
Large Margin Classification for Moving Targets

Jyrki Kivinen, Alex J. Smola, and Robert C. Williamson

Research School of Information Sciences and Engineering
Australian National University
Canberra, ACT 0200, Australia

{Jyrki.Kivinen, Alex.Smola, Bob.Williamson}@anu.edu.au

Abstract. We consider using online large margin classification algo-
rithms in a setting where the target classifier may change over time. The
algorithms we consider are Gentile’s Alma, and an algorithm we call
Norma which performs a modified online gradient descent with respect
to a regularised risk. The update rule of Alma includes a projection-
based regularisation step, whereas Norma has a weight decay type of
regularisation. For Alma we can prove mistake bounds in terms of the
total distance the target moves during the trial sequence. For Norma, we
need the additional assumption that the movement rate stays sufficiently
low uniformly over time. In addition to the movement of the target, the
mistake bounds for both algorithms depend on the hinge loss of the
target. Both algorithms use a margin parameter which can be tuned to
make them mistake-driven (update only when classification error occurs)
or more aggressive (update when the confidence of the classification is
below the margin). We get similar mistake bounds both for the mistake-
driven and a suitable aggressive tuning. Experiments on artificial data
confirm that an aggressive tuning is often useful even if the goal is just
to minimise the number of mistakes.

1 Introduction

Consider the basic linear classification problem. We are given a set of data points
(xt, yt) where xt ∈ R

n and yt ∈ { −1,+1 } for t = 1, . . . ,m. The task is to find a
coefficient vector w ∈ R

n such that w · xt > 0 if yt = +1, and w · xt < 0 if yt =
−1. In other words, we wish the margin ytw ·xt to be positive for every example
(xt, yt). Recently a lot of work has been done on large margin classification,
where we do not just settle for any linear separator w, but try to find one
that achieves the largest possible separation [3]. Maximising the separation can
be thought of as maximising the smallest margin over the example set, while
keeping the norm of w bounded. This often leads to significant improvements in
the generalisation ability of the resulting linear classifier [3].

The discussion above presumes a batch learning scenario: we obtain a set
of examples (xt, yt) from a source, use that data to induce a classifier w, and
then use the classifier to predict the labels y for new instances x coming from the
same source. Contrast this with the online scenario: at each time t, the algorithm
receives an input xt, makes its prediction ŷt using its current hypothesis wt, and

N. Cesa-Bianchi et al. (Eds.): ALT 2002, LNAI 2533, pp. 113–127, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

114 J. Kivinen, A.J. Smola, and R.C. Williamson

upon seeing the correct outcome yt updates its hypothesis to wt+1. Thus, the
algorithm is interleaving predicting and learning. This goes on for some time,
and the goal is to minimise the total number of prediction mistakes. The question
now is: can an analogue of large margin classification usefully be applied in an
online setting? In addition to the number of prediction mistakes, we might be
interested in the convergence properties of the algorithm, the quality of the final
hypothesis produced etc.

Theoretical analyses of mistake bounds of online algorithms are typically
done in a worst-case setting. Then it is known that the best mistake bounds are
achieved by mistake-driven algorithms, i.e., algorithms that update only after
they made a mistake. For linear separation, this means having yw · x < 0. The
analogue of large margin classification would be to update whenever we have
yw · x < ρ for some positive margin ρ > 0. If 0 < yw · x < ρ, we get updates
that are not mistake-driven, and thus not useful at least in terms of worst-case
mistake bounds. (Of course, if we wish our on-line algorithm to converge to a
maximum-margin classifier, as in [12,6], we need to use a positive margin, but this
is a somewhat different goal.) Since margins can be changed without affecting
the classifications by simply multiplying the weight vector by a scalar, margin-
based algorithms usually also employ some kind of regularisation to control the
norm of the weight vector.

