Multi-way Compressed Sensing for Sparse Low-rank Tensors

IEEE Signal Processing Letters, Oct. 2012

Nicholas Sidiropoulos (UMN) and Anastasios Kyrillidis (EPFL)

ICASSP 2013

- Has different formal meaning in Physics (spin, symmetries)
- Informally adopted in CS as shorthand for *three-way* array: dataset <u>X</u> indexed by three indices, (*i*, *j*, *k*)-th entry <u>X</u>(*i*, *j*, *k*).
- For two vectors a (*I* × 1) and b (*J* × 1), a ∘ b is an *I* × *J* rank-one matrix with (*i*, *j*)-th element a(*i*)b(*j*); i.e., a ∘ b = ab^T.
- For three vectors, a (*I* × 1), b (*J* × 1), c (*K* × 1), a ∘ b ∘ c is an *I* × *J* × *K* rank-one three-way array with (*i*, *j*, *k*)-th element a(*i*)b(*j*)c(*k*).
- The *rank of a three-way array* **X** is the smallest number of outer products needed to synthesize **X**.
- 'Curiosities':
 - Two-way $(I \times J)$: row-rank = column-rank = rank $\leq \min(I, J)$;
 - Three-way: row-rank \neq column-rank \neq "tube"-rank \neq rank
 - Two-way: rank(randn(I,J))=min(I,J) w.p. 1;
 - Three-way: rank(randn(2,2,2)) is a RV (2 w.p. 0.3, 3 w.p. 0.7)

NELL @ CMU / Tom Mitchell

- Crawl web, learn language 'like children do': encounter new concepts, learn from context
- NELL triplets of "subject-verb-object" naturally lead to a 3-mode tensor

- Each rank-one factor corresponds to a *concept*, e.g., 'leaders' or 'tools'
- E.g., say a₁, b₁, c₁ corresponds to 'leaders': subjects/rows with high score on a₁ will be "Obama", "Merkel", "Steve Jobs", objects/columns with high score on b₁ will be "USA", "Germany", "Apple Inc.", and verbs/fibers with high score on c₁ will be 'verbs', like "lead", "is-president-of", and "is-CEO-of".

Semantic analysis of Brain fMRI data

• fMRI \rightarrow semantic category scores

- fMRI mode is vectorized ($O(10^5 10^6)$)
- Could treat as three separate spatial modes \rightarrow 5-way array
- ullet ... or even include time as another dimension o 6-way array

Low-rank tensor decomposition / approximation

$$\underline{\mathbf{X}} \approx \sum_{f=1}^{F} \mathbf{a}_{f} \circ \mathbf{b}_{f} \circ \mathbf{c}_{f},$$

- Parallel factor analysis (PARAFAC) model [Harshman '70-'72], a.k.a. canonical decomposition [Carroll & Chang, '70], a.k.a. CP; cf. [Hitchcock, '27]
- PARAFAC can be written as a system of matrix equations $\mathbf{X}_k = \mathbf{A}\mathbf{D}_k(\mathbf{C})\mathbf{B}^T$, where $\mathbf{D}_k(\mathbf{C})$ is a diagonal matrix holding the *k*-th row of **C** in its diagonal; or in compact matrix form as $\mathbf{X} \approx (\mathbf{B} \odot \mathbf{A})\mathbf{C}^T$, using the Khatri-Rao product.
- In particular, employing a property of the Khatri-Rao product,

$$\mathbf{X} \approx (\mathbf{B} \odot \mathbf{A}) \mathbf{C}^{\mathsf{T}} \Longleftrightarrow \mathsf{vec}(\mathbf{X}) \approx (\mathbf{C} \odot \mathbf{B} \odot \mathbf{A}) \mathbf{1},$$

where 1 is a vector of all 1's.

- The distinguishing feature of the PARAFAC model is its essential uniqueness: under certain conditions, (**A**, **B**, **C**) can be identified from **X**, i.e., they are unique up to permutation and scaling of columns [Kruskal '77, Sidiropoulos *et al* '00 '07, de Lathauwer '04-, Stegeman '06-]
- Consider an $I \times J \times K$ tensor \underline{X} of rank F. In vectorized form, it can be written as the $IJK \times 1$ vector $\mathbf{x} = (\mathbf{A} \odot \mathbf{B} \odot \mathbf{C}) \mathbf{1}$, for some \mathbf{A} ($I \times F$), \mathbf{B} ($J \times F$), and \mathbf{C} ($K \times F$) a PARAFAC model of size $I \times J \times K$ and order F parameterized by ($\mathbf{A}, \mathbf{B}, \mathbf{C}$).
- The *Kruskal-rank* of A, denoted k_A, is the maximum k such that any k columns of A are linearly independent (k_A ≤ r_A := rank(A)).
- Given <u>X</u> (⇔ x), if k_A + k_B + k_C ≥ 2F + 2, then (A, B, C) are unique up to a common column permutation and scaling

