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Abstract

We study the estimation of peer effects through social networks when researchers do
not observe the entire network structure. Special cases include sampled networks,
censored networks, misclassified links, and aggregated relational data. We assume
that researchers can obtain a consistent estimator of the distribution of the network.
We show that this assumption is sufficient for estimating peer effects using a linear-
in-means model. We provide an empirical application to the study of peer effects on
students academic achievement using the widely used Add Health database and show
that network data errors have a first-order downward bias on estimated peer effects.
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1 Introduction

There is a large and growing literature on the impact of peer effects in social networks.1

However, since eliciting network data is expensive (Breza et al., 2020), relatively few

data sets contain comprehensive network information, and existing ones are prone

to data errors. Despite some recent contributions, existing methodologies for the

estimation of peer effects with incomplete or erroneous network data either focus on

a specific kind of sampling or errors or they are highly computationally demanding.

In this paper, we propose a unifying framework that allows for the estimation

of peer effects under the widely used linear-in-means model (e.g. Manski (1993);

Bramoullé et al. (2009)) when the researcher does not observe the entire network

structure. Our methodology is computationally attractive and flexible enough to

cover cases in which, for example, network data are sampled (Chandrasekhar and

Lewis, 2011; Liu, 2013; Lewbel et al., 2022c), censored (Griffith, 2019), missclassified

(Hardy et al., 2019), or summarized by aggregated relational data (ARD; Breza et al.

(2020); Alidaee et al. (2020)). Our central assumption is that the researcher is able

to estimate a network formation model using some partial information about the

network structure. Leveraging recent contributions on the estimation of network

formation models, we show that this assumption is sufficient to identify and estimate

peer effects.

We propose two estimators. First, we present a computationally attractive estima-

tor based on a simulated generalized method of moment (SGMM). The moments are

built using draws from the (estimated) network formation model. We study the finite

sample properties of our SGMM estimator via Monte Carlo simulation and compare

its performance with the benchmark case when true network is perfectly observed.

We show that the estimator performs very well, even when a large fraction of the

links are missing. Second, we present a flexible likelihood-based (Bayesian) estimator
1For recent reviews, see Boucher and Fortin (2016), Bramoullé et al. (2020), Breza (2016), and

De Paula (2017).
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allowing us to exploit the entire structure of the data-generating process. Although

the computational cost is greater, we exploit recent computational advances in the

literature, e.g. Mele (2017); Hsieh et al. (2019), and show that the estimator can

be successfully implemented on common-sized data sets. In particular, we apply our

estimator to study peer effects on academic achievement using the widely used Add

Health database. We find that data errors have first-order downward bias on the

estimated endogenous effect.

Our SGMM estimator is inspired by the literature on error-in-variable models

with repeated observations.2 Using a network formation model, we obtain a consis-

tent estimator of the distribution of the true network. We then use this estimated

distribution to obtain different draws from the distribution of the network. Our mo-

ment condition can be seen as a biased-corrected version of the instrumental strategy

proposed by Bramoullé et al. (2009), in which we substitute the true network with

the draws from the estimated distribution. We show that our moment conditions are

asymptotically valid and that the estimator is consistent for a finite number of draws

from the estimated distribution of the network. This property implies a significant

reduction in the computational cost of the method relative to methods based on the

integration of the moment conditions (e.g. Chandrasekhar and Lewis (2011)).

Importantly, our SGMM strategy requires only the (partial) observation of a sin-

gle cross-section, as opposed to, for example, the approach of Zhang (2020). The

presence of this feature is because of two main properties of the model. First, we

can consistently estimate the distribution of the mismeasured variable (i.e. the net-

work) using a single (partial) observation of the variable. Second, in the absence of

measurement error, valid instruments for the endogenous peer variable are available

(Bramoullé et al., 2009).

We explore the finite sample properties of our instrumental variable estimator

using Monte Carlo simulations. We consider the case in which a large fraction of the
2See Bound et al. (2001) for a review and Chen et al. (2011) for a review focused on nonlinear

models.
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links are unobserved. When there are no unobserved group-level fixed effects, the loss

in precision due to missing links is very small, even a very large fraction of links are

missing (up to 75%). With group-level unobservable fixed effects, the loss in precision

is larger, but the estimator still performs very well when up to 25%-50% of the links

are missing.

Our Bayesian estimator is based on likelihood and therefore uses more information

about the structure of the model, leading to more precise estimates. In the context of

this estimator, the estimated distribution for the network acts as a prior distribution,

and the inferred network structure is updated through a Markov chain Monte Carlo

(MCMC) algorithm. Our approach relies on data augmentation (Tanner and Wong,

1987), which treats the network as an additional set of parameters to be estimated.

This approach saves us from integrating over the 2N(N−1) potential networks compat-

ible with the data, which would create a serious computational issue. In particular,

our MCMC builds on recent developments from the empirical literature on network

formation (e.g. Mele (2017); Hsieh et al. (2019, 2020)). We show that the computa-

tional cost of our estimator is reasonable and that it can easily be applied to standard

data sets.

We study the impact of errors in adolescents’ friendship network data for the

estimation of peer effects in education (Calvó-Armengol et al., 2009). We show that

the widely used Add Health database features many missing links—around 30% of

the within-school friendship nominations are coded with error—and that these data

errors strongly bias the estimated peer effects. Specifically, we estimate a model of

peer effects on students’ academic achievement. We probabilistically reconstructs the

missing links, and we obtain a consistent estimator of peer effects using both our

estimators. The bias due to data errors is qualitatively important. Our estimated

endogenous peer effect coefficient is 1.5 times larger than that obtained by assuming

the data contains no errors.

This paper contributes to the recent literature on the estimation of peer effects
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when the network is either not entirely observed or observed with noise. In particular,

our framework is valid when network data are either sampled, censored, misclassified,

or consist of aggregate relational data.3 We unify these strands in the literature and

provide a flexible and computationally tractable framework for estimating peer effects

with incomplete or erroneous network data.

Sampled networks and censoring: Chandrasekhar and Lewis (2011) show that

models estimated using sampled networks are generally biased. They propose an

analytical correction as well as a two-step general method of moment (GMM) esti-

mator. Liu (2013) shows that when the interaction matrix is not row-normalized,

instrumental variable estimators based on an out-degree distribution are valid, even

with sampled networks. Hsieh et al. (2018) focus on a regression model that depends

on global network statistics. They propose analytical corrections to account for non-

random sampling of the network (see also Chen et al. (2013)). Thirkettle (2019) also

focuses on global network statistics, assuming that the researcher only observes a ran-

dom sample of links. Using a structural network formation model, he derives bounds

on the identified set for both the network formation model and the network statistic

of interest. Lewbel et al. (2022a) develop a two-stage least square estimator for the

linear in means model when some links are potentially missing. They propose valid

instruments under some restrictions on the observed and true interactions matrices,

or when researchers observe at least two samples of the same true network. Finally,

Zhang (2020) studies program evaluation in a context in which networks are sampled

locally and affected by a single type measurement error (either false positives or false

negatives, but not both). Assuming that the researcher has access to two measure-

ments of the network for each sampled unit, she presents a nonparametric estimator

of the treatment and spillover effects.

Relatedly, Griffith (2019) explores the impact of imposing an upper bound to the

number of links when eliciting network data, e.g. “Name your five best friends.” He
3For related literature that studies the estimation of peer effects when researchers have no network

data, see Manresa (2016); De Paula et al. (2018); Souza (2014); Lewbel et al. (2022c).
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presents a bias-correction method and explores the impact of censoring using two

empirical applications. He finds that censoring underestimates peer effects. Griffith

and Kim (2023) generalizes the approach in Griffith (2019) and present analytic bias-

corrections for the reduced-form parameters in the linear-in-means and linear-in-sums

models under an Expectational Equivalence assumption.

We contribute to this literature by proposing two simple and flexible estimators

for the estimation of peer effects based on a linear-in-means model (as opposed to

network statistics as in Hsieh and Lee (2016) and Thirkettle (2019)). Our estimators

do not require many observations of the sampled network (contrary to Zhang (2020)

and Lewbel et al. (2022c)). Similar to Griffith (2019) and Griffith and Kim (2023),

we find—using the Add Health database—that sampling leads to an underestimation

of peer effects, although we find that censoring has a negligible impact, in the context

of peer effects, on academic achievement.

Our Bayesian estimator is similar in spirit to the two-stage GMM estimator pro-

posed by Chandrasekhar and Lewis (2011), but it is computationally advantageous.

Indeed, their GMM estimator is based on an unconditional moment condition, which

requires integrating over the entire set of networks that are compatible in the data. In

Chandrasekhar and Lewis (2011), there are 2N(N−1)−M such networks, where M is the

number of sampled pairs of individuals. Even for small networks, the computational

cost is substantial whenever sampling is nontrivial. Our SGMM estimator does not

suffer from this computational cost and can produce precise estimates with as little

as three network simulations. While our Bayesian estimator is more computationally

demanding, we exploit recent developments from the empirical literature on network

formation (e.g. Mele (2017); Hsieh et al. (2019)) and show that it is computationally

tractable, even when no link is sampled (e.g. with aggregated relational data (ARD)),

which would otherwise require integrating over the 2N(N−1) networks compatible with

the data.

Misclassification: Hardy et al. (2019) look at the estimation of (discrete) treat-
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ment effects when the network is observed noisily. Specifically, they assume that

observed links are affected by iid errors and present an expectation maximization

(EM) algorithm that allows for a consistent estimator of the treatment effect. Lewbel

et al. (2022b) show that when the expected number of missing links grows at rate

strictly smaller than n, the 2SLS estimator in Bramoullé et al. (2009) is consistent.4

Our model allows for the misclassification of all links with positive probability

and we do not impose restrictions on the rate of misclassification. As in Hardy et al.

(2019), we use a network formation model to estimate the probability of false posi-

tives and false negatives. However, our two-stage strategy—estimating the network

formation model and then the peer effect model—allows for greater flexibility. In

particular, our network formation model is allowed to flexibly depend on covariates.

This is empirically important, as networks typically feature homophily on observed

characteristics (e.g. Currarini et al. (2010); Bramoullé et al. (2012)).