To get a better idea of the usefulness of large margins and regularisation in
online learning, we consider the situation when the target classifier we are trying
to learn is allowed to move over time. This is the setting analysed earlier for
regression by Herbster and Warmuth [10] and Herbster [9] and for classification
with disjunctions as targets by Auer and Warmuth [2]. This previous work also
uses norm bounds on the hypothesis, or some other form of regularisation, to
deal with having a moving target (even when no margins are involved). More
recently, Mesterharm [14] has considered tracking arbitrary linear classifiers with
a variant of Winnow [13].

In this paper we establish mistake bounds with moving targets for general
linear classification algorithms. We have bounds for two algorithms, a simplified
version of Gentile’s Approximate Large Margin Algorithm (Alma) [6], and a
new Naive Online Regularised-risk Minimisation Algorithm (Norma) which is
motivated by gradient descent with respect to a regularised risk [11]. We have
a special interest in whether using a nonzero margin may help here. As it turns
out, the best bounds we can obtain for nonzero margins are identical to those
for zero margin (i.e., mistake driven algorithms). This is not really conclusive in
any sense, but it does give some evidence that mistake driven algorithms are not
the only way to minimise mistakes. On the technical side, our analysis of Alma
is a rather standard application of known techniques. For analysing Norma
we need something a little different to handle the weight decay. The technique
requires some additional assumptions, so our bounds for Norma are less general
than for Alma. However, experiments on artificial data suggest that the actual
performance of the algorithms is rather similar.

Large Margin Classification for Moving Targets 115

In Section 2, we describe more formally the online mistake-bounded model
and what we mean by moving targets. Section 3 describes the algorithms we
study here. The main theoretical results are given in Section 4. Some experi-
ments, which use artificial data to study the actual behaviour of the algorithms,
are described in Section 5.

2 Basic Setting

We consider linear classification problems. An example is a pair (x, y) ∈ R
n ×

{ −1,+1 }. We interpret a weight vector w ∈ R
n as a linear classifier, which

gives for a vector x the classification +1 if w ·x > 0, and otherwise classification
−1. We say that w makes a mistake, or classification error, on example (x, y),
if yw · x ≤ 0. (Thus, we consider w · x = 0 as an error.) We generalise this by
saying that w makes a margin error at scale ρ if yw · x ≤ ρ. We also define the
hinge loss as Lρ(w,x, y) = max{ 0, ρ − yw · x }. The scale parameter ρ, or the
margin, is usually nonnegative; we omit mentioning it when it is clear from the
context. We are basically interested in finding weight vectors w that make few
mistakes, or few margin errors, but the continuous-valued hinge loss turns out
to be a useful tool in analysing the algorithms. Notice that Lρ(w,x, y) ≥ ρ if
and only if w made a mistake on (x, y).

An online linear classification algorithm maintains as its current hypothesis
a weight vector w ∈ R

n. We denote the hypothesis at time t by wt. The initial
hypothesis w1 is typically 0, for lack of any other preference. At time t, for t =
1, . . . , T , the algorithm receives an instance xt ∈ R

n and makes its prediction,
which is +1 if wt · xt ≥ 0 and −1 otherwise. Then the algorithm receives the
correct outcome yt ∈ { −1,+1 } and updates its weight vector into wt+1 based
on this new information.

Suppose A is some online algorithm. We write σt = 1 if the algorithm made
a margin error at trial t (ytwt · xt ≤ ρ) and σt = 0 otherwise. We denote the
total number of margin errors made by A over a sequence of T examples by
MEρ(A) =

∑T
t=1 σt. Similarly, let Mist(A) be the number of mistakes. We will

also use the cumulative hinge loss Lossρ(A) =
∑T

t=1 Lρ(wt,xt, yt). Notice that
Mist(A) ≤ Lossρ(A)/ρ.