- Tensors can easily become really big! size exponential in the number of dimensions ('ways', or 'modes').
- Cannot load in main memory; can reside in cloud storage.
- Tensor compression?
- Commonly used compression method for 'moderate'-size tensors: fit orthogonal Tucker3 model, regress data onto fitted mode-bases.
- Lossless if exact mode bases used [CANDELINC]; but Tucker3 fitting is itself cumbersome for big tensors (big matrix SVDs), cannot compress below mode ranks without introducing errors
- If tensor is sparse, can store as [i, j, k, value] + use specialized sparse matrix / tensor alorithms [(Sparse) Tensor Toolbox, Bader & Kolda]. Useful if sparse representation can fit in main memory.

Tensor compression

- Consider compressing **x** into $\mathbf{y} = \mathbf{S}\mathbf{x}$, where **S** is $d \times IJK$, $d \ll IJK$.
- In particular, consider a specially structured compression matrix ${f S} = {f U}^T \otimes {f V}^T \otimes {f W}^T$
- Corresponds to multiplying (every slab of) $\underline{\mathbf{X}}$ from the *I*-mode with \mathbf{U}^T , from the *J*-mode with \mathbf{V}^T , and from the *K*-mode with \mathbf{W}^T , where \mathbf{U} is $I \times L$, \mathbf{V} is $J \times M$, and \mathbf{W} is $K \times N$, with $L \leq I$, $M \leq J$, $N \leq K$ and $LMN \ll IJK$

Due to a property of the Kronecker product

$$egin{aligned} \left(\mathbf{U}^{\mathsf{T}} \otimes \mathbf{V}^{\mathsf{T}} \otimes \mathbf{W}^{\mathsf{T}}
ight) (\mathbf{A} \odot \mathbf{B} \odot \mathbf{C}) = \ & \left((\mathbf{U}^{\mathsf{T}} \mathbf{A}) \odot (\mathbf{V}^{\mathsf{T}} \mathbf{B}) \odot (\mathbf{W}^{\mathsf{T}} \mathbf{C})
ight), \end{aligned}$$

from which it follows that

$$\mathbf{y} = \left((\mathbf{U}^{\mathsf{T}} \mathbf{A}) \odot (\mathbf{V}^{\mathsf{T}} \mathbf{B}) \odot (\mathbf{W}^{\mathsf{T}} \mathbf{C}) \right) \mathbf{1} = \left(\tilde{\mathbf{A}} \odot \tilde{\mathbf{B}} \odot \tilde{\mathbf{C}} \right) \mathbf{1}.$$

i.e., the compressed data follow a PARAFAC model of size $L \times M \times N$ and order F parameterized by $(\tilde{\mathbf{A}}, \tilde{\mathbf{B}}, \tilde{\mathbf{C}})$, with $\tilde{\mathbf{A}} := \mathbf{U}^T \mathbf{A}, \tilde{\mathbf{B}} := \mathbf{V}^T \mathbf{B},$ $\tilde{\mathbf{C}} := \mathbf{W}^T \mathbf{C}.$ Theorem 1:

- Assume that the columns of A, B, C are sparse, and let n_a (n_b, n_c) be an upper bound on the number of nonzero elements per column of A (respectively B, C).
- Let the mode-compression matrices **U** ($I \times L, L \leq I$), **V** ($J \times M, M \leq J$), and **W** ($K \times N, N \leq K$) be randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in \mathbb{R}^{IL} , \mathbb{R}^{JM} , and \mathbb{R}^{KN} , respectively.

If

 $\min(L, k_{\mathbf{A}}) + \min(M, k_{\mathbf{B}}) + \min(N, k_{\mathbf{C}}) \ge 2F + 2, \text{ and}$ $L > 2n_a, \quad M > 2n_b, \quad N > 2n_c,$

then the original factor loadings **A**, **B**, **C** are almost surely identifiable from the compressed data.

