level modelling.

Currently SystemC does not comprise debugging
aspects. It solely defines functions to trace module level
variables and signals. Traced values are written to file
during simulation, and analyzed with standard tools after-
wards. Standard C++ debuggers are applied to analyze a
functions local variables during simulation run. Unfortu-
nately, both debugging approaches operate on very low
abstraction level. Especially, standard C++ debuggers do
not understand specific SystemC constructs. Besides,
SystemC maps modules onto individual threads of execu-
tion which leads to non-linear execution sequences. This
makes predicting which module will be active next
extremely difficult.

As working at appropriate abstraction levels is an
essential means to understand designs and to fix bugs
quickly, several commercial and research tools have been
developed dealing with high-level SystemC debugging.
Some of the available commercial solutions and academic
prototypes are listed and assessed below.

MaxSim Developer Suite [ARM06] comprises a block
level editor, and simulation, debugging and analysis tools.
It addresses architectural analysis as well as SystemC
component debugging at low level and at transactional
level. ConvergenSC System Verifier [SVH06] targets Sys-
temC system level design and verification. It utilizes a
simulation kernel which is specially adopted to fit Sys-
temC needs. Its integrated debugger offers SystemC spe-
cific commands supporting breakpoints and SystemC
QThreads at source level. CoCentric System Studio
[Syn06] supports SystemC design, simulation and analy-
sis at system level, and partly synthesis from behavioral
and RT level. It utilizes standard C++ debuggers (e.g.
gdb), i.e. it does not handle SystemC constructs in a spe-
cific way.

[GDL03] presents a method to extract structural data
from SystemC designs automatically, and to pass it to a
commercial visualization tool using an application pro-
gramming inferface (API). The SystemC kernel has been
modified to interface to the API. [Gra06] uses SystemC
simulation results to create Message Sequence Charts to
visualize SystemC process interaction at a high level. Fil-
ters cut out parts of inter-process communication in order
to reduce information complexity. [CRA01] applies the
observer pattern [GHJ99] to connect external software to
the SystemC simulation kernel. This general method
facilitates loose coupling and requires just minimal modi-
fications of the SystemC kernel.

None of the tools mentioned above fully meets the
requirements to integrate high-level SystemC debugging
into the existing design flow at AMD, namely to
 • fit seamlessly into the flow where designers used to

apply gdb either at command line or through a GUI,

 • easily access static and run-time design information at
system level,

 • work with an existing SystemC kernel,

 • avoid changes to the design to support debugging, and

 • exercise high-level breakpoints.* This work is co-funded by the SAB project Sauber.

So we decided to implement high-level SystemC
debugging as a set of gdb user commands to avoid patch-
ing of gdb source code. C++ routines and shell scripts
collect required data from SystemC or gdb runtime,
respectively, and present the information to the designer.
Only minor transparent changes to SystemC kernel
source code were made to enhance debugging perfor-
mance.

The remainder of this paper is organized as follows.
Section 2 proposes our high-level SystemC debug meth-
odology derived from the given industrial requirements.
Section 3 introduces implementation details, and explains
modifications made to improve performance. Section 4
presents some practical experiences gained. And section 5
concludes the paper.

2 Methodology

2.1 Requirements and design issues

The most important industrial requirement was the
demand for a non-intrusive debugging facility that fits
seamlessly into the existing design flow. That means, the
solution should work with the available SystemC kernel
and avoid any changes to present designs or (third-party)
IP blocks. On the tool side, the already applied GNU
debugger gdb [GDB06] should be extended without any
need for patching its sources. Advantages are a familiar,
intuitive, and unchanged debugging flow combined with a
minimal learning curve for the user. Moreover, maintain-
ance and customization of the flow are reduced to a mini-
mum.