Aggregate relational data: Breza et al. (2020) propose to estimate network effects

using aggregate relation data (ARD). These are obtained from such survey questions

as, “How many of your friends have trait X?” They present a network formation model

that can be estimated using only ARD. They show the validity of their methodology

using two empirical applications in which the outcome of interest depends on the

summary statistics of the network. Alidaee et al. (2020) present an alternative es-

timator allowing to recover nonparametrically the linking probability through ARD.

Using a low-rank assumption, they present a simple penalized regression.

We show that these recent methodologies can also be applied to the study of peer

effects using a linear-in-means model, which significantly expands the scope of the

potential applications of these approaches.

A main contribution of this paper is that our estimators can be applied to each

of the previously mentioned data issues or to their combination. Our two-step

approach—first estimating the network formation and then the peer effects—is flex-
4When the growth rate is strictly smaller than

√
n, inference is also valid.
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ible and computationally attractive. To reduce the implementation costs, we also

present an easy-to-use R package—named PartialNetwork—for applying our esti-

mators. The package allows replicating all simulations and empirical applications

in the paper, including the estimator proposed by Breza et al. (2020). The pack-

age is available online at: https://github.com/ahoundetoungan/PartialNetwork.

Additional implementation examples are provided in the Vignette accompanying the

package. For example, we show that the implementation of our Bayesian estimator,

combined with the estimator for ARD proposed by Breza et al. (2020), is straightfor-

ward and computationally tractable.

The remainder of the paper is organized as follows. In Section 2, we present the

econometric model as well as the main assumptions. In Section 3, we present our

SGMM estimator and study its performance via Monte Carlo simulations. In Section

4, we present our likelihood-based estimation strategy. In Section 5, we present our

application to peer effects on academic achievement. Section 6 concludes the paper.

2 The Model

We now formally present our model. We first describe the linear-in-means model

(Manski, 1993; Bramoullé et al., 2009), arguably the most widely used model for

studying peer effects in networks (see Bramoullé et al. (2020) for a recent review).

We then introduce our main assumption, characterizing what is known about the

structure of the network.

2.1 The Linear-in-Means Model

Let A represent the N ×N adjacency matrix of the network. We assume a directed

network: aij ∈ {0, 1}, where aij = 1 if i is linked to j. We normalize aii = 0 for all

i and let ni =
∑
j

aij denote the number of links of i. Let G = f(A), the N × N

interaction matrix for some function f . Unless otherwise stated, we assume that
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G is a row-normalization of the adjacency matrix A.5 Most of our results hold for

any function f , which preserves the independence among groups (see Assumption 2

below).

We focus on the following model:

y = c1 + Xβ + αGy + GXγ + ε, (1)

where y is a vector of an outcome of interest (e.g. academic achievement), c is a

constant, 1 is a vector of ones, X is a matrix of observable characteristics (e.g. age,

gender...), and ε is a vector of errors.6 The parameter α therefore captures the impact

of the average outcome of one’s peers on their behavior (the endogenous peer effect).

The parameter β captures the impact of one’s characteristics on their behavior (the

individual effects). The parameter γ captures the impact of the average characteristics

of one’s peers on their behavior (the contextual peer effects).

The following set of assumptions summarizes our setup.

Assumption 1. |α| < 1/∥G∥ for some submultiplicative norm ∥ · ∥.

Assumption 2. The population is partitioned into M > 1 groups, where the size Nr

of each group r = 1, ...,M is bounded. The probability of a link between individuals of

different groups is equal to 0.

Assumption 3. For each group, the outcome and individual characteristics are ob-

served (i.e. (yr,Xr), r = 1, ...,M , are observed).7

Assumption 4. Exogeneity: E[εr|Xr] = 0 for all r = 1, ...,M .

Assumption 1 ensures that the model is coherent and that there exists a unique

vector y compatible with (1). When G is row-normalized, |α| < 1 is sufficient.
5In such a case, gij = aij/ni whenever ni > 0, whereas gij = 0 otherwise.
6Note that Boucher and Bramoullé (2020) recently showed that (1) is valid (coherent, complete,

and microfounded), even when yi is binary.
7For any vector/matrix, we use the subscript r to denote the subvector/submatrix restricted to

group r.
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Assumption 2 is introduced for exposition purposes; for example, the data could

consist of a collection of small villages (Banerjee et al., 2013) or schools (Calvó-

Armengol et al., 2009). Our methods extend to alternative assumptions such as

those proposed by Lee (2004) and Lee et al. (2010).8 In particular, Assumption 2

implies a “many markets” asymptotic framework, meaning that the number of groups

M goes to infinity as the number of individuals N goes to infinity.

Assumption 3 implies that the data is composed of a subset of fully sampled

groups.9 A similar assumption is made by Breza et al. (2020). Note that Assumption

4 does not impose restrictions on the dependence between the errors and the network

structure. We detail the network formation process in the next section.

2.2 Partial Network Information

In this paper, we relax the costly assumption that the adjacency matrix A is observed.

We assume instead that sufficient information about the network is observed so that

a network formation model can be estimated.

More formally, we let A denote the observed information about the true network

structure. That is, A is a function of the true network A and potentially of individ-

uals’ characteristics (see Example 4). We impose no particular structure on A but

discuss important examples below (see Examples 1–4).

We assume that links are generated as follows:

P (aij) ≡ P (aij|ρ0) ∝ exp{aijQ(ρ0,wij)}, (2)

where Q is some known, twice continuously differentiable function, wij = wij(X) is

a vector of observed characteristics for the pair ij, and ρ0 is the true value of ρ,

a vector of parameters to be estimated. Note that the assumption that the set of

observed characteristics of the pairs wij are function of X implies that the network
8The authors assume that the adjacency matrix A is bounded in row- and column-sums.
9Contrary to Liu et al. (2017) or Wang and Lee (2013), for example.
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is exogenous. We omit the dependence of P (aij) on wij to simplify the notation.

As will be made clear, our estimation strategy requires that the econometrician

be able to draw samples from (a consistent estimator) P (A). Thus, and for the sake

of simplicity, we focus on distributions that are conditionally independent across links

(i.e. P (aij|A−ij) = P (aij)), as in (2), although this is not formally required.10

We now present our main assumption.

Assumption 5 (Partial Network Information). Given network information A and

the parametric model (2), there exists an estimator ρ̂, such that ρ̂ →p ρ0 as N → ∞.

Assumption 5 implies that, using (2), the researcher has access to “sufficient

information” about the network structure to obtain a consistent estimator of the

distribution of the true network P (A). We denote such a consistent estimator by

P̂ (A) ≡ P (A|ρ̂,A). We omit the dependence on A to simplify the notation when

this does not create confusion. Note that we can use P̂ (A) to obtain the consistent

estimator P̂ (G) because G = f(A) for some known function f .11

Importantly, it should be noted that even if the econometrician has access to a

consistent estimator of the distribution of the true network, that is P (A), it does not

imply that they could simply proxy G in (1) using a draw G̃ from the distribution

P̂ (G). The reason is that for any vector z, G̃z generally does not converge to Gz

as the number of individuals N goes to infinity. In other words, knowledge of P̂ (G)

and z is not sufficient to obtain a consistent estimator of Gz. To see why, note that

(Gz)i =
N∑
j=1

gijzj. Under Assumption 2, the set of j, such that gij ̸= 0, is bounded;

10A prime example of a network distribution that is not conditionally independent is the distribu-
tion for an exponential random graph model (ERGM), e.g. Mele (2017). Of course, in these cases,
the specification of the marginal distribution (2) must be replaced by a specification of the joint
distribution P (A). Our ability to accommodate for such model depends on what is known about
the true network, i.e. A. In particular, we need that P (A|ρ,A) be computationally tractable and
be such that Assumption 5 below holds for non-trivial A. A specific case of ERGM that could be
estimated with partial-network data is that in Boucher and Mourifié (2017), which requires asking
sampled pairs of individuals about the number of links they have.

11Because A takes a finite number of values, so does G, (thus A and G have multinomial distri-
bution). Then, P (G) is a continuous function of P (A), irrespective of the function f linking A and
G.
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thus, a consistent estimator of P (G) is not sufficient to obtain a consistent estimator

of GX.

Assumption 5 covers a large range of cases in which networks are partially ob-

served. We specifically discuss four leading examples in which Assumption 5 holds:

sampled networks (Example 1), censored networks (Example 2), misclassified network

links (Example 3), and aggregated relational data (Example 4).

Example 1 (Sampled Networks). Suppose that we observe the realizations of aij for

a random sample of m pairs (e.g. Chandrasekhar and Lewis (2011)). Here A can be

represented by an N ×N binary matrix Aobs. Conley and Udry (2010) present such

a sampling scheme and ask individuals about their relationship with a random sample

of other individuals; for example, “Do you know person X?”

Such a setup is sufficient to consistently estimate flexible network formation mod-

els, such as that in Graham (2017). A simpler example would be to assume that the

network formation model (2) is equal to P (aij = 1) ∝ exp{wijρ}. In this case, a

simple logistic regression provides a consistent estimator of ρ.

Given this consistent estimator for ρ and the assumed parametric model, we can

compute an estimator for the distribution of the true network P̂ (A) = P (A|ρ̂,A).

Here, P̂ (aij) = aobsij for any sampled link ij, while P̂ (aij) ∝ exp{aijwijρ̂} for the

remaining unsampled links.

Example 2 (Censored Network Data). As discussed in Griffith (2019), network data

is often censored. This typically arises when surveyed individuals are asked to name

only T > 1 links (among the N possible links they may have). Here, A can be

represented by an N × N binary matrix Aobs. We can use censored network data to

estimate a network formation model, such as P (aij = 1) ∝ exp{wijρ}.

For simplicity, let us assume as in Griffith (2019) that each link has the same

probability of being censored. Then, the parameters in ρ (other than the constant) are

identified from the observed ratios
∑
ij

aijw
k
ij/
∑
ij

wk
ij (for observable characteristic
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k), as these sufficient statistics are not biased by censoring. To identify the constant,

note that we can compute the likelihood of the censored degree distribution (i.e. ni =∑
j

aij). Letting {wij}j = [wi1, ...,wiN ], we have P (ni = t|{wij}j;ρ) for observed

t < T and P (ni ≥ T |{wij}j;ρ) for observed t = T , which allows identifying the

constant.