To prove a mistake bound, we obviously need to assume something about
the examples. For instance, the Perceptron Convergence Theorem [15] assumes
that some weight vector u ∈ R

n separates the examples with margin µ > 0; the
mistake bound is then proportional to (||u||2/µ)2. More generally, given a fixed
comparison vector u ∈ R

n, let Lossµ(u) =
∑T

t=1 Lµ(u,xt, yt) be its cumulative
hinge loss with respect to margin µ. Thus, u separates the examples with margin
µ if and only if Lossµ(u) = 0. Our approach will be to bound the cumulative
hinge loss Lossρ(A) of an online algorithm in terms of infu∈U Lossµ(u) where
µ > ρ and U ⊂ R

n is some comparison class of vectors. Typical comparison
classes consist of vectors of bounded q-norm for some 1 ≤ q ≤ 2 [8,7], i.e.,
U = { u | ||u||q ≤ B } for some B > 0. Our loss bounds go to infinity as ρ
approaches µ; in other words, we need to give the algorithm a slight advantage

116 J. Kivinen, A.J. Smola, and R.C. Williamson

by measuring its performance with respect to a smaller margin than that used
for the comparison vectors. From a hinge loss bound we can rather easily derive
a bound for the number of mistakes or margin errors.

We generalise the setting for moving comparison vectors by considering com-
parison sequences U = (u1, . . . ,uT+1) [10]. The loss of such a comparison se-
quence is naturally defined as Lossµ(U) =

∑T
t=1 Lµ(ut,xt, yt). As in the fixed

target scenario, we assume some norm bound ||ut||q ≤ B for all the individ-
ual comparison vectors ut. We additionally restrict the amount of movement by
the comparison vectors in terms of the total q-norm distance

∑
t ||ut − ut+1||q

travelled by the comparison vectors. Thus, we define for parameters 1 ≤ q ≤ 2,
B > 0 and D ≥ 0 the comparison class

Uq(B,D) = { (u1, . . . ,uT+1) |∑T
t=1||ut − ut+1||q ≤ D, ||ut||q ≤ B } .

For technical reasons, we also need to consider bounding the sum of squared
distances, so we also define

U ′
q(B,D1, D2) =

{
(u1, . . . ,uT+1) |∑T

t=1||ut − ut+1||q ≤ D1,∑T
t=1||ut − ut+1||2q ≤ D2, ||ut||q ≤ B

}
.

The meaning of the parameter D2 is perhaps a little non-intuitive; it will become
clearer after Theorem 4 when we discuss how D2 appears in the loss bounds.

3 The Algorithms

The algorithms we consider are based on the p-norm algorithms introduced by
Grove et al. [8] and further studied, e.g., by Gentile and Littlestone [7]. Thus, for
the rest of the paper we assume p ≥ 2 and 2 ≥ q > 1 are such that 1/p+1/q = 1,
and define

fi(w) =
sign(wi)|wi|q−1

||w||q−2
q

. (1)

Notice that f is one-to-one from R
n onto R

n with the inverse given by f−1
i (θ) =

sign(θi)|θi|p−1/||θ||p−2
p . The update of the p-norm Perceptron can be written as

wt+1 = f−1(f(wt) + ασtytxt) ,

where α > 0 is a learning rate parameter. The parameter p can adjusted
to change the behaviour of the algorithm. For p = 2, the function f is the
identity function, and the algorithm is the usual Perceptron algorithm. Setting
p = O(log n) gives an algorithm with performance similar to Winnow [8,7].

The first algorithm we define here is called Naive Online Regularised-Risk
Minimisation Algorithm, or Norma. The algorithm is parameterised by a learn-
ing rate α > 0, a weight decay parameter 0 ≤ λ < 1/α, and a margin ρ ≥ 0.
The update is then

wt+1 = f−1((1 − αλ)f(wt) + ασtytxt) , (2)

Large Margin Classification for Moving Targets 117

where again σt = 1 if ytwt · xt ≤ ρ and σt = 0 otherwise. For p = 2 the Norma
update can be seen as a gradient descent step with respect to the regularised
risk R(w) = Lρ(w,xt, yt) + λ||w||2/2; see [11] for additional discussion and
applications.

