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Tensor? What is this?

Has different formal meaning in Physics (spin, symmetries)
Informally adopted in CS as shorthand for three-way array: dataset X
indexed by three indices, (i , j , k)-th entry X(i , j , k).
For two vectors a (I × 1) and b (J × 1), a ◦ b is an I × J rank-one matrix
with (i , j)-th element a(i)b(j); i.e., a ◦ b = abT .
For three vectors, a (I × 1), b (J × 1), c (K × 1), a ◦ b ◦ c is an I × J × K
rank-one three-way array with (i , j , k)-th element a(i)b(j)c(k).
The rank of a three-way array X is the smallest number of outer products
needed to synthesize X.
‘Curiosities’:

Two-way (I × J): row-rank = column-rank = rank ≤ min(I, J);
Three-way: row-rank 6= column-rank 6= “tube”-rank 6= rank
Two-way: rank(randn(I,J))=min(I,J) w.p. 1;
Three-way: rank(randn(2,2,2)) is a RV (2 w.p. 0.3, 3 w.p. 0.7)
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NELL @ CMU / Tom Mitchell

Crawl web, learn language ‘like children do’: encounter new concepts,
learn from context
NELL triplets of “subject-verb-object” naturally lead to a 3-mode tensor
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Each rank-one factor corresponds to a concept, e.g., ‘leaders’ or ‘tools’
E.g., say a1, b1, c1 corresponds to ‘leaders’: subjects/rows with high
score on a1 will be “Obama”, “Merkel”, “Steve Jobs”, objects/columns with
high score on b1 will be “USA”, “Germany”, “Apple Inc.”, and verbs/fibers
with high score on c1 will be ‘verbs’, like “lead”, “is-president-of”, and
“is-CEO-of”.
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Semantic analysis of Brain fMRI data

fMRI→ semantic category scores

fMRI mode is vectorized (O(105 − 106))
Could treat as three separate spatial modes→ 5-way array
... or even include time as another dimension→ 6-way array
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Low-rank tensor decomposition / approximation

X ≈
F∑

f=1

af ◦ bf ◦ cf ,

Parallel factor analysis (PARAFAC) model [Harshman ’70-’72], a.k.a.
canonical decomposition [Carroll & Chang, ’70], a.k.a. CP; cf. [Hitchcock,
’27]
PARAFAC can be written as a system of matrix equations
Xk = ADk (C)BT , where Dk (C) is a diagonal matrix holding the k -th row of
C in its diagonal; or in compact matrix form as X ≈ (B� A)CT , using the
Khatri-Rao product.
In particular, employing a property of the Khatri-Rao product,

X ≈ (B� A)CT ⇐⇒ vec(X) ≈ (C� B� A)1,

where 1 is a vector of all 1’s.
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Uniqueness

The distinguishing feature of the PARAFAC model is its essential
uniqueness: under certain conditions, (A,B,C) can be identified from X,
i.e., they are unique up to permutation and scaling of columns [Kruskal
’77, Sidiropoulos et al ’00 - ’07, de Lathauwer ’04-, Stegeman ’06-]
Consider an I × J × K tensor X of rank F . In vectorized form, it can be
written as the IJK × 1 vector x = (A� B� C)1, for some A (I × F ), B
(J × F ), and C (K × F ) - a PARAFAC model of size I × J × K and order F
parameterized by (A,B,C).
The Kruskal-rank of A, denoted kA, is the maximum k such that any k
columns of A are linearly independent (kA ≤ rA := rank(A)).
Given X (⇔ x), if kA + kB + kC ≥ 2F + 2, then (A,B,C) are unique up to a
common column permutation and scaling
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Big data: need for compression

Tensors can easily become really big! - size exponential in the number of
dimensions (‘ways’, or ‘modes’).
Cannot load in main memory; can reside in cloud storage.
Tensor compression?
Commonly used compression method for ‘moderate’-size tensors: fit
orthogonal Tucker3 model, regress data onto fitted mode-bases.
Lossless if exact mode bases used [CANDELINC]; but Tucker3 fitting is
itself cumbersome for big tensors (big matrix SVDs), cannot compress
below mode ranks without introducing errors
If tensor is sparse, can store as [i , j , k , value] + use specialized sparse
matrix / tensor alorithms [(Sparse) Tensor Toolbox, Bader & Kolda].
Useful if sparse representation can fit in main memory.
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Tensor compression

Consider compressing x into y = Sx, where S is d × IJK , d � IJK .
In particular, consider a specially structured compression matrix
S = UT ⊗ VT ⊗WT

Corresponds to multiplying (every slab of) X from the I-mode with UT ,
from the J-mode with VT , and from the K -mode with WT , where U is I×L,
V is J ×M, and W is K × N, with L ≤ I, M ≤ J, N ≤ K and LMN � IJK

I 

L 

M 

I 

J 

J 

K 
N 

L 

K 

M 
X 

N 
Y 

_ 
_ 

Nicholas Sidiropoulos (UMN) and Anastasios Kyrillidis (EPFL) ()Multi-way Compressed Sensing for Sparse Low-rank Tensors ICASSP 2013 8 / 15



Key

Due to a property of the Kronecker product(
UT ⊗ VT ⊗WT

)
(A� B� C) =(

(UT A)� (VT B)� (WT C)
)
,

from which it follows that

y =
(
(UT A)� (VT B)� (WT C)

)
1 =

(
Ã� B̃� C̃

)
1.

i.e., the compressed data follow a PARAFAC model of size L×M × N
and order F parameterized by (Ã, B̃, C̃), with Ã := UT A, B̃ := VT B,
C̃ := WT C.
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Random multi-way compression can be better!