Once such an estimator of ρ is obtained, we can compute an estimator for the

distribution of the true network P̂ (A) = P (A|ρ̂,A). In particular, P (aij|ρ̂, aobsij =

1) = 1 because observed links necessarily exist. Also note that for all individuals

i, such that ni < T , we have P (aij|ρ̂, aobsij ) = aobsij for all j, as their network data

are not censored. Here, the structural model is only used to obtain the probability of

links that are not observed for individuals whose links are potentially censored, i.e.

P (aij|ρ̂, aobsij = 0) ∝ exp{aijwijρ̂} for all ij, such that ni ≥ T .

Example 3 (Misclassification). Hardy et al. (2019) study cases in which networks are

observed but may include misclassified links (i.e. false positives and false negatives).

Here, A can be represented by an N × N binary matrix Amis. The (consistent)

estimation of (2) in such a context follows directly from the existing literature on

misclassification in binary outcome models, e.g. Hausman et al. (1998).

Let q1 be the probability of false positives and q0 be the probability of false negatives

(both being elements of ρ). The estimator for the distribution of the true network is

given by P (aij = 1|ρ̂, amis
ij ) = amis

ij (1− q̂1) + (1− amis
ij )q̂0.

Example 4 (Aggregated Relational Data). Aggregated relational data (ARD) are

obtained from survey questions such as, “How many friends with trait ‘X’ do you

have?” Here, A can be represented by an N ×K matrix of integer values, where K

is the number of traits that individuals were asked about.

Building on McCormick and Zheng (2015), Breza et al. (2020) proposed a novel

approach for the estimation of network formation models using only ARD. They as-

sume:

P (aij = 1) ∝ exp{νi + νj + ζz′
izj}, (3)
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where νi, νj, ζ, zi, and zj are not observed by the econometrician but follow parametric

distributions. Here, parameters νi and νj can be interpreted as i and j’s propensities

to create links, irrespective of the identity of the other individual involved. The other

component, ζz′
izj, is meant to capture homophily (like attracts like) on an abstract

latent space (e.g. Hoff et al. (2002)).

Breza et al. (2020) show that it is possible to use ARD to recover the values of the

variables in (3). In particular, letting ρ = [{νi}i, {zi}i, ζ], Alidaee et al. (2020) and

Breza et al. (2019) provide sufficient conditions for the consistent estimation of ρ.

Contrary to Examples 1–3, ARD does not provide information on any specific

links; 12 therefore, the predicted distribution of the true network is P (aij|ρ̂,A) =

P (aij|ρ̂), which is given by Equation (3). Here, it is worth emphasizing that the

observed network information (i.e. ARD) is not very informative about the particu-

lar network structure in the data. In this sense, it could be viewed as a worst-case

scenario.

3 Simulated Generalized Method of Moment Es-

timators

In this section, we present an estimator based on a Simulated Generalized Method

of Moments (SGMM). The key observation underlying our approach is that it is not

necessary to observe the complete network structure to observe y, X, GX, and Gy.

For example, one could simply obtain Gy from survey data, “What is the average

value of your friends’ y?”

However, even observing y, X, GX, and Gy, the model (1) cannot be simply

estimated using simple linear regression. The reason is that Gy is endogenous; thus,

a linear regression would produce biased estimates (e.g. Manski (1993), Bramoullé
12That is, unless ARD includes the degree distribution with some individuals reporting having no

links at all.
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et al. (2009)).

The typical instrumental approach to deal with this endogeneity is to use instru-

ments based on the structural model, i.e. instruments constructed using second-degree

peers (e.g. G2X, see Bramoullé et al. (2009)). These are less likely to be found in

survey data. Indeed, we could doubt the informativeness of questions such as, “What

is the average value of your friends’ average value of their friends’ x?”

However, the above discussion is encouraging. When researchers observe [y,X]

and [GX,Gy], information about the network is only used as a means to construct

a valid instrument, e.g. following Bramoullé et al. (2009). Then, if GX and Gy

are observed, the estimation of peer effects is possible using any exogeneous (strong)

predictor of the true network structure, as in Kelejian and Piras (2014), König et al.

(2019), and Lee et al. (2020).13

The problem is more challenging when Gy and GX are not observed. To simplify

the notation, for the remainder of this section we define {Ġ(r)}Rr=1, {G̈(s)}Ss=1, and

{
...
G

(t)
}Tt=1 as sequences of independent draws from P̂ (G). We will also let Ġ, G̈, and

...
G be single independent draws from P̂ (G). Finally, for any matrix B, we will use Bi

to denote the ith row of B.

Before presenting our estimation strategy, we want to emphasize that we cannot

simply proxy Gy and GX using draws from P̂ (G). To see why, consider the simple

case for which γ = 0, so that the observation of GX is inconsequential. We have,

substituting Gy with G̈y,

y = c1 + Xβ + αG̈y + [η + ε],

where η = α[G − G̈]y is the error due to the approximation of Gy by G̈y. Im-

portantly, the approximation error does not vanish as N grows because individuals
13See Proposition 1 of the Online Appendix E for a formal statement. In particular, one needs a

predictor of the network such that the resulting instrument is not correlated with ε and is strongly
correlated with Gy.
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belong to bounded groups (see Assumption 2).14 Moreover, because y is a function

of G (but not of G̈), we typically have E(Gy)i|Zi ̸= E(G̈y)i|Zi for some vector of

instruments zi and all i.

In Proposition 2 of the Online Appendix E, we show, using an argument very sim-

ilar to that of Andrews et al. (2017), that the asymptotic bias induced by Eηi|zi ̸= 0

can be bounded, and simulations show that it can be very small for carefully con-

structed vectors of instruments, which can be useful in practice.

In any case, in our main result below, we show that we can include the bias directly

in the moment function; this provides a consistent estimator of θ.

3.1 Main Result

Let θ̃ = [c,β′,γ ′]′. We maintain Assumptions 1–5 and impose the regularity As-

sumptions 6–9 and the identification Assumptions 10 and 11 presented in Appendix

A.

Theorem 1 (SGMM).

[Conditions] Let Ż(r) = [1,X, Ġ(r)X, (Ġ(r))2X, (Ġ(r))3X, ...] and V̈(s) = [1,X, G̈(s)X].

Consider also the following (simulated) moment function:

mR,S,T (θ) =
1

RST

R∑
r=1

S∑
s=1

T∑
t=1

Ż(r)′
i

[
(I − α

...
G

(t)
)i

(
y − (I − αG̈(s))−1V̈(s)θ̃

)]
(4)

[Result] For any positive integers R, S, and T , the (simulated) GMM estimator

based on (4) is consistent.

Theorem 1 presents conditions for the consistency of our two-step estimator. In

particular, similar to a standard simulated GMM (Gourieroux et al., 1996), consis-

tency holds for a finite number of simulations. Our estimator therefore does not suffer
14As opposed to, for example, the context studied by Auerbach (2019).
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from the curse of dimensionality faced by Chandrasekhar and Lewis (2011).15

To understand the intuition behind the use of the moment function (4), let us

replace y = (I − αG)−1(Vθ̃ + ε) in Equation (4). In doing so, we can rewrite the

term inside the triple summation in (4) as a sum of two terms. First, Ż(r)′
i εi, which

would be the standard moment function if G was observed (e.g. Bramoullé et al.

(2009)), and second:

Ż(r)′
i

[
(I − α

...
G

(t)
)i

(
(I − αG)−1V − (I − αG̈(s))−1V̈(s)

)
θ̃
]
. (5)

That second term can be viewed as the bias-correction term of the moment function.

We show that the expectations of both terms are equal to 0 as N grows to ∞.

For the first term, this is true because the simulated network is exogenous. For the

second term, this is true because G, Ġ, G̈, and
...
G are asymptotically drawn from the

same distribution.

For the special case in which G is observed, one could substitute Ġ(r) = G̈(s) =
...
G

(t)
= G for all r, s, t, and the first term would simply be Z′

iεi, whereas the second

term would be exactly equal to 0.

Note that Theorem 1 is valid whether or not Gy and GX are observed because

the moment function (4) does not use information on Gy or GX. It is of course

possible to include this additional information if either one is observed.

For example, assume that GX is observed and replace V̈ with V in (5). After

some algebra, we obtain:

Ż(r)′
i

[
(I − α

...
G

(t)
)i(I − αG̈(s))−1[α(G − G̈)y]

]
(6)

and a term that is equal to zero in expectation.

We can show that the last term in brackets corresponds to the source of the
15The unconditional moment condition in Chandrasekhar and Lewis (2011) is based on the (Monte

Carlo) integration of the moment condition E(Z(s)′ε|G) over G.
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asymptotic bias because of the approximation error of Gy by G̈y (see Proposition 2

of the Online Appendix). Whereas Equation (6) cannot directly be substituted for

(4) in Theorem 1, it is possible to construct moment functions for the particular cases

for which GX or Gy is observed. These cases can be found in Corollary 1 and 2 of

the Online Appendix.

3.1.1 Asymptotic Normality

Although Theorem 1 shows the consistency of the estimator, it remains silent about its

asymptotic distribution. In Appendix A.3, we present how to estimate the asymptotic

variance of the estimator, irrespective of the asymptotic distribution. The estimation

includes the sampling uncertainty, the estimating uncertainty of ρ̂, and the simulating

uncertainty (which decreases as R, S, and T grow). Note, however, that asymptotic

normality cannot always be guaranteed because of the dependence of the estimator

on ρ̂, estimated in the first stage (see Assumption 5).

An important special case for which asymptotic normality is achieved is when

the estimator of the network formation process can be written as an m-estimator;

thus, the estimator in Theorem 1 can be written as the second stage of a two-stage

m-estimator, as for the network formation models in Examples 1, 2, and 3.16

However, while asymptotic normality holds for m-estimators, it cannot always be

guaranteed. In general, researchers may not always understand perfectly the asymp-

totic properties of the used network formation estimator. Indeed, recall that Assump-

tion 5 only imposes the consistency of ρ̂ and does not discuss the convergence rate

or asymptotic framework in detail. For some network formation models, these may

be difficult to formalize.