We also consider a simplified version of Gentile’s Approximate Large Margin
Algorithm Alma [6]. For simplicity, we call our algorithm just Alma although it
omits the parameter tuning method of Gentile’s original algorithm. Our version
of Alma has a fixed learning rate parameter α > 0, regularisation parameter
B > 0 and margin ρ ≥ 0. The update of Alma has two steps:

Additive step w′
t+1 = f−1(f(wt) + ασtytxt), σt = 1ytwt·xt≤ρ

Normalisation step wt+1 = w′
t+1/βt where βt = max{ 1, ||w′

t+1||q/B }
Gentile’s original Alma also includes a method for tuning the parameters α and
ρ during learning. The tuning method there has been carefully crafted so that
assuming separable data, the algorithm converges to an approximate maximum
margin classifier even without advance knowledge of the maximum margin. We
use here a cruder version where α and ρ need to be fixed beforehand (and a poor
choice may lead to bad performance), since we have not been able to generalise
the dynamic tuning method to the moving target scenario.

In the case p = 2 (with f the identity function), we see that the hypotheses of
Norma and Alma can be represented as wT+1 =

∑T
t=1 atxt for some scalar co-

efficients at. Thus, the algorithms allow the standard generalisation to non-linear
classification by using kernels to compute dot products. Also the normalisation
in the kernel version of Alma can be accomplished with little computational
overhead by keeping track of the changes in ||wt|| [6].

Both Norma and Alma have been here represented as having three param-
eters: margin ρ, learning rate α, and a regularisation type parameter (λ or B).
However, effectively there are only two parameters, as multiplying all the param-
eters (except for λ) by any constant will leave the predictions of the algorithm
unchanged; also the scaled hinge losses Lρ(wt,xt, yt)/ρ remain invariant. Thus,
without loss of generality we could fix, e.g., ρ = 1, but we find it convenient to
do the analysis with all the parameters explicitly written out. Although the pa-
rameterisations of Norma and Alma are quite similar, we find that of Norma
a little more intuitive. The underlying idea of gradient descent with respect to
a regularised risk can be easily applied, e.g., in SVM regression using the ν
parameterisation [11].

4 Worst-Case Mistake Bounds

We start with some general comments on the kind of bounds we are after. Fix
some comparison class U ; say U = Uq(B,D) for some B > 0 and D ≥ 0. Let
K∗ = infU∈U Lossµ(U) for some margin µ > 0. Thus if some U ∈ U separates
the examples with margin µ, i.e., ytut · xt > µ for all t, then K∗ = 0. Otherwise
K∗ is a measure for the non-separability of the examples at scale µ. An alterna-
tive intuition is to think that the data have been obtained by corrupting some

118 J. Kivinen, A.J. Smola, and R.C. Williamson

(hypothetical) separable data by noise; then K∗ would be a measure of the total
amount of noise added.

In the case of non-moving targets, one can get bounds of the form Mist(A) ≤
K∗/µ + o(K∗) ([7]; see also [5]). Here o(K∗) is a term that is sublinear in K∗;
we would expect it to depend on the norms of the examples, the bound B, etc.
Notice that K∗/µ is an upper bound for the number of mistakes made by the
best comparison sequence from U ; of course, it may be a quite loose bound.
We would expect target movement to result in an additional O(D) term in the
mistake bound, analogous to the regression case [10]. In other words, there should
be a constant cost per unit target movement. It turns out that with the optimal
choice of the parameters, bounds of exactly this form are attainable for Alma.
For Norma there are some additional considerations about the nature of the
target movement.

Choosing the parameters is an issue in the bounds we have. The bounds
depend on the choice of the learning rate and margin parameters, and the optimal
choices depend on quantities (such as K∗) that would not be available when the
algorithm starts. In our bounds, we handle this by assuming an upper bound
K ≥ K∗ that can be used for tuning. By substitutingK = K∗, we obtain the kind
of bound we discussed above; otherwise the estimateK replacesK∗ in the bound.
In a practical application, we probably prefer to ignore the formal tuning results
in the bounds and just tune the parameters by whatever empirical methods we
prefer. Recently, online algorithms have been suggested that dynamically tune
the parameters to almost optimal values as the algorithm runs [1,6]. Applying
such techniques to our analysis remains an open problem.