Debugging at system level requires various kinds of
high-level information that should be retrievable fast and
easily. According to [DSG03], one main information cat-
egory is of interest in the debugging context:

Run-time infrastructure information can be divided
into three subcategories. (i) Static simulation information
describes the structure of the architecture that means the
number of modules, the number of processes and signals,
the I/O interfaces and their connections, etc. (ii) Dynamic
simulation information includes among other things the
triggering conditions of processes, the process sensitivity
lists, and the number and types of events in the simulation
queue. (iii) Debugging callbacks (here, high-level break-
points) allow to add callbacks from the simulation envi-
ronment to break on certain events such as process
activation, value changes on signals or the ongoing simu-
lation time.

Studies at AMD indicated several debug patterns typi-
cally used in daily work. A pattern describes the steps (in
gdb) to enquire needed debugging infomation at system
level. Based upon characteristic debug patterns, high-
level commands were implemented (table 1). At top level,
commands are classified in examining and controlling
types. In a distributed development flow, many designers
are working on different components at the same design.

In case of an error, it is essential to get a fast insight into
external components and their interaction with your own
ones. For this reason, examination commands retrieve
either static or dynamic simulation information. Control-
ling commands provide high-level breakpoints to reach a
point of failure at system level very quickly. They stop
program execution at certain conditions, such as the next
activation of a specific process or all processes which are
sensitive to a given SystemC event.

2.2 General architecture

Figure 1 illustrates the layered architecture of our
high-level debugging environment. Due to the demand for
a non-intrusive extension of gdb, all high-level debugging
commands are implemented on top of it. Command
sequences are encapsulated as a unit in a user-defined
command composing the so called macro instruction set
at the user layer. A macro instruction implements a
desired debug functionality by using built-in gdb com-

Examining commands

static simulation information

lss list all signals in given hierarchy

lsm list all modules in given hierarchy

lse output all events instantiated in modules

lsio list I/O interface in given hierarchy

lsb list all bindings of specified channel

dynamic simulation information

lpt list all trigger events of all processes (w.r.t. a
specific time stamp)

lst output code line a process is currently pend-
ing

lpl show all processes listening on given event

lsp output all [c]thread and method processes

Controlling commands

ebreak break on next invocation of processes that
are sensitive to specified SystemC event

rcbreak break on next invocation of processes that
are sensitive to rising edge of given clock

fcbreak break on next invocation of processes that
are sensitive to falling edge of given clock

pstep break on next invocation of given process

dstep break on processes which will be active in
the next simulation delta cycle

tstep break on processes which will be active in
the next simulation time stamp

Table 1: High-level debugging commands

mands (e.g. examining the symbol table, or the stack),
and a set of additionally provided auxiliary functions at
the API layer. Auxiliary functions are C++ or script help-
ers that evaluate and process information supplied by the
debug data pool representing the data layer. The pool
obtains its content either from redirected output of gdb
commands (temporary log files), data structures of Sys-
temC kernel classes, or a debug database holding prepro-
cessed information collected during initialization of the
actual debug session.

2.3 Debug flow

Examining commands (table 1) mostly just process
directly accessible information provided by the debug
data pool. In contrast, a controlling command comprises a
complex interaction between data provided by the pool
and gdb. Here, execution starts usually with a redirection
of a gdb command output (e.g. backtrace) into a tem-
porary log file. The log content is evaluated by an affili-
ated auxiliary function. According to the specific
debugging task, extracted log data trigger various actions:

 • storing or updating data into the debug database,

 • caching data in temporary data structures,

 • retrieving enquired debug data from the database, or

 • generating a temporary gdb command file.

A generated temporary gdb command file is sourced
subsequently. Its execution releases either an instant
action or it creates a (temporary) breakpoint which is trig-
gered in the future. According to the specific task the loop
of writing and evaluating log files, and performing vari-
ous actions can run some further times. As a result, data
are stored in the debug database, or enquired information
is output at gdb console. In addition, oncoming debug-
ging commands and data collection actions can be pre-
pared by caching data, or setting (temporary) breakpoints.

Figure 2 sketches the exemplary execution of an imag-
inable debugging command. There, each participating
component belongs to one of the three layers.

3 Implementation

3.1 User layer

The user layer acts as the interface to the high-level
debugging capability. It comprises the macro instruction
set which is summarized in several gdb script files. Fur-
thermore, this layer contains gdb scripts to setup and to
initialize the debugging environment.