An example is latent space models based on ARD (see Example 4). Alidaee

et al. (2020) propose a penalized regression, whereas Breza et al. (2020) propose a

Bayesian estimator. Neither estimator can be written directly as an m-estimator, and
16See Appendix A.2 for a more detailed discussion.
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the convergence rates in a many-networks asymptotic framework (see our Assumption

2) remain poorly understood.17

3.2 Monte Carlo Simulations

In this subsection, we study the performance of our SGMM using Monte Carlo simu-

ations. In particular, we study a case in which links are missing at random (see

Example 1). The 2SLS estimator proposed in Bramoullé et al. (2009) is not consis-

tent, unless the expected number of missing links grows at a rate strictly less than n

(Lewbel et al., 2022b). The estimator in Bramoullé et al. (2009) is however a natu-

ral benchmark since it is a special case of our SGMM estimator, when all links are

observed.18

We present simulations for four versions of our SGMM estimator. One in which

both GX and Gy are unobserved (as in Theorem 1), one in which they are both

observed (as in Proposition 1 in the Online Appendix), and two intermediary cases in

which either GX or Gy are observed (see Corollaries 1 and 2 in the Online Appendix).

Figure 1 and 2 present the results for the endogeneous peer effect coefficient α, without

and with group-level fixed effects, respectively.

Both with and without fixed effects, the estimators are centered around the true

value. Precision decreases with the fraction of missing links, and when either GX or

Gy is not observed. Comparing Figure 1 and Figure 2, we see that the inclusion of

group-level fixed effects strongly affects precision. However, even when GX and Gy

are both unobserved, and the estimator controls for unobserved group fixed effects,

our SGMM estimator still achieves a reasonable precision level, even when half the

links are missing.

Note that not observing Gy has a larger negative effect on precision than not
17We provide Monte Carlo simulations of the performance of our SGMM estimator for ARD in

Section D.1.
18When all links are observed, Ġ(r) = G̈(s) =

...
G

(t)
= Gobs. See our discussion of the estimator

above.
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Figure 1: Estimated peer effect, no FE

Note: Dots represent estimated values of α, and bars represent 95% confidence intervals. Ta-
bles B.1 and B.2 in Appendix B present the full set of estimated coefficients. The “Classical
IV” denotes the special case for which all links are observed (Bramoullé et al., 2009).
We simulate data for 100 groups of 30 individuals each. There are two observable character-
istics, xi1 ∼ N(0, 25) and xi2 ∼ Poisson(6). We assume that εi ∼ N(0, 1). True parameter
values are: (α,β,γ) = (0.4, 2, 1, 1.5, 5,−3). The network formation process follows the
logistic regression: aij ∝ exp{ρ1 + ρ2|xi1 − xj1|+ ρ3|xi2 − xj2|} where ρ = (0.8,−0.2, 0.1).

observing GX. This is because when Gy is unobserved, the moment function includes

the simulated value y, which is a non-linear function of G, i.e. the for the simulation

s, (I − αG̈(s))−1V̈(s)θ̃.

In conclusion, our SGMM performs well, even if a large fraction of links in the

network are missing, provided that the baseline 2SLS estimator is precise. However, it

may happen in practice (see Section 5) that even if all links were observed, the GMM

approach is too imprecise to draw any conclusions. In such cases, we also provide

a likelihood-based estimator, more efficient, but relying more heavily on parametric

assumptions.

4 Likelihood-Based Estimation

In this section, we a likelihood-based estimator. Accordingly, greater structure must

be imposed on the errors ε. To clarify the exposition, we will focus on the network
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Figure 2: Estimated peer effect, FE

Note: See Figure 1.

adjacency matrix A rather than the interaction matrix G. Of course, this is without

any loss of generality. Given parametric assumptions for ε, one can write the log-

likelihood of the outcome as 19

lnP(y|A,θ), (7)

where θ = [α,β′,γ ′,σ′]′, and σ are unknown parameters from the distribution of ε.

Note that y = (IN −αG)−1(c1+Xβ+GXγ + ε) and (IN −αG)−1 exists under our

Assumption 1.

If the adjacency matrix A is observed, then θ could be estimated using a simple

maximum likelihood estimator (as in Lee et al. (2010)) or using Bayesian inference

(as in Goldsmith-Pinkham and Imbens (2013)).

Since A is not observed, an alternative would be to focus on the unconditional

likelihood, i.e.

lnP(y|θ) = ln
∑

A
P(y|A,θ)P (A).

A similar strategy is proposed by Chandrasekhar and Lewis (2011) using a GMM

estimator.
19Note that under Assumption 2, the likelihood can be factorized across groups.
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One particular issue with estimating lnP(y|θ) is that the summation is not

tractable. Indeed, the sum is over the set of possible adjacency matrices, which

contain 2N(N−1) elements. Then, simply simulating networks from P (A) (or rather

from P̂ (A)) and taking the average likely lead to poor approximations. A classical

way to address this issue is to use an EM algorithm (Dempster et al., 1977). Although

valid, we found that the Bayesian estimator proposed in this section is less restrictive

and numerically outperforms its classical counterpart.

For concreteness, we will assume that ε ∼ N (0, σ2IN); however, it should be noted

that our approach is valid for a number of alternative assumptions as long as it yields

a computationally tractable likelihood. We have, for G = f(A),

lnP(y|A,θ) = −N ln(σ) + ln |IN − αG| − N

2
ln(π)

− 1

2σ2
[(IN − αG)y − c1N − Xβ − GXγ]′ ·

[(IN − αG)y − c1N − Xβ − GXγ].

Because A is not observed, we follow Tanner and Wong (1987) and Albert and Chib

(1993), and we use data augmentation to evaluate the posterior distribution of θ.

That is, instead of focusing on the posterior p(θ|y,A), we focus on the posterior

p(θ,A|y,A), treating A as another set of unknown parameters. Note that we now

make the dependence on A explicit for clarity.

Indeed, the identification of the model rests on the a priori information of A. A

sensible prior for A is the consistent estimator of its distribution, i.e. P̂ (A|A) ≡

P (A|ρ̂,A). One may wish, however, to also use the information regarding the sam-

pling uncertainty around P̂ (A|A). This is very similar to the inference for two-step

estimators in a classical setting (e.g. for our SGMM estimator); estimation uncer-

tainty in the first stage must be accounted for to provide valid inference in the second

stage (see Section 3).

Let π(ρ|A) be the prior density on ρ. How to obtain π(ρ|A), depending on
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whether ρ̂ is obtained using a Bayesian or classical setting, is discussed in Examples

5 and 6 below. Given π(ρ|A), it is possible to obtain draws from the posterior

distribution p(ρ,A|y,A) using the following MCMC:

Algorithm 1. The MCMC goes as follows for t = 1, ..., T , starting from any A0,θ0,

and ρ0.

1. Draw ρ∗ from the proposal distribution qρ(ρ
∗|ρt−1) and accept ρ∗ with probability

min
{
1,

P (At−1|ρ∗,A)qρ(ρt−1|ρ∗)π(ρ∗|A)

P (At−1|ρt−1,A)qρ(ρ∗|ρt−1)π(ρt−1|A)

}
.

2. Propose A∗ from the proposal distribution qA(A∗|At−1) and accept A∗ with

probability

min
{
1,

P(y|θt−1,A∗)qA(At−1|A∗)P (A∗|ρt−1,A)

P(y|θt−1,At−1)qA(A∗|At−1)P (At−1|ρt−1,A)

}
.

3. Draw α∗ from the proposal qα(·|αt−1) and accept α∗ with probability

min
{
1,

P(y|At;βt−1,γt−1, α
∗)qα(αt−1|α∗)π(α∗)

P(y|At;θt−1)qα(α∗|αt−1)π(αt−1)

}
.

4. Draw [β, γ, σ] from their conditional distributions.

As discussed, Step 1 accounts for the sampling uncertainty around the true value

of ρ. If the true value of ρ was known (instead of being estimated), Step 1 would not

be required. Step 1 shows that the flexibility of the network formation model comes

at a cost. For example, Graham (2017) and Breza et al. (2020) propose network

formation models for which the number of parameters is O(Nr). In turn, this large

number of parameters increases the computational cost of Step 1.

Example 5 (Priors from the Asymptotic Distribution of ρ). In a classical setting,

and under the usual assumptions, the estimation of (2) produces an estimator ρ̂ of ρ0
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and an estimator of the asymptotic variance of ρ̂, i.e. V̂(ρ̂). In this case, we define

the prior density π(ρ) as the density of a multivariate normal distribution with mean

ρ̂ and variance–covariance matrix V̂(ρ̂).

Example 6 (Priors from the Posterior Distribution of ρ). In a Bayesian setting,

the estimation of ρ from the network formation model (2) results in draws from the

posterior distribution of ρ. It is therefore natural to use such a posterior distribution

as the prior distribution of A for the estimation based on (7). Performing such a

sequential Bayesian updating approach comes with a well-known numerical issue.20

Indeed, the evaluation of the acceptance ratio in Step 1 of Algorithm 1 below re-

quires the evaluation of the density of ρ at different values. Ideally, one would use

the draws from the posterior distribution of ρ from the first step (network formation

model) and perform a nonparametric kernel density estimation of the posterior dis-

tribution. However, when the dimension of ρ is large, the kernel density estimation

may be infeasible in practice.

This is especially true for very flexible network formation models, such as that

proposed by Breza et al. (2020) for which the number of parameters to estimate is

O(Nr). In such a case, it might be more reasonable to use a more parametric ap-

proach or to impose additional restrictions on the dependence structure of ρ across

dimensions.21

Detailed distributions for Steps 3 and 4 can be found in the Online Appendix.

Step 2, however, requires some discussion. Indeed, the idea is the following: given

the prior information P (A|ρt−1,A), one must be able to draw samples from the

posterior distribution of A, given y. This is not a trivial task.