Theorem 1:
Assume that the columns of A,B,C are sparse, and let na (nb, nc) be an
upper bound on the number of nonzero elements per column of A
(respectively B, C).
Let the mode-compression matrices U (I × L,L ≤ I), V (J ×M,M ≤ J),
and W (K × N,N ≤ K ) be randomly drawn from an absolutely continuous
distribution with respect to the Lebesgue measure in RIL, RJM , and RKN ,
respectively.
If

min(L, kA) + min(M, kB) + min(N, kC) ≥ 2F + 2, and

L ≥ 2na, M ≥ 2nb, N ≥ 2nc ,

then the original factor loadings A,B,C are almost surely identifiable from
the compressed data.
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Proof rests on two lemmas + Kruskal

Lemma 1: Consider Ã := UT A, where A is I × F , and let the I × L matrix
U be randomly drawn from an absolutely continuous distribution with
respect to the Lebesgue measure in RIL (e.g., multivariate Gaussian with
a non-singular covariance matrix). Then kÃ = min(L, kA) almost surely
(with probability 1).
Lemma 2: Consider Ã := UT A, where Ã and U are given and A is sought.
Suppose that every column of A has at most na nonzero elements, and
that kUT ≥ 2na. (The latter holds with probability 1 if the I × L matrix U is
randomly drawn from an absolutely continuous distribution with respect to
the Lebesgue measure in RIL, and min(I,L) ≥ 2na.) Then A is the unique
solution with at most na nonzero elements per column [Donoho & Elad,
’03]
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Complexity

First fitting PARAFAC in compressed space and then recovering the
sparse A, B, C from the fitted compressed factors entails complexity
O(LMNF + (I3.5 + J3.5 + K 3.5)F ).
Using sparsity first and then fitting PARAFAC in raw space entails
complexity O(IJKF + (IJK )3.5) - the difference is huge.
Also note that the proposed approach does not require computations in
the uncompressed data domain, which is important for big data that do
not fit in memory for processing.
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Further compression - down to O(
√

F ) in 2/3 modes

Theorem 2:
Assume that the columns of A,B,C are sparse, and let na (nb, nc) be an
upper bound on the number of nonzero elements per column of A
(respectively B, C).
Let the mode-compression matrices U (I × L,L ≤ I), V (J ×M,M ≤ J),
and W (K × N,N ≤ K ) be randomly drawn from an absolutely continuous
distribution with respect to the Lebesgue measure in RIL, RJM , and RKN ,
respectively.
If

rA = rB = rC = F

L(L− 1)M(M − 1) ≥ 2F (F − 1), N ≥ F , and

L ≥ 2na, M ≥ 2nb, N ≥ 2nc ,

then the original factor loadings A,B,C are almost surely identifiable from
the compressed data up to a common column permutation and scaling.
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Proof: Lemma 3 + results on a.s. ID of PARAFAC

Lemma 3: Consider Ã = UT A, where A (I × F ) is deterministic,
tall/square (I ≥ F ) and full column rank rA = F , and the elements of U
(I × L) are i.i.d. Gaussian zero mean, unit variance random variables.
Then the distribution of Ã is nonsingular multivariate Gaussian.
From [Stegeman, ten Berge, de Lathauwer 2006] (see also [Jiang,
Sidiropoulos 2004], we know that PARAFAC is almost surely identifiable if
the loading matrices Ã, B̃ are randomly drawn from an absolutely
continuous distribution with respect to the Lebesgue measure in R(L+M)F ,
C̃ is full column rank, and L(L− 1)M(M − 1) ≥ 2F (F − 1).
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Generalization to higher-way arrays

Theorem 3: Let x = (A1 � · · · � Aδ)1 ∈ R
∏δ

d=1 Id , where Ad is Id × F , and
consider compressing it to y =

(
UT

1 ⊗ · · · ⊗ UT
δ

)
x =(

(UT
1 A1)� · · · � (UT

δ Aδ)
)

1 =
(

Ã1 � · · · � Ãδ
)

1 ∈ R
∏δ

d=1 Ld , where the
mode-compression matrices Ud (Id × Ld ,Ld ≤ Id ) are randomly drawn
from an absolutely continuous distribution with respect to the Lebesgue
measure in RId Ld . Assume that the columns of Ad are sparse, and let nd
be an upper bound on the number of nonzero elements per column of Ad ,
for each d ∈ {1, · · · , δ}. If

δ∑
d=1

min(Ld , kAd ) ≥ 2F + δ − 1, and Ld ≥ 2nd , ∀d ∈ {1, · · · , δ} ,

then the original factor loadings {Ad}δd=1 are almost surely identifiable
from the compressed data y up to a common column permutation and
scaling.
Various additional results possible, e.g., generalization of Theorem 2.
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