We now turn to the actual bounds, starting with a margin error bound for
Alma. It will be convenient to give the parameter tunings in terms of the func-
tion

h(x,R, S) =

√
S

R

(
x+

S

R

)
− S

R
,

where we assume x, R and S to be positive. Notice that 0 ≤ h(x,R, S) ≤ x
holds, and limR→0+ h(x,R, S) = x/2. Accordingly, we define h(x, 0, S) = x/2.

Theorem 1. Let X > 0 and suppose that ||xt||p ≤ X for all t. Fix K ≥ 0,
D ≥ 0 and B > 0, and write

C =
p− 1

4
X2(B2 + 2BD) . (3)

Consider Alma with regularisation parameter B, margin parameter ρ and learn-
ing rate α = 2h(µ − ρ,K,C)/((p − 1)X2) where µ > ρ ≥ 0. If we have
Lossµ(U) ≤ K for some U ∈ Uq(B,D), then

MEρ(Alma) ≤ K

µ− ρ
+2

C

(µ− ρ)2
+2

(
K

µ− ρ
+

C

(µ− ρ)2

)1/2(
C

(µ− ρ)2

)1/2

.

To prove Theorem 1, we apply Herbster and Warmuth’s [10] technique of
using a Bregman divergence [4] as a measure of progress. As first suggested

Large Margin Classification for Moving Targets 119

by Grove et al. [8], the p-norm family of algorithms is related to the potential
function F (w) = ||w||2q/2. (Notice that ∇F = f where f is as in (1).) Using
this, we define the appropriate divergence for u,w ∈ R

n as

dq(u,w) = F (u) − F (w) + f(w) · (w − u) . (4)

See [8,7,6] for basic properties of F and dq.
The key part of the analysis is the following lower bound on the progress the

algorithm makes on its tth update.

Lemma 1. Assume ||ut||q ≤ B and ||xt||p ≤ X for all t. Then at any trial t
the update of Alma with regularisation parameter B, margin parameter ρ and
learning rate α satisfies

dq(ut,wt) − dq(ut+1,wt+1)

≥ αLρ(wt,xt, yt) − αLµ(ut,xt, yt) + ασt

(
µ− ρ− α

p− 1
2

X2
)

+
1
2
||ut||2q − 1

2
||ut+1||2q −B||ut+1 − ut||q .

Proof. We split the progress into three parts:

dq(ut,wt) − dq(ut+1,wt+1) = (dq(ut,wt) − dq(ut,w
′
t+1))

+ (dq(ut,w
′
t+1) − dq(ut,wt+1))

+ (dq(ut,wt+1) − dq(ut+1,wt+1)) . (5)

Grove et al. [8] have shown that dq(wt,w
′
t+1) ≤ p−1

2 σtα
2||xt||2p. Hence, for the

first part of (5) we get

dq(ut,wt) − dq(ut,w
′
t+1) = ασtytxt · (ut − wt) − dq(wt,w

′
t+1)

≥ ασtytxt · (ut − wt) − p− 1
2

α2σt||xt||2p
≥ α(σtµ− Lµ(ut,xt, yt)) − α(σtρ− Lρ(wt,xt, yt))

− p− 1
2

α2σt||xt||2p .

It is easy to see that wt+1 satisfies

wt+1 = arg min
w∈B

dq(w,w′
t+1)

where B = { w | ||w||q ≤ B }. Since ut ∈ B and B is convex, the well-known re-
sult about projections with respect to a Bregman divergence (see [10] for details)
implies

dq(ut,w
′
t+1) − dq(ut,wt+1) ≥ 0 .