In particular, there is no general rule for selecting the network proposal distri-

bution qA(·|·). A natural candidate is a Gibbs sampling algorithm for each link, i.e.
20See Thijssen and Wessels (2020) for a recent discussion.
21For example, if we assume that the posterior distribution of ρ is jointly normal, the estimation

of the mean and variance–covariance matrix is straightforward, even in a high-dimensional setting.
Simulations suggest that this approach performs well in practice. See the Vignette accompagning
our R package.
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change only one link ij at every step t and propose aij according to its marginal

distribution, i.e. aij ∼ P (·|A−ij,y,A), where A−ij = {akl; k ̸= i, l ̸= j}. In this case,

the proposal is always accepted.

However, it has been argued that Gibbs sampling could lead to slow convergence

(e.g. Snijders (2002), Chatterjee et al. (2013)), especially when the network is sparse

or exhibits a high level of clustering. For example, Mele (2017) and Bhamidi et al.

(2008) propose different blocking techniques meant to improve convergence.

Here, however, achieving Step 2 involves an additional computational issue be-

cause evaluating the likelihood ratio in Step 1 requires comparing the determinants

|I−αf(A∗)| for each proposed A∗, which is computationally intensive. In particular,

taking G∗ = f(A∗) to be a row-normalization of A∗, altering a single element of A∗

results in a change in the entire corresponding row of G∗. Still, comparing the deter-

minant of two matrices that differ only in a single row is relatively fast. Moreover,

when G = A, Hsieh et al. (2019) propose a blocking technique that facilitates the

computation of the determinant.

In any case, note that the computational complexity of Step 2 depends strongly

on P (A|ρt−1,A), which is a function of the assumed network formation model (2)

and the observed information about the network structure A. For censored network

data, for example, most of the network structure is observed (see Example 2). This

implies that P (aij|ρt−1,A) ∈ {0, 1} for most pairs ij. As such, few entries of A must

be updated in Step 2. The opposite is true for ARD (see Example 4) for which all

entries of A must be updated.

Then, the appropriate blocking technique depends strongly on P (A|ρt−1,A) and

the assumed distribution for ε. For the simulations and estimations presented in this

paper, we use the Gibbs sampling algorithm for each link, adapting the strategy pro-

posed by Hsieh et al. (2019) to our setting (see Proposition 3 in the Online Appendix).

This can be viewed as a worst-case scenario. Nonetheless, the Gibbs sampler performs
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reasonably well in practice, even for ARD;22 however, we encourage researchers to try

other updating schemes if Gibbs sampling performs poorly in their specific contexts.

In particular, we present a blocking technique in the Online Appendix G that is also

implemented in our R package PartialNetwork.23

It is important to note that the complexity of Step 2 is not limited to our Bayesian

approach. Classical estimators, such as GMM estimators, face a similar challenge in

requiring the integration over the entire set of networks. The strategy used here is to

rely on a Metropolis–Hastings algorithm, a strategy that has also been successfully

implemented in the related literature on ERGMs (e.g. Snijders (2002); Mele (2017,

2020); Badev (2018); Hsieh et al. (2019, 2020)).

Finally, note that for simple network formation models, it is possible to jointly

estimate ρ and θ within the same MCMC instead of using the two-step procedure

described above. In this case, Step 1 can simply be replaced by:

1’. Draw ρ∗ from the proposal distribution qρ(ρ
∗|ρt−1) and accept ρ∗ with proba-

bility

min
{
1,

P (At−1|ρ∗,A)P (A|ρ∗)qρ(ρt−1|ρ∗)π(ρ∗)

P (At−1|ρt−1,A)P (A|ρt−1)qρ(ρ
∗|ρt−1)π(ρt−1)

}
.

Here, P (A|ρ∗) is the likelihood of the network information A assuming the network

formation model in (2). Note that π(ρ), the prior density on ρ, no longer depends

on A and can be chosen arbitrarily (e.g. uniform).

This approach would work well for simple models, such as the ones discussed in

Examples 1 and 3. It is impractical, however, for more involved models, such as that

proposed by Breza et al. (2020).
22Simulations available upon request.
23Available at: https://github.com/ahoundetoungan/PartialNetwork
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5 Imperfectly Measured Networks

In this section, we assume that the econometrician has access to network data but

that the data may contain errors. To show how our method can be used to address

these issues, we consider a simple example where we are interested in estimating peer

effects on adolescents’ academic achievements.

We use the widely used AddHealth database and show that network data errors

have a first-order impact on the estimated peer effects. Specifically, we focus on a

subset of schools from the “In School” sample that each have less than 200 students.

Table 1 displays the summary statistics.

Table 1: Summary statistics

Statistic Mean Std. Dev. Pctl(25) Pctl(75)
Female 0.540 0.498 0 1
Hispanic 0.157 0.364 0 0
Race

White 0.612 0.487 0 1
Black 0.246 0.431 0 0
Asian 0.022 0.147 0 0
Other 0.088 0.283 0 0

Mother’s education
High 0.310 0.462 0 1
<High 0.193 0.395 0 0
>High 0.358 0.480 0 1
Missing 0.139 0.346 0 0

Mother’s job
Stay-at-home 0.225 0.417 0 0
Professional 0.175 0.380 0 0
Other 0.401 0.490 0 1
Missing 0.199 0.399 0 0

Age 13.620 1.526 13 14
GPA 2.912 0.794 2.333 3.5
Note: We only keep the 33 schools having less than 200 students from the In-
School sample. The variable GPA is computed by taking the average grade
for English, Mathematics, History, and Science, letting A = 4, B = 3, C = 2,
and D = 1. Thus, higher scores indicate better academic achievement.
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Most papers estimating peer effects that use this particular database have taken

the network structure as given. One notable exception is Griffith (2019), looking at

censoring: students can only report up to five male and five female friends. We also

allow for censoring but show that censoring is not the most important issue with the

Add Health data. To understand why, we discuss the organization of the data.

Each adolescent is assigned a unique identifier. The data includes ten variables for

the ten potential friendships (maximum of five male and five female friends). These

variables can contain missing values (no friendship was reported), an error code (the

named friend could not be found in the database), or an identifier for the reported

friends. This data is then used to generate the network’s adjacency matrix A.

Of course, error codes cannot be matched to any particular adolescent. Moreover,

even in the case where the friendship variable refers to a valid identifier, the referred

adolescent may still be absent from the database. A prime example is when the

referred adolescent has been removed from the database by the researcher, perhaps

because of other missing variables for these particular individuals. These missing links

are quantitatively important as they account for roughly 30% of the total number of

links (7,830 missing for 17,993 observed links). Figure 3 displays the distribution of

the number of “unmatched named friends.”24

To use the methodology developed in Section 4, we first need to estimate a network

formation model using the observed network data. In this section, we assume that

links are generated using a simple logistic framework, i.e.

P (aij = 1) ∝ exp{wijρ},

where wij is built to capture homophily on the observed characteristics of i and j

(see Tables C.1 and C.2 in Appendix C). We estimate the network formation model

on the set of individuals for which we observe no “unmatched friends.” For these
24We focus on within-school friendships; thus, nominations outside of school are not treated as

“unmatched friends.”
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Figure 3: Frequencies of the number of missing links per adolescent

students, we know for sure that their friendship data is complete. Under a missing

at-random assumption, the estimation of the explanatory variables is consistent, but

the intercept is affected by a selection bias. We control for this by weighting the

log-likelihood of the network following Manski and Lerman (1977). The details are

presented in Appendix C.

We present the estimation results for the SGMM and for the Bayesian estima-

tor. Figure 4 summarizes the results for the endogenous peer effect coefficient α,

whereas the full set of results is presented in Appendix C. The first two estimations

(Obsv.Bayes and Obsv.SGMM ) assume that the observed network is the true network

for both estimators. The third and fourth estimations (Miss.Bayes and Miss.SGMM )

account for missing data due to error codes but not for censoring. The last two esti-

mations (TopMiss.Bayes and TopMiss.SGMM ) account for missing data due to error

codes or censoring.

We first see that the SGMM is less efficient than the Bayesian. This should

not be surprising since the Bayesian estimator uses more structure (in particular-

ity homoscedastic, normally distributed errors). When we compare the estimations

Obsv.SGMM and Miss.SGMM, the observed differences imply that the efficiency loss

is because of the relative inefficiency of the GMM approach, and not of the missing
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Note: Dots represent estimated values (and posterior mean) of α, and bars represent 95%
confidence intervals (and 95% credibility intervals). Tables C.1 and C.2 in Appendix C
present the full set of estimated coefficients.

links or specifically of our SGMM estimator.25

Importantly, we see that the bias due to the assumption that the network is fully

observed is quantitatively and qualitatively important. Using either estimator, the

estimated endogenous peer effect using the reconstructed network is 1.5 times larger

than thatestimated assuming the observed network is the true network.26 Almost all

of the bias is produced by the presence of error codes and not because of potential

censoring.

This exercise shows that data errors are a first-order concern when using the Add

Health database.27 Not only does the bias in the endogenous peer effect coefficient α

have an impact on the social multiplier (Glaeser et al., 2003), but it can also affect

the anticipated effect of targeted interventions, i.e. the identity of the key player

(Ballester et al., 2006).
25Recall that when the network is observed, our SGMM uses the same moment conditions as, for

example, those suggested by Bramoullé et al. (2009).
26The difference is “statistically significant” for the Bayesian estimator.
27We do not argue, however, that our estimated coefficients are necessarily causal because the

friendship network is likely endogenous (e.g. Goldsmith-Pinkham and Imbens (2013); Hsieh and
Van Kippersluis (2018); Hsieh et al. (2020)). The estimation of peer effects with partial endogenous
network data is left for future research.
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Indeed, Figure 5 shows a scatter plot of the vector of centralities in the observed

and reconstructed networks. The figure illustrates the effects of missing network data.

First, because the reconstructed network has more links, centrality is higher on aver-

age. This is essentially the social multiplier effect. Not accounting for missing links

leads to an underestimation of spillover effects. Second, some individuals, in particu-

lar those having very few links in the observed network, are in reality highly central.