Example. The lsb command (table 1) presents the com-
mon command implementation template at the user layer.

define lsb
if ($hd_elaborated)

echo ---lsb: list all bound ports---\n
call hd::list_bound_ports($arg0)
echo -------------------------------\n

else
echo not elaborated yet\n

end
end
document lsb
list all bindings for the specified channel
end

3.2 API layer

The API layer supports the implementation of high-
level debugging commands at the user layer. It divides
into an auxiliary function API and a database API.

The auxiliary function API comprises in addition to
awk/shell scripts, particularly C++ functions which rea-
lise more sophisticated helper functionality. Scripts are
normally used to straightforward process text files. Imple-
mentations of the same functions showed a significant
performance yield of the C++ over the script based reali-
sation.

The database API supplies functionality to store data
into, and to retrieve data from the debug database. For

Figure 1: High-level debugging environment

Figure 2: Exemplary debug flow

each database type (section 3.3) a set of access functions
is provided.

Example. A call of the lsb command invokes the C++
auxiliary function hd::list_bound_ports(const char*)
which retrieves the corresponding sc_interface instance
using the SystemC method sc_simcontext::find_object().
Afterwards it calls hd::list_binding(sc_interface*). This
database API function fetches the static binding informa-
tion from the debug database and formats them accord-
ingly for output (figure 3).

3.3 Data layer

Three data sources compose the data layer supplying
either static or dynamic simulation information.

Temporary log files will be created by redirecting the
output of gdb commands (e.g. thread, backtrace) pro-
viding dynamic simulation information only accessible at
debugger side such as the assigned gdb thread ID of a
SystemC thread process.

SystemC kernel The SystemC kernel provides some
basic introspection capabilities useful for retrieving
design and run-time information. Various global registra-
tion classes allow to query static simulation information,
such as port, module, channel, or SystemC object registry.
For instance, the object hierarchy can be easily browsed
using the following loop:

sc_simcontext* c = sc_get_curr_simcontext();
sc_object* o = c->first_object();
while (o) {

if(!strcmp(o->kind(),"sc_module")) {
// module specific actions

}
else if(!strcmp(o->kind(),"sc_signal")) {

// signal specific actions
}
...
o = c->next_object();

}

The simulation control, implemented by the kernel
class sc_simcontext, supplies many valuable dynamic
simulation information such as runnable processes at the
next delta cycle, or the delta event queue.

Debug database During setup of a new debug session,
static simulation information is logged and stored into the
debug database using gdb (at least in the first implementa-
tion approach - section 3.4). Here, we utilize particularly
the ability of a debugger to fetch private class data in the
SystemC kernel which do not have public access meth-
ods. Required debug functionality (table 1) bases on four
information classes: event, binding, method and thread
process information. Each class is represented by its own
datatype holding preprocessed (e.g. process entry func-
tion name), kernel-private (e.g. process handle private to
sc_process_table), or special debug session data (e.g.
gdb thread ID). Figure 4 sketches the UML class diagram
of the debug database showing only the datatypes repre-
senting the information classes together with their
attributes.

Example. The following lsb call retrieves the binding
information for a channel of an example application ref-
erenced by its hierarchical object name
i0_count_hier.count_sig. The database API que-
ries for the proper hd_db_bindinfo instance using the
corresponding sc_interface object, fetches, and for-
mats its data.

