Multi-way Compressed Sensing for Sparse Low-rank Tensors

IEEE Signal Processing Letters, Oct. 2012

Nicholas Sidiropoulos (UMN) and Anastasios Kyrillidis (EPFL)

ICASSP 2013

- Has different formal meaning in Physics (spin, symmetries)
- Informally adopted in CS as shorthand for *three-way* array: dataset **X** indexed by three indices, (i, j, k) -th entry $X(i, j, k)$.
- For two vectors **a** $(I \times 1)$ and **b** $(J \times 1)$, **a** \circ **b** is an $I \times J$ rank-one matrix with (i, j) -th element $\mathbf{a}(i)\mathbf{b}(j)$; i.e., $\mathbf{a} \circ \mathbf{b} = \mathbf{a}\mathbf{b}^{\mathsf{T}}$.
- For three vectors, **a** (*I* × 1), **b** (*J* × 1), **c** (*K* × 1), **a b c** is an *I* × *J* × *K* rank-one three-way array with (i, j, k) -th element $\mathbf{a}(i)\mathbf{b}(j)\mathbf{c}(k)$.
- The *rank of a three-way array* **X** is the smallest number of outer products needed to synthesize **X**.
- 'Curiosities':
	- Two-way $(I \times J)$: row-rank = column-rank = rank \leq min (I, J) ;
	- Three-way: row-rank \neq column-rank \neq "tube"-rank \neq rank
	- \bullet Two-way: rank(randn(I,J))=min(I,J) w.p. 1;
	- Three-way: $rank(randn(2,2,2))$ is a RV (2 w.p. 0.3, 3 w.p. 0.7)

NELL @ CMU / Tom Mitchell

- Crawl web, learn language 'like children do': encounter new concepts, learn from context
- NELL triplets of "subject-verb-object" naturally lead to a 3-mode tensor

- Each rank-one factor corresponds to a *concept*, e.g., 'leaders' or 'tools'
- E.g., say \mathbf{a}_1 , \mathbf{b}_1 , \mathbf{c}_1 corresponds to 'leaders': subjects/rows with high score on **a**¹ will be "Obama", "Merkel", "Steve Jobs", objects/columns with high score on **b**₁ will be "USA", "Germany", "Apple Inc.", and verbs/fibers with high score on c_1 will be 'verbs', like "lead", "is-president-of", and " is -CFO-of".

Semantic analysis of Brain fMRI data

• fMRI \rightarrow semantic category scores

- fMRI mode is vectorized ($O(10^5-10^6)$)
- Could treat as three separate spatial modes \rightarrow 5-way array
- \bullet ... or even include time as another dimension \rightarrow 6-way array

Low-rank tensor decomposition / approximation

$$
\underline{\mathbf{X}} \approx \sum_{f=1}^F \mathbf{a}_f \circ \mathbf{b}_f \circ \mathbf{c}_f,
$$

- Parallel factor analysis (PARAFAC) model [Harshman '70-'72], a.k.a. canonical decomposition [Carroll & Chang, '70], a.k.a. CP; cf. [Hitchcock, '27]
- PARAFAC can be written as a system of matrix equations $\mathbf{X}_k = \mathbf{A} \mathbf{D}_k(\mathbf{C}) \mathbf{B}^{\mathsf{T}}$, where $\mathbf{D}_k(\mathbf{C})$ is a diagonal matrix holding the k -th row of **C** in its diagonal; or in compact matrix form as $\mathbf{X} \approx (\mathbf{B} \odot \mathbf{A})\mathbf{C}^T$, using the Khatri-Rao product.
- In particular, employing a property of the Khatri-Rao product,

$$
\mathbf{X} \approx (\mathbf{B} \odot \mathbf{A})\mathbf{C}^T \Longleftrightarrow \text{vec}(\mathbf{X}) \approx (\mathbf{C} \odot \mathbf{B} \odot \mathbf{A})\mathbf{1},
$$

where **1** is a vector of all 1's.