Therefore, targeting a policy at individuals having a high centrality in the observed

network would be inefficient. In particular, Figure 6 shows that even isolated indi-

viduals and individuals interacting in isolated pairs in the observed network (having

centralities of 1 and 1.35 respectively) can be, in reality, highly central. Thus, a policy

based on the evaluation of an observed network, coupled with the associated endoge-

nous peer effect coefficient α, would not only underestimate the social multiplier but

would also target the wrong individuals.
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Figure 5: Centrality

Note: The centrality vector is given by (I − α̂G)−11. To compute centrality based on the
observed network, we use the observed network G and the α̂ estimated using specification
Obsv.Bayes. To compute centrality based on the reconstructed network, we use α̂ and G
estimated using the specification TopMiss.Bayes. For both centrality vectors, we use the
average vector centrality across 10 000 draws from their respective posterior distributions.
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Figure 6: Centrality

Note: See note of Figure 5.

6 Conclusion

In this paper, we proposed two estimators where peer effects can be estimated without

having knowledge of the entire network structure. We found, perhaps surprisingly,

that even very partial information on network structure is sufficient. By specify-

ing a network formation model, researchers can probabilistically reconstruct the true

network and base the estimation of peer effects on this reconstructed network. Im-

portantly, we provide computationally tractable and flexible estimators to do so, all

of which are available in our R package PartialNetwork. We apply our methodology

to the widely used AddHealth data and find that missing links due to noise in the

data have first-order effects on the estimated peer effect coefficient. This leads to

an underestimation of the social multiplier and the incorrect identification of the key

players.
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A SGMM estimator

Throughout, otherwise stated, the subscript zero is used to denote the true value of

a parameter. Consider the following regularity assumptions.

Assumption 6. ρ0 ∈ int(R) and θ0 ∈ int(Θ), where R and Θ are both compact

subsets of the Euclidean space.

Assumption 7. For all r = 1, ..., R, s = 1, ..., S, and t = 1, ..., T , (I − αĠr),

(I − αG̈s) and (I − α
...
G

t
) are non-singular

In particular, when G is row-normalized (so Ġr, G̈s, and
...
G

t
are also row-

normalized), Assumption 1 implies Assumption 7. Assumption 8 below ensures that

the moment function is uniformly bounded.

Assumption 8. X′
i is uniformly bounded in i. The (i, j)-th entries of G (so Ġr, G̈s,

and
...
G

t
) are uniformly bounded in i and j.

We consider an objective function for the GMM estimator of the usual form:

QN(θ) =
(

1
N

∑
i mi(θ)

)′ WN

(
1
N

∑
i mi(θ)

)
,

where mi(θ) is the moment function and WN is positive definite.

Assumption 9. QN(θ) converges in probability to some Q0(θ).

The identification condition is presented in Section A.1.1 (see in particular As-

sumptions 10 and 11).

A.1 Proof of Theorem 1

Let

mi(θ) =
1

RST

∑
r

∑
s

∑
t Ż(r)′

i (I − α
...
G

(t)
)i

(
y − (I − αG̈(s))−1V̈(s)θ̃

)
.
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We will show that, by construction, we have plimE (mi(θ0)) = 0 for any finite S

and T , where plim is the probability limit.

To see why, let us substitute y = (I − α0G)−1(Vθ̃0 + ε) in the moment function.

We have

mi(θ0) = 1
RST

∑
r

∑
s

∑
t Ż(r)′

i (I − α0

...
G

(t)
)i

[
(I − α0G)−1V − (I − α0G̈(s))−1V̈(s)

]
θ̃0

+ 1
RS

∑
r

∑
s Ż(r)′

i (I − α0

...
G

(t)
)i(I − α0G)−1ε.

Consider the second term first. For any r, s, t, we have

E
(

Ż(r)′
i (I − α0

...
G

(t)
)i(I − α0G)−1ε

)
= 0,

directly from Assumption 4 and the specification of the network formation process

(see Assumption 5).

Consider now the first term. We need

plimE
[
Ż(r)′

i (I − α0

...
G

(t)
)i

[
(I − α0G)−1V − (I − α0G̈(s))−1V̈(s)

]
θ̃0

]
= 0.

Note that, for N fixed, G, Ġ(r), G̈(s), and
...
G

(t)
have a finite number of possible realiza-

tions. Thus, E
[
Ż(s)′

i (I − α0

...
G

(t)
)i(I − α0G)−1Vθ̃0|X

]
can be written as a continuous

function of P , the distribution of the adjacency matrix, and P̂ , a consistent estima-

tor of that distribution.28 Analogously, E
[
Ż(s)′

i (I − α0

...
G

(t)
)i(I − α0G̈(s))−1V̈(s)θ̃0|X

]
also can be written as a same function with the difference that P is replaced by P̂ .

As both functions are continuous and because P̂ converges in probability to P (see

Assumption 5), their limits are obtained by replacing P̂ by P and are therefore equal.
28The function would essentially composed of summations and products of terms depending on P

and P̂ .
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As such, we have

plimE
[
Ż(s)′

i (I − α0

...
G

(t)
)i(I − α0G)−1Vθ̃0|X

]
= plimE

[
Ż(s)′

i (I − α0

...
G

(t)
)i(I − α0G̈(s))−1V̈(s)θ̃0|X

]
.

By taking the expectation of the terms in both hand sides of the previous equation,

we can interchange the expectation and plim terms. Indeed, both En,1 = E
[
Ż(s)′

i (I −

α0

...
G

(t)
)i(I − α0G)−1Vθ̃0|X

]
and En,2 = E

[
Ż(s)′

i (I − α0

...
G

(t)
)i(I − α0G̈(s))−1V̈(s)θ̃0|X

]
are bounded by assumption 8. The dominated convergence theorem implies that

E(plim En,1) = plimE(En,1) and E(plim En,2) = plimE(En,2). As a result,

plimE
[
Ż(s)′

i (I − α0

...
G

(t)
)i(I − α0G)−1Vθ̃0

]
= plimE

[
Ż(s)′

i (I − α0

...
G

(t)
)i(I − α0G̈(s))−1V̈(s)θ̃0

]
.

The GMM estimator

θ̂ = arg maxQN(θ)

is therefore consistent under Assumptions 1–9 if no other θ solves the moment condi-

tion (e.g. see Newey and McFadden (1994); Theorem 2.6). The next section discusses

the numerical implementation and identification of the estimator.

A.1.1 Concentration and Identification

Although the GMM estimator could be solved numerically, it is helpful to concentrate

the objective function around α. Let R(α) = 1
RST

∑
r

∑
s

∑
t Ż(s)′(I − α

...
G

(t)
)(I −

αG̈(s))−1V̈(s)/N and D(α) = 1
RST

∑
r

∑
s

∑
t Ż(s)′(I−α

...
G

(t)
)/N so that 1

N

∑
i mi(θ) =

D(α)y − R(α)θ̃.

The gradient of the objective function with respect to θ̃ is

−2
(

D(α)y − R(α)θ̃
)′

WNR(α).

The hessian is therefore 2R′(α)WNR(α), which is semi-positive definite. Hence, the

following assumption ensures identification of θ̃, conditional on α.
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Assumption 10. For all α, (a) R(α) is a full rank matrix; (b) plim R(α)′WNR(α)

exists and is nonsingular.

Condition (a) ensures that the estimator is uniquely defined: assuming that R(α) is

a full rank matrix implies that
(

D(α)y − R(α)θ̃
)′

WNR(α) = 0 holds for a single

value of θ̃. Condition (b) ensures the identification is conditional on α.

Under Assumption 10, the estimator of θ̃ conditionally on α is
ˆ̃θ(α) = (R′(α)WNR(α))−1R′(α)WND(α)y.

The objective function can then be concentrated around α, as

Qc
N(α) =

(
D(α)y − R(α)ˆ̃θ(α)

)′
WN

(
D(α)y − R(α)ˆ̃θ(α)

)
/N2.

While we cannot easily ensure that this function is globally convex in α, the behavior

of the function is easy to study because α is unidimensional and has a bounded

support (see Assumption 1). Note that numerically minimizing the concentrated

objective function implicitly checks Assumption 10. Our final assumption ensures

the identification of α.

Assumption 11. (a) Qc
N(α) is uniquely minimized, and (b) plimQc

N(α) is uniquely

minimized at α0.

Again, condition (a) ensures that the estimator is well defined, whereas condition

(b) is the identification condition.

A.2 Asymptotic Normality for Sequential M-Estimators

The challenge in showing the asymptotic normality of our estimator lies in our use of

a sequential estimation strategy.

Here, we assume that the model can be written as a sequential m-estimator. If the
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first-stage estimator ρ̂ is an M-estimator, then it verifies the first-order conditions:

1

M

M∑
m=1

∂Q1,m(ρ̂)

∂ρ
= 0, (8)

for some function Q1,m. We assume that Q1,m(ρ) is twice continuously differentiable

in ρ. Note that even if the observational unit of the first stage is at the pair level,

it is always possible to take the sum or the average of the moment condition at the

pair level to produce a moment condition at the group level as in (8).

Consider now the second stage, i.e. our SGMM estimator. It can be written as

an m-estimator, continuously differentiable in ρ (in a neighborhood of ρ0), and twice

continuously differentiable in θ:

1

M

M∑
m=1

∂Q2,m(θ̂, ρ̂)

∂θ
= 0, (9)

where Q2,m(θ, ρ̂) = QN(θ) for all θ.

Note that here, Q2,m(θ,ρ) is not everywhere continuous in ρ. Indeed, remark

that we can rewrite Ġ = f({ȧij}ij) = f({1[Pij(1|ρ̂) ≥ u̇ij]}ij), where u̇ij ∼iid U [0, 1],

and similarly for G̈ and
...
G. This is only a variable change and does not introduce

any additional assumptions; however, it shows that, using a finite number of network

draws, the moment function is not everywhere continuous in ρ because of the indicator

function.

This is similar to the estimator in McFadden (1989), and asymptotic normality

results (for m-estimators) can be found in Newey and McFadden (1994) and Andrews

(1994). In particular Newey and McFadden (1994) Section 6 for two-steps estima-

tors and Newey and McFadden (1994) Section 7 (in particular Theorem 7.2 and

7.3) for non-smooth objective function. Andrews (1994) (Section 3.2) also discusses

non-smooth objective function and specifically provides a discussion of the MSM in

McFadden (1989) (his Example 2) which features the same type of discontinuities as
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our SGMM estimator.29

A.3 Variance Estimation

Let where Σ0 = plimΣN and ΣN = V(
√
M θ̂). We now present a simple approach

to estimate Σ0. Our approach does not rely on the asymptotic normality and takes

into account the uncertainty related to the estimation at the first stage.