(gdb) lsb "i0_count_hier.count_sig"
---lsb: list all bound ports---
bindings of channel i0_count_hier.count_sig
Driver:
 i0_count_hier.i_counter.outp <sc_out>
Drivee:
 i0_count_hier.i_signal2fifo.inp <sc_in>

Figure 3: lsb command at the API layer

Figure 4: Debug database class hierarchy

hd_db_item

hd_db_container

−elems:hash_map<>

hd_db_sc_event

−e:sc_event*

−ident:string

*

has

hd_db_sc_thread

−handle:sc_thread_handle

−gdb_tid:int

−cthread:bool

hd_db_sc_method

−handle:sc_method_handle

hd_database

−db_root:hd_db_container

has

hd_db_sc_process

−entry_fn:string

−runnable:bool&

−event_count:int&

−timeout_event:sc_event*

−trigger_type:int&

hd_db_bindinfo

−c:sc_object*

−in:list<sc_port_base*>

−out:list<sc_port_base*>

3.4 Performance issues

Practical tests on real-world AMD applications
revealed a considerable performance problem using the
pure non-intrusive implementation approach. Especially,
the setup phase of the extended gdb takes an unacceptably
long time (table 2). Investigations indicated particularly
the assemblage of the high-level debugging information
as the bottleneck. Here, hidden breakpoints in the Sys-
temC kernel registered and triggered actions to handle the
instantiation of processes and events. So, we developed a
second approach to accelerate the data assemblage phase.
The idea is to reduce the number of breakpoints while
moving their functionality into the kernel methods where
the breakpoints were formerly set. Normally, one has to
patch these methods to create callbacks forwarding
required information into the high-level debugging envi-
ronment. To remain kernel patch-free, we use library
interposition and preload a shared library which over-
writes appropriate SystemC kernel methods. There, the
original implementation is extended by a callback into the
debugging environment. A setting of LD_PRELOAD
instructs the dynamic linker to use this library before any
other when it searches for shared libraries (figure 5). Pre-

loading works only for non-inlined class methods. Hence,
minor transparent changes to SystemC kernel source code
were necessary, i.e. moving inlined constructors of
classes sc_signal, and sc_event from header to
implementation files. Time measurements (table 2) docu-
ment the efficiency of the new approach.

4 Practical application

4.1 Debug problem

As a short example we try to investigate why an inter-
face bus of our design under test (DUT) has a value con-
tention during simulation. It seems that there are two
processes concurrently driving data onto the bus.

We know of the first process in our SystemC environ-
ment driving an initialization value after reset, namely
tb.bif.fsm._fsm_reset(). This thread is sensitive to the
negative edge of the reset signal fsm_rst_l, being a low
active input to our DUT.

4.2 Conventional debug procedure

To find the second yet unknown process colliding with
ours, we would set a breakpoint into the unique driver
function that is invoked by every module that wants to
stimulate the interface bus.

On any stop at this breakpoint we then had to trace
back the invoking module, e.g. with the up command in
gdb. This can turn out to be a time consuming task, poten-
tially ending in different modules not involved in this spe-
cific issue. Since we know the signal event on which the
problem occurs, a tracing of the signals SystemC event
fsm_rst_l.m_negedge_event would help a lot.

4.3 High-level debug procedure

So we restart gdb with the high-level debugging envi-
ronment to use the provided commands for event tracing
(table 1). First, we set a breakpoint onto the observed sig-
nals negative edge event:

(gdb) ebreak "tb.bif.fsm_rst_l.m_negedge_event"
*** scheduled break on event
*** type <continue> to set breakpoint(s)
(gdb) continue

which, on the breakpoint stop, gives us two thread pro-
cesses sensitive to it:

*** event ’tb.bif.fsm_rst_l.m_negedge_event’
triggered ...

breakpoint at thread 21
breakpoint at thread 16

(gdb)

Knowing that thread 21 is the FSM reset process, we
look into the source code thread 16 is pending with lst:

(gdb) lst 16
--lst: list active source of [c]thread/method---
process tb.bif.if_bfm._update is currently
 at /home/hld/project/tb/src/if_bfm.cpp:128
in if_bfm::_update
126 get_bus_val(bus_val);
127 if_bus->write(bus_val && 0xff);
128 wait();
129 }

Figure 5: Preloading a SystemC kernel method

Test gdb mem-
usage

Setup time

w/o non-intrusive pre-loaded

A1

1. Test system: AMD Opteron™ 248 processor @2200 MHz, 3GB real
memory, Test application: multiple instances of a simple producer/
consumer application, #threads: 204, #methods: 1010, #sc_events:
3638