- Lemma 1: Consider $\tilde{\mathbf{A}} := \mathbf{U}^T \mathbf{A}$, where \mathbf{A} is $I \times F$, and let the $I \times L$ matrix \mathbf{U} be randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in \mathbb{R}^{lL} (e.g., multivariate Gaussian with a non-singular covariance matrix). Then $k_{\tilde{\mathbf{A}}} = \min(L, k_{\mathbf{A}})$ almost surely (with probability 1).
- Lemma 2: Consider $\tilde{\mathbf{A}} := \mathbf{U}^T \mathbf{A}$, where $\tilde{\mathbf{A}}$ and \mathbf{U} are given and \mathbf{A} is sought. Suppose that every column of \mathbf{A} has at most n_a nonzero elements, and that $k_{\mathbf{U}^T} \ge 2n_a$. (The latter holds with probability 1 if the $l \times L$ matrix \mathbf{U} is randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in \mathbb{R}^{lL} , and min $(l, L) \ge 2n_a$.) Then \mathbf{A} is the unique solution with at most n_a nonzero elements per column [Donoho & Elad, '03]

- First fitting PARAFAC in compressed space and then recovering the sparse **A**, **B**, **C** from the fitted compressed factors entails complexity $O(LMNF + (I^{3.5} + J^{3.5} + K^{3.5})F)$.
- Using sparsity first and then fitting PARAFAC in raw space entails complexity $O(IJKF + (IJK)^{3.5})$ the difference is huge.
- Also note that the proposed approach does not require computations in the uncompressed data domain, which is important for big data that do not fit in memory for processing.

Theorem 2:

- Assume that the columns of A, B, C are sparse, and let n_a (n_b, n_c) be an upper bound on the number of nonzero elements per column of A (respectively B, C).
- Let the mode-compression matrices **U** ($I \times L, L \leq I$), **V** ($J \times M, M \leq J$), and **W** ($K \times N, N \leq K$) be randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in \mathbb{R}^{lL} , \mathbb{R}^{JM} , and \mathbb{R}^{KN} , respectively.

If

$$\begin{split} r_{\mathbf{A}} &= r_{\mathbf{B}} = r_{\mathbf{C}} = F\\ L(L-1)M(M-1) \geq 2F(F-1), \ N \geq F, \quad \text{and}\\ L \geq 2n_a, \quad M \geq 2n_b, \quad N \geq 2n_c, \end{split}$$

then the original factor loadings **A**, **B**, **C** are almost surely identifiable from the compressed data up to a common column permutation and scaling.

- Lemma 3: Consider $\tilde{\mathbf{A}} = \mathbf{U}^T \mathbf{A}$, where $\mathbf{A} (I \times F)$ is deterministic, tall/square $(I \ge F)$ and full column rank $r_{\mathbf{A}} = F$, and the elements of $\mathbf{U} (I \times L)$ are i.i.d. Gaussian zero mean, unit variance random variables. Then the distribution of $\tilde{\mathbf{A}}$ is nonsingular multivariate Gaussian.
- From [Stegeman, ten Berge, de Lathauwer 2006] (see also [Jiang, Sidiropoulos 2004], we know that PARAFAC is almost surely identifiable if the loading matrices $\tilde{\mathbf{A}}$, $\tilde{\mathbf{B}}$ are randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in $\mathbb{R}^{(L+M)F}$, $\tilde{\mathbf{C}}$ is full column rank, and $L(L-1)M(M-1) \ge 2F(F-1)$.

Generalization to higher-way arrays

Theorem 3: Let **x** = (**A**₁ ⊙ · · · ⊙ **A**_δ) **1** ∈ ℝ^{Π^δ_{d=1} I_d}, where **A**_d is I_d × F, and consider compressing it to **y** = (**U**₁^T ⊗ · · · ⊗ **U**_δ^T) **x** = ((**U**₁^T**A**₁) ⊙ · · · ⊙ (**U**_δ^T**A**_δ)) **1** = (**Ã**₁ ⊙ · · · ⊙ **Ã**_δ) **1** ∈ ℝ^{Π^δ_{d=1} L_d}, where the mode-compression matrices **U**_d (I_d × L_d, L_d ≤ I_d) are randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in ℝ^{I_dL_d}. Assume that the columns of **A**_d are sparse, and let n_d be an upper bound on the number of nonzero elements per column of **A**_d, for each d ∈ {1, · · · ,δ}. If

$$\sum_{d=1}^{\delta} \min(L_d, k_{\mathbf{A}_d}) \ge 2F + \delta - 1, \text{ and } L_d \ge 2n_d, \quad \forall d \in \{1, \cdots, \delta\},$$

then the original factor loadings $\{\mathbf{A}_d\}_{d=1}^{\delta}$ are almost surely identifiable from the compressed data \mathbf{y} up to a common column permutation and scaling.

• Various additional results possible, e.g., generalization of Theorem 2.