Taking the first derivative of the objective function at the second stage (for finite

R,S,T and conditional on ρ̂) with respect to θ, we have

1

N

∑
i

∂mP̂
i (θ)

′

∂θ
WN

1

N

∑
i

mP̂
i (θ) = 0.

By applying the mean value theorem to 1

N

∑
i

mP̂
i (θ), we have

√
M(θ̂−θ0) = −

[
1

N

∑
i
∂mP̂

i (θ̂)′

∂θ
WN

1
N

∑
i
∂mP̂

i (θ∗)

∂θ′

]−1
1
N

∑
i
∂mP̂

i (θ̂)′

∂θ
WN

√
M
N

∑
i mP̂

i (θ0),

where θ∗ is some point between θ̂ and θ0.

Let HN =

[
1

N

∑
i
∂mP̂

i (θ̂)′

∂θ
WN

1
N

∑
i
∂mP̂

i (θ∗)

∂θ′

]−1
1
N

∑
i
∂mP̂

i (θ̂)′

∂θ
WN and let H0 = plim HN .

We have
√
M(θ̂ − θ0) = −HN

√
M
N

∑
i mP̂

i (θ0).

Let also ΩN = V(
√
M
N

∑
i mP̂

i (θ0)).

We assume the following:

Assumption 12. plimΩN = Ω0 and plim HN = H0 exist and are finite matrices.
29An alternative is to smooth the moment function (i.e. 1[x ≥ 0] ≈ I(x/hN ), see e.g. Horowitz

(1998)) where hN → 0 fast enough so that the approximation becomes asymptotically negligible.
The selection of the bandwidth in practice is challenging. Here, we suggest applying the same
function used in particular by Horowitz (1998), which is conveniently available in our R package.
Specifically: I(x) = 1{−1 ≤ x ≤ 1}[0.5 + 105

64
(x − 5

3
x3 +

7

5
x5 − 3

7
x7)] + 1{x > 1}, which was also

used in particular by Kaplan and Sun (2017) and de Castro et al. (2019).
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Under this assumption, we have

Σ0 = H0Ω0H′
0.

Let ζP̂
N,m be the sum of mP̂

i (θ0) over the m-th sub-network and let ζP
N,m be the same

statistic where P̂ is replaced by P . In practice, H0 can be estimated consistently by

Ĥ0 = N

[∑
i

∂mP̂
i (θ̂)

′

∂θ
WN

∑
i

∂mP̂
i (θ̂)

∂θ′

]−1∑
i

∂mP̂
i (θ̂)

′

∂θ
WN .

On the other hand, Σ0 can be estimated by ΣN , where

ΣN = E(V(
√
M
N

∑
m ζP̂

N,m|P̂ )) + V(E(
√
M
N

∑
m ζP̂

N,m|P̂ )),

ΣN = M
N2 E(

∑
m V(ζP̂

N,m|P̂ )) + M
N2 V(

∑
m E(ζP̂

N,m|P̂ )).

The term N−1 E(
∑

m V(ζP̂
N,m|P̂ )) is due to the error term of the model ε and the true

network not being observed, whereas N−1V(
∑

m E(ζP̂
N,m|P̂ )) is due to uncertainty

associated with the estimation of P . In practice, we can compute an estimator of

ζP̂
N,m, m = 1, ...,M by replacing θ0 by its consistent estimator θ̂. Thus, we can

also estimate
∑

m V(ζP̂
N,m|P̂ ) and

∑
m E(ζP̂

N,m|P̂ ). With several simulations from the

distribution of P̂ , we finally compute ΣN .30

30Our R package offers tools to compute this variance. See also our Online Appendix.
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B Full Simulation Results

Table B.1: Full simulation results without group fixed effects

Proportion of
missing links

0% 25% 50% 75%

Classical IV method, Instrument matrix: GX2

α = 0.4 0.400 (0.003)
c = 2 1.989 (0.172)
β1 = 1 1.000 (0.006)
β2 = 1.5 1.501 (0.008)
γ1 = 5 4.998 (0.025)
γ2 = −3 −2.998 (0.025)

SGMM: Gy, GX observed; T = 100

α = 0.4 0.400 (0.003) 0.400 (0.003) 0.400 (0.003)
c = 2 2.010 (0.175) 1.997 (0.177) 2.008 (0.178)
β1 = 1 1.000 (0.006) 1.000 (0.006) 1.000 (0.006)
β2 = 1.5 1.500 (0.007) 1.501 (0.007) 1.500 (0.008)
γ1 = 5 5.001 (0.026) 4.999 (0.025) 4.999 (0.025)
γ2 = −3 −3.002 (0.026) −3.000 (0.026) −3.001 (0.026)

SGMM: Gy observed, GX unobserved; S = T = 100

α = 0.4 0.400 (0.004) 0.400 (0.005) 0.400 (0.006)
c = 2 2.014 (0.225) 2.002 (0.260) 2.017 (0.286)
β1 = 1 1.000 (0.008) 1.001 (0.011) 1.001 (0.012)
β2 = 1.5 1.500 (0.009) 1.500 (0.010) 1.500 (0.011)
γ1 = 5 5.001 (0.035) 4.998 (0.046) 4.995 (0.052)
γ2 = −3 −3.002 (0.034) −3.000 (0.039) −3.002 (0.042)

SGMM: Gy unobserved, GX observed; S = T = 100

α = 0.4 0.400 (0.010) 0.400 (0.015) 0.401 (0.022)
c = 2 2.024 (0.561) 2.048 (0.802) 2.010 (1.009)
β1 = 1 0.999 (0.021) 1.001 (0.036) 1.003 (0.051)
β2 = 1.5 1.499 (0.020) 1.499 (0.027) 1.499 (0.034)
γ1 = 5 5.003 (0.094) 4.997 (0.155) 4.982 (0.236)
γ2 = −3 −3.003 (0.086) −3.006 (0.124) −2.998 (0.158)

SGMM: Gy, GX unobserved; R = S = T = 100

α = 0.4 0.400 (0.012) 0.400 (0.018) 0.401 (0.026)
c = 2 2.027 (0.648) 2.066 (0.931) 2.014 (1.191)
β1 = 1 0.999 (0.025) 1.001 (0.042) 1.003 (0.060)
β2 = 1.5 1.499 (0.022) 1.498 (0.031) 1.499 (0.039)
γ1 = 5 5.003 (0.111) 4.997 (0.182) 4.981 (0.277)
γ2 = −3 −3.004 (0.100) −3.008 (0.144) −2.999 (0.188)
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Table B.2: Full simulation results group fixed effects

Proportion of
missing links

0% 25% 50% 75%

Classical IV method, Instrument matrix: GX2

α = 0.4 0.400 (0.014)
β1 = 1 1.000 (0.006)
β2 = 1.5 1.500 (0.008)
γ1 = 5 5.000 (0.042)
γ2 = −3 −3.001 (0.046)

SGMM: Gy, GX observed; T = 100

α = 0.4 0.399 (0.018) 0.400 (0.021) 0.399 (0.024)
β1 = 1 1.000 (0.006) 1.000 (0.007) 1.001 (0.006)
β2 = 1.5 1.500 (0.008) 1.500 (0.009) 1.500 (0.009)
γ1 = 5 5.002 (0.050) 4.999 (0.059) 5.002 (0.066)
γ2 = −3 −2.997 (0.048) −3.001 (0.051) −2.998 (0.055)

SGMM: Gy observed, GX unobserved; S = T = 100

α = 0.4 0.400 (0.028) 0.402 (0.038) 0.400 (0.047)
β1 = 1 1.001 (0.008) 1.000 (0.011) 1.002 (0.012)
β2 = 1.5 1.500 (0.010) 1.500 (0.011) 1.500 (0.012)
γ1 = 5 4.999 (0.078) 4.994 (0.107) 4.994 (0.135)
γ2 = −3 −2.998 (0.07) −3.002 (0.092) −3.000 (0.104)

SGMM: Gy unobserved, GX observed; S = T = 100

α = 0.4 0.405 (0.075) 0.411 (0.116) 0.403 (0.187)
β1 = 1 1.000 (0.023) 1.000 (0.037) 1.004 (0.051)
β2 = 1.5 1.499 (0.023) 1.499 (0.034) 1.499 (0.046)
γ1 = 5 4.987 (0.202) 4.968 (0.325) 4.970 (0.542)
γ2 = −3 −3.013 (0.205) −3.022 (0.317) −3.003 (0.482)

SGMM: Gy, GX unobserved; R = S = T = 100

α = 0.4 0.399 (0.092) 0.406 (0.136) 0.395 (0.215)
β1 = 1 1.000 (0.027) 1.001 (0.043) 1.004 (0.060)
β2 = 1.5 1.499 (0.026) 1.498 (0.040) 1.498 (0.053)
γ1 = 5 5.002 (0.245) 4.981 (0.377) 4.993 (0.622)
γ2 = −3 −3.003 (0.246) −3.015 (0.377) −3.000 (0.560)
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C Appendix – Application

C.1 Error codes only

Each student nominates their best friends up to 5 males and 5 females. Because we

know the sex of nominated friends, even when the identifier is coded with error, we

associate each missing link to a male or female student. We then have two sets of

network data for each student i: the set of data from i to their male schoolmates and

the set of data from i to their female schoolmates. A set is considered fully observed

if it has no missing values. We estimate the network formation only using the fully

observed sets. The sets with partial or no observed data are inferred (even the data

we do not doubt in those sets are inferred).

This approach raises a selection problem that we address by weighting each selected

set, following Manski and Lerman (1977). The intuition of the weights lies in the

fact that the sets with many links have lower probabilities to be selected (because

error codes are more likely). The weight is the inverse of the selection probability.

For a selected set Sis (of network data from i to schoolmates of sex s), the selection

probability can be estimated as the proportion of sets without missing data among

the sets of network data to schoolmates of sex s having the same number of links

than Sis.