- The distinguishing feature of the PARAFAC model is its essential uniqueness: under certain conditions, (**A**, **B**, **C**) can be identified from **X**, i.e., they are unique up to permutation and scaling of columns [Kruskal '77, Sidiropoulos *et al* '00 - '07, de Lathauwer '04-, Stegeman '06-]
- Consider an $I \times J \times K$ tensor **X** of rank F. In vectorized form, it can be written as the $IJK \times 1$ vector $\mathbf{x} = (\mathbf{A} \odot \mathbf{B} \odot \mathbf{C}) \mathbf{1}$, for some $\mathbf{A} (I \times F)$, \mathbf{B} $(J \times F)$, and **C** $(K \times F)$ - a PARAFAC model of size $I \times J \times K$ and order F parameterized by (**A**, **B**, **C**).
- The *Kruskal-rank* of **A**, denoted *k***A**, is the maximum *k* such that *any k* columns of **A** are linearly independent $(k_{\mathbf{A}} < r_{\mathbf{A}} := \text{rank}(\mathbf{A})$.
- **•** Given **X** (\Leftrightarrow **x**), if $k_{\bf A} + k_{\bf B} + k_{\bf C}$ > 2*F* + 2, then (**A**, **B**, **C**) are unique up to a common column permutation and scaling
- Tensors can easily become really big! size exponential in the number of dimensions ('ways', or 'modes').
- Cannot load in main memory; can reside in cloud storage.
- **•** Tensor compression?
- Commonly used compression method for 'moderate'-size tensors: fit orthogonal Tucker3 model, regress data onto fitted mode-bases.
- Lossless if exact mode bases used [CANDELINC]; but Tucker3 fitting is itself cumbersome for big tensors (big matrix SVDs), cannot compress below mode ranks without introducing errors
- If tensor is sparse, can store as [*i*, *j*, *k*, *value*] + use specialized sparse matrix / tensor alorithms [(Sparse) Tensor Toolbox, Bader & Kolda]. Useful if sparse representation can fit in main memory.

Tensor compression

- Consider compressing **x** into $y = Sx$, where S is $d \times IJK$, $d \ll IJK$.
- In particular, consider a specially structured compression matrix $\mathbf{S} = \mathbf{U}^T \otimes \mathbf{V}^T \otimes \mathbf{W}^T$
- Corresponds to multiplying (every slab of) **X** from the *I*-mode with **U** *T* , from the *J*-mode with **V**^T, and from the *K*-mode with **W**^T, where **U** is *I* \times *L*, **V** is $J \times M$, and **W** is $K \times N$, with $L \leq I$, $M \leq J$, $N \leq K$ and $LMN \ll IJK$

• Due to a property of the Kronecker product

$$
\begin{aligned} &\left(\bm{U}^{\mathcal{T}}\otimes\bm{V}^{\mathcal{T}}\otimes\bm{W}^{\mathcal{T}}\right)(\bm{A}\odot\bm{B}\odot\bm{C})= \\ &\left((\bm{U}^{\mathcal{T}}\bm{A})\odot(\bm{V}^{\mathcal{T}}\bm{B})\odot(\bm{W}^{\mathcal{T}}\bm{C})\right), \end{aligned}
$$

from which it follows that

$$
\textbf{y} = \left((\textbf{U}^T\textbf{A}) \odot (\textbf{V}^T\textbf{B}) \odot (\textbf{W}^T\textbf{C})\right) \textbf{1} = \left(\tilde{\textbf{A}} \odot \tilde{\textbf{B}} \odot \tilde{\textbf{C}}\right) \textbf{1}.
$$

i.e., the compressed data follow a PARAFAC model of size $L \times M \times N$ and order F parameterized by $(\tilde{\mathbf{A}}, \tilde{\mathbf{B}}, \tilde{\mathbf{C}})$, with $\tilde{\mathbf{A}} := \mathbf{U}^T \mathbf{A}$, $\tilde{\mathbf{B}} := \mathbf{V}^T \mathbf{B}$, $ilde{C}$:= $W^{T}C$.

Theorem 1:

- Assume that the columns of **A**, **B**, **C** are sparse, and let n_a (n_b , n_c) be an upper bound on the number of nonzero elements per column of **A** (respectively **B**, **C**).
- Let the mode-compression matrices **U** ($I \times L, L \leq I$), **V** ($J \times M, M \leq J$), and **W** ($K \times N$, $N \leq K$) be randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in \mathbb{R}^{μ} , $\mathbb{R}^{\mathcal{M}}$, and $\mathbb{R}^{\mathcal{KN}},$ respectively.

 \bullet If

 $min(L, k_A) + min(M, k_B) + min(N, k_C) > 2F + 2$, and $L > 2n_a$, $M > 2n_b$, $N > 2n_c$,

then the original factor loadings **A**, **B**, **C** are almost surely identifiable from the compressed data.