45 MB < 1 s 2.25 min 1.2 s

B2

2. Test system: AMD Athlon™ XP processor @1800 MHz, 3 GB real
memory, Test application: bus interface controller for various proto-
col implementations, #threads: 29, #methods: 56, #sc_events: 306

202 MB ~10 s 26 min 25 s

C3

3. Test system: see 2., Test application: serial interface, #threads: 31,
#methods: 136, #sc_events: 701

208 MB ~10 s > 40 min 31 s

Table 2: High-level debugging environment setup

In line 127 we find a concurrent writing of a wrong
value onto the bus. With the lpt command we review the
threads sensitivity list:

(gdb) lpt
thread process sensitivity list

tb.bif.if_bfm._update

<dynamic> tb.bif.ch_m._update.m_value_changed
<static> tb.bif.fsm_rst_l.m_negedge_event
<static> tb.bif.fsm_tx_w.m_posedge_event

We see that the sensitivity falsely includes also the
reset signal, which is not desired and turns out to be an
environment bug. Compared to section 4.2 we needed far
less debug steps and straighter tracked down the issue.

5 Conclusion and future work

In this paper, we presented an environment to debug
SystemC applications at high level working with signals,
ports, processes, and events. High-level debugging com-
mands realize debug patterns typically used at AMD. The
special feature of our approach is its non-intrusive imple-
mentation that means it avoids real patches of the Sys-
temC kernel or gdb sources. We apply library
interposition to preload a shared library that allows to
smoothly gather required debugging information pro-
vided by the SystemC kernel. Practical experiences in an
industrial design flow show promising results with only a
marginal increase of debug setup time.

Future work will improve the overall performance, and
implement additional commands. Also, it would be nec-
essary to increase the abstraction level of the commands
in order to further simplify debugging at SystemC level.
Furthermore, establishing a methodology or cookbook to
apply high-level debugging commands could help the
designer finding bugs more quickly.

References

[ARM06] ARM Ltd. MaxSim Developer home.
www.arm.com. 2006.

[BWH03] F. Balarin, Y. Watanabe, H. Hsieh, L.
Lavagno, C. Passerone, A. Sangiovanni
Vincentelli. Metropolis: an integrated
electronic system design environment. IEEE
Computer, Vol. 36, No. 4, April 2003.

[Che03] K.-C. Chen. Assertion-Based Verification For
SoC Designs. Proceedings of 5th International
Conference on ASIC, Vol.1, Oct 2003.

[CRA01] L. Charest, M. Reid, E.M. Aboulhamid, G.
Bois. A Methodology for Interfacing Open
Source SystemC with a Third Party Software.
DATE 01, March 2001.

[DSG03] F. Doucet, S. Shukla, R. Gupta. Introspection
in System-Level Language Frameworks:
Meta-level vs. Integrated, DATE 03, March
2003.

[GDB06] GDB home. www.gnu.org/software/gdb,
2006.

[GDL03] D. Große, R. Drechsler, L. Linhard, G. Angst.
Efficient Automatic Visualization of SystemC
Designs. FDL’03, Sept 2003.

[GHJ99] E. Gamma, R. Helm, R. Johnson, J. Vlissides.
Design Pattern - Elements of Reusable
Object-Oriented Software. Addison Wesley
Professional Computing Series, 1999.

[Gra06] GRACE++ project home. www.iss.rwth-
aachen.de/Projekte/grace/visualization.html.
2006.

[GZD00] D.D. Gajski, J. Zhu, R. Domer, A. Gerstlauer,
S. Zhao. SpecC: Specification Language and
Methodology. Kluwer Academic, 2000.

[SCI06] Open SystemC Initiative home.
www.systemc.org. 2006.

[SVH06] CoWare ConvergenSC System Verifier home.
www.coware.com. 2006.

[Syn06] Synopsys System Studio home.
www.synopsys.com. 2006.

© 2006 Advanced Micro Devices, Inc., AMD Athlon and AMD Opteron
are trademarks of Advanced Micro Devices, Inc.