For the Bayesian estimator, we jointly estimate the peer effect model and the network

formation model (i.e. using Step 1’ on Page 28). Thus, in the MCMC, ρ and the sets

with partial or no network data are inferred using information from the weighted sets

and the peer effect model.

C.2 Error codes and top coding

We consider the same selected sets as in the case of missing data only. However, we

doubt the exactitude of a link aij ∈ Sis if aij = 0 and the number of links in Sis is

five. Therefore, if the number of links in Sis is five, we adjust the weight associated
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with each aij. For aij = 0, we multiply the weight obtained in the case of missing

data only by (|Sis| − ℓ(Sis))/(|Sis| − ℓ̂(Sis)), and for aij = 1, we multiply the weight

by ℓ(Sis)/ℓ̂(Sis), where ℓ(Sis) is the estimate of the true number of links from i to

their schoolmates of sex s, ℓ̂(Sis) if the number of links declared in Sis, and |Sis| is

the number of data in Sis (number of students having the sex s in the school minus

one).

We denote s = m for male and s = f for female. Fours scenarios are possible:

{ℓ̂(Sim) < 5, ℓ̂(Sif ) < 5}, {ℓ̂(Sim) = 5, ℓ̂(Sif ) < 5}, {ℓ̂(Sim) < 5, ℓ̂(Sif ) = 5}, and

{ℓ̂(Sim) = 5, ℓ̂(Sif ) = 5}. In the last three cases, ℓ(Sim) + ℓ(Sif ) is left-censored and

we know the lower bound. Assuming that the number of links i follows a Poisson

distribution of mean ne
i , we estimate ne

i using a censored Poisson regression on the

declared number of links. We assume that ne
i is an exponential linear function of i’s

characteristics (age, sex, ...), and we also include school-fixed effects to control for

school size.

The estimate of ne
i is ℓ(Sim) + ℓ(Sif ), and it allows us to compute ℓ(Sim) and ℓ(Sif ).

For the case {ℓ̂(Sim) = 5, ℓ̂(Sif ) = 5}, we assume that ℓ(Sim) = ℓ(Sif ) = 0.5(ℓ(Sim)+

ℓ(Sif )). In the other cases, as either ℓ(Sim) or ℓ(Sif ) is known, the second member of

Sim) + ℓ(Sif ) can be computed.

For the Bayesian estimator, and contrary to the case with error codes only, it is

more challenging to jointly estimate the peer effect model and the network formation

model in a single step. We therefore first estimate the network formation model and

then the Bayesian estimator (i.e. using Step 1 in Algorithm 1). Thus, for the MCMC,

the estimated distribution of ρ from the network formation model is used as a prior

distribution. We then infer ρ and the network data aij = 0 that we are doubtful

about, using information from the peer effect model and the prior distribution of ρ.
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Table C.1: Empirical results (Bayesian method)

Model 1 Model 2 Model 3
Statistic Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Peer effect model
Peer effects 0.350 (0.024) 0.524 (0.036) 0.538 (0.037)
Own effects
Female 0.144 (0.029) 0.135 (0.030) 0.133 (0.031)
Hispanic −0.083 (0.042) −0.148 (0.048) −0.151 (0.047)
Race (White)

Black −0.230 (0.045) −0.190 (0.055) −0.189 (0.055)
Asian −0.091 (0.089) −0.113 (0.091) −0.110 (0.091)
Other 0.055 (0.051) 0.039 (0.052) 0.039 (0.052)

Mother’s education (High)
<High −0.122 (0.039) −0.138 (0.040) −0.139 (0.040)
>High 0.140 (0.034) 0.123 (0.034) 0.121 (0.034)
Missing −0.060 (0.050) −0.069 (0.051) −0.070 (0.051)

Mother’s job (Stay-at-home)
Professional 0.080 (0.045) 0.075 (0.044) 0.079 (0.044)
Other 0.003 (0.035) −0.014 (0.035) −0.012 (0.035)
Missing −0.066 (0.047) −0.074 (0.048) −0.073 (0.048)

Age −0.073 (0.010) −0.071 (0.010) −0.072 (0.010)
Contextual effects
Female 0.011 (0.049) −0.003 (0.060) −0.003 (0.060)
Hispanic 0.060 (0.069) 0.272 (0.102) 0.276 (0.105)
Race (White)

Black 0.050 (0.058) 0.025 (0.073) 0.033 (0.074)
Asian 0.209 (0.186) 0.110 (0.365) 0.209 (0.385)
Other −0.137 (0.089) −0.044 (0.163) −0.051 (0.167)

Mother’s education (High)
<High −0.269 (0.070) −0.228 (0.141) −0.221 (0.149)
>High 0.072 (0.059) 0.063 (0.097) 0.057 (0.102)
Missing −0.077 (0.093) 0.107 (0.167) 0.124 (0.174)

Mother’s job (Stay-at-home)
Professional −0.110 (0.08) 0.102 (0.124) 0.090 (0.134)
Other −0.101 (0.060) −0.003 (0.100) −0.017 (0.103)
Missing −0.093 (0.085) −0.075 (0.157) −0.109 (0.165)

Age 0.066 (0.006) 0.083 (0.008) 0.086 (0.009)
SE2 0.523 0.496 0.499

Network formation model
Same sex 0.310 (0.011) 0.370 (0.014)
Both Hispanic 0.416 (0.020) 0.436 (0.026)
Both White 0.312 (0.018) 0.304 (0.023)
Both Black 1.076 (0.030) 1.173 (0.038)
Both Asian 0.164 (0.034) 0.144 (0.043)
Mother’s education < High 0.226 (0.013) 0.218 (0.017)
Mother’s education > High 0.007 (0.012) 0.005 (0.014)
Mother’s job Professional −0.116 (0.012) −0.128 (0.016)
Age absolute difference −0.700 (0.007) −0.714 (0.009)

Average number of friends 3.251 4.665 5.618

Note: Model 1 considers the observed network as given. Model 2 infers the missing links due to friendship
nominations coded with error, and Model 3 infers the missing links due to friendship nominations coded
with error and controls for top coding. For each model, Column "Mean" indicates the posterior mean,
and Column "Std. Dev." indicates the posterior standard deviations in parentheses.
N = 3,126. Observed links = 17,993. Proportion of inferred network data: error code = 60.0%, error code
and top coding = 65.0%. The explained variable is computed by taking the average grade for English,
Mathematics, History, and Science, letting A = 4, B = 3, C = 2, and D = 1. Thus, higher scores indicate
better academic achievement.

A12



Table C.2: Empirical results (SGMM Method)

Model 1 Model 2 Model 3
Statistic Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Peer effect model
Peer effects 0.455 (0.230) 0.753 (0.254) 0.683 (0.242)
Own effects
Female 0.179 (0.039) 0.122 (0.036) 0.122 (0.035)
Hispanic −0.129 (0.045) −0.160 (0.051) −0.160 (0.051)
Race (White)

Black −0.276 (0.058) −0.172 (0.058) −0.166 (0.059)
Asian −0.178 (0.101) −0.131 (0.085) −0.124 (0.086)
Other 0.087 (0.062) 0.023 (0.061) 0.023 (0.062)

Mother’s education (High)
<High −0.134 (0.044) −0.121 (0.046) −0.124 (0.047)
>High 0.109 (0.036) 0.121 (0.030) 0.122 (0.03)
Missing −0.066 (0.053) −0.060 (0.051) −0.062 (0.051)

Mother’s job (Stay-at-home)
Professional 0.145 (0.055) 0.065 (0.043) 0.071 (0.043)
Other 0.043 (0.035) −0.019 (0.031) −0.018 (0.030)
Missing −0.018 (0.045) −0.072 (0.043) −0.068 (0.043)

Age −0.042 (0.032) −0.072 (0.015) −0.068 (0.016)
Contextual effects
Female −0.056 (0.074) −0.014 (0.068) −0.001 (0.068)
Hispanic 0.265 (0.121) 0.331 (0.169) 0.368 (0.175)
Race (White)

Black 0.129 (0.125) 0.035 (0.113) 0.013 (0.108)
Asian 2.409 (1.220) 3.236 (2.359) 3.466 (2.575)
Other −0.363 (0.180) −0.111 (0.170) −0.195 (0.198)

Mother’s education (High)
<High −0.215 (0.083) −0.206 (0.337) −0.283 (0.355)
>High 0.168 (0.113) −0.043 (0.139) −0.051 (0.155)
Missing 0.240 (0.165) −0.041 (0.280) −0.034 (0.303)

Mother’s job (Stay-at-home)
Professional −0.239 (0.111) 0.182 (0.142) 0.186 (0.158)
Other −0.101 (0.072) 0.126 (0.183) 0.103 (0.198)
Missing −0.199 (0.162) 0.247 (0.381) 0.168 (0.396)

Age 0.075 (0.033) 0.110 (0.030) 0.103 (0.029)
Network formation model
Same sex 0.309 (0.016) 0.370 (0.015)
Both Hispanic 0.417 (0.027) 0.433 (0.025)
Both White 0.312 (0.025) 0.304 (0.023)
Both Black 1.077 (0.043) 1.171 (0.041)
Both Asian 0.165 (0.050) 0.142 (0.047)
Mother’s education < High 0.226 (0.018) 0.216 (0.017)
Mother’s education > High 0.009 (0.016) 0.006 (0.015)
Mother’s job Professional −0.116 (0.017) −0.128 (0.016)
Age absolute difference −0.701 (0.010) −0.715 (0.009)

Average number of friends 3.251 4.664 5.613

Note: Model 4 considers the observed network as given. Model 5 infers the missing links due to friendship
nominations coded with error, and Model 6 infers the missing links due to friendship nominations coded
with error and controls for top coding. For each model, Column "Mean" indicates the estimates, and
Column "Std. Dev." indicates the posterior standard deviations in parentheses.
N = 3,126. Observed links = 17,993. Proportion of inferred network data: error code = 60.0%, error code
and top coding = 65.0%. The explained variable is computed by taking the average grade for English,
Mathematics, History, and Science, letting A = 4, B = 3, C = 2, and D = 1. Thus, higher scores indicate
better academic achievement.
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Figure C.1: MCMC Simulations – Peer Effect Model
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Figure C.2: MCMC Simulations – Network Formation Model
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