- Lemma 1: Consider $\tilde{\mathbf{A}} := \mathbf{U}^T \mathbf{A}$, where \mathbf{A} is $I \times F$, and let the $I \times L$ matrix **U** be randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in $\mathbb{R}^{\mathbb{L}}$ (e.g., multivariate Gaussian with a non-singular covariance matrix). Then $k_{\tilde{A}} = min(L, k_A)$ almost surely (with probability 1).
- Lemma 2: Consider $\tilde{\mathbf{A}} := \mathbf{U}^T \mathbf{A}$, where $\tilde{\mathbf{A}}$ and \mathbf{U} are given and \mathbf{A} is sought. Suppose that every column of **A** has at most *n^a* nonzero elements, and that $k_{\mathbf{U}^{\mathsf{T}}} \geq 2n_a$. (The latter holds with probability 1 if the $I \times L$ matrix **U** is randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in $\mathbb{R}^{\mathit{l\!L}},$ and min $(\mathit{l},\mathit{L})\geq 2\mathit{n_{a}}.$) Then **A** is the unique solution with at most *n^a* nonzero elements per column [Donoho & Elad, '03]
- First fitting PARAFAC in compressed space and then recovering the sparse **A**, **B**, **C** from the fitted compressed factors entails complexity $O(LMNF + (1^{3.5} + J^{3.5} + K^{3.5})F).$
- Using sparsity first and then fitting PARAFAC in raw space entails complexity $O(\textit{IJKF} + (\textit{IJK})^{3.5})$ - the difference is huge.
- Also note that the proposed approach does not require computations in the uncompressed data domain, which is important for big data that do not fit in memory for processing.

Theorem 2:

- Assume that the columns of **A**, **B**, **C** are sparse, and let n_a (n_b , n_c) be an upper bound on the number of nonzero elements per column of **A** (respectively **B**, **C**).
- Let the mode-compression matrices **U** $(I \times L, L \le I)$, **V** $(J \times M, M \le J)$, and **W** ($K \times N$, $N \leq K$) be randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in $\mathbb{R}^{\mu},\,\mathbb{R}^{\mathcal{M}},$ and $\mathbb{R}^{\mathcal{KN}},$ respectively.

 \bullet If

$$
r_{\mathbf{A}} = r_{\mathbf{B}} = r_{\mathbf{C}} = F
$$

\n
$$
L(L-1)M(M-1) \ge 2F(F-1), N \ge F, \text{ and}
$$

\n
$$
L \ge 2n_a, M \ge 2n_b, N \ge 2n_c,
$$

then the original factor loadings **A**, **B**, **C** are almost surely identifiable from the compressed data up to a common column permutation and scaling.

- Lemma 3: Consider $\tilde{\mathbf{A}} = \mathbf{U}^T \mathbf{A}$, where \mathbf{A} $(I \times F)$ is deterministic, tall/square ($I \geq F$) and full column rank $r_A = F$, and the elements of **U** $(I \times L)$ are i.i.d. Gaussian zero mean, unit variance random variables. Then the distribution of \tilde{A} is nonsingular multivariate Gaussian.
- From [Stegeman, ten Berge, de Lathauwer 2006] (see also [Jiang, Sidiropoulos 2004], we know that PARAFAC is almost surely identifiable if the loading matrices \tilde{A} , \tilde{B} are randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in R (*L*+*M*)*F* , \tilde{C} is full column rank, and $L(L-1)M(M-1) \geq 2F(F-1)$.

Generalization to higher-way arrays

Theorem 3: Let $\mathbf{x} = (\mathbf{A}_1 \odot \cdots \odot \mathbf{A}_{\delta}) \, \mathbf{1} \in \mathbb{R}^{\prod_{d=1}^{\delta} I_d}$, where \mathbf{A}_d is $I_d \times F$, and consider compressing it to $\mathbf{y} = (\mathbf{U}_1^T \otimes \cdots \otimes \mathbf{U}_\delta^T) \mathbf{x} =$ $\left((\mathbf{U}_1^T \mathbf{A}_1) \odot \cdots \odot (\mathbf{U}_{\delta}^T \mathbf{A}_{\delta})\right) \mathbf{1} = \left(\tilde{\mathbf{A}}_1 \odot \cdots \odot \tilde{\mathbf{A}}_{\delta}\right) \mathbf{1} \in \mathbb{R}^{\prod_{d=1}^{\delta} L_d},$ where the mode-compression matrices \mathbf{U}_d ($I_d \times L_d$, $L_d \leq I_d$) are randomly drawn from an absolutely continuous distribution with respect to the Lebesgue measure in $\mathbb{R}^{l_dL_d}$. Assume that the columns of \mathbf{A}_d are sparse, and let n_a be an upper bound on the number of nonzero elements per column of **A***^d* , for each $d \in \{1, \dots, \delta\}$. If

$$
\sum_{d=1}^{\delta} \min(L_d, k_{\mathbf{A}_d}) \geq 2F + \delta - 1, \text{ and } L_d \geq 2n_d, \forall d \in \{1, \cdots, \delta\},
$$

then the original factor loadings $\left\{\mathbf{A}_d\right\}_{d=1}^\delta$ are almost surely identifiable from the compressed data **y** up to a common column permutation and scaling.

Various additional results possible, e.g., generalization of Theorem 2.