For the third part we have

dq(ut,wt+1) − dq(ut+1,wt+1) =
1
2
||ut||2q − 1

2
||ut+1||2q + (ut+1 − ut) · f(wt+1)

≥ 1
2
||ut||2q − 1

2
||ut+1||2q −B||ut+1 − ut||q

120 J. Kivinen, A.J. Smola, and R.C. Williamson

by Hölder’s inequality and the fact ||f(wt+1)||p = ||wt+1||q ≤ B. Substituting
the above three estimates to the right-hand side of (5) gives the claim.

The following technical lemma, which is proved by a simple differentiation,
is used for choosing the optimal parameters.

Lemma 2. Given R > 0, S > 0 and γ > 0 define f(z) = R/(γ−z)+S/(z(γ−z))
for 0 < z < γ. Then f(z) is maximised for z = h(γ,R, S), and the maximum
value is

f(h(γ,R, S)) =
R

γ
+

2S
γ2

+ 2
(
R

γ
+

S

γ2

)1/2(
S

γ2

)1/2

.

Proof of Theorem 1. By summing the bound of Lemma 1 over t = 1, . . . , T we
get

dq(u1,w1) − dq(uT+1,wT+1)

≥ αLossρ(Alma) − αLossµ(U) + αMEρ(Alma)
(
µ− ρ− α

p− 1
2

X2
)

+
1
2
||u1||2q − 1

2
||uT+1||2q −B

T∑
t=1

||ut+1 − ut||q .

We take w1 = 0, so dq(u1,w1) = ||u1||2q/2, and clearly −dq(uT+1,wT+1) ≤ 0.
On the right-hand side, we use the assumptions about U . We get

MEρ(Alma)(µ−ρ−α(p−1)X2/2) ≤ K−Lossρ(Alma)+
1
α
(BD+B2/2) . (6)

We can of course drop the non-positive term −Lossρ(Alma). For the value α
given in the theorem, we have µ− ρ− α(p− 1)X2/2 > 0, so we get

MEρ(Alma) ≤ K

µ− ρ− α(p− 1)X2/2
+

BD +B2/2
α(µ− ρ− α(p− 1)X2/2)

.

The claim follows by applying Lemma 2 with z = α(p − 1)X2/2, γ = µ − ρ,
R = K and S = C.

Next, we use the margin error result of Theorem 1 to obtain mistake bounds.
It turns out that two ways of choosing the parameter pair (α, ρ) result in the
same mistake bound. In particular, the same bound we get for the mistake driven
algorithm with ρ = 0 also holds for certain positive ρ > 0, assuming the learning
rate is chosen appropriately.

Theorem 2. Let X > 0 and suppose that ||xt||p ≤ X for all t. Fix K ≥ 0, B > 0
and D ≥ 0. Define C as in (3), and given µ > 0 let r = h(µ,K,C). Consider
Alma with regularisation parameter B, learning rate α = 2r/((p − 1)X2) and
margin set to either ρ = 0 or ρ = µ− r. Then for both of these margin settings,
if there exists a comparison sequence U ∈ Uq(B,D) such that Lossµ(U) ≤ K,
we have

Mist(Alma) ≤ K

µ
+

2C
µ2

+ 2
(
C

µ2

)1/2(
K

µ
+

C

µ2

)1/2

.

Large Margin Classification for Moving Targets 121

Proof. For ρ = 0 this is a direct corollary of Theorem 1. To get non-zero ρ, we
set α = 2(µ − ρ)/((p − 1)X2) so that the coefficient in front of MEρ(Alma) in
(6) becomes zero. We then exploit Mist(Alma) ≤ Lossρ(Alma)/ρ to get

Mist(Alma) ≤ K

ρ
+

(p− 1)X2(BD +B2/2)
2ρ(µ− ρ)

.

The claim follows by applying Lemma 2 with γ = µ and z = µ− ρ.

To interpret Theorem 2, let us start with a fixed target (D = 0) and p =
2. In the noise-free case K = 0, we recover the familiar Perceptron mistake
bound X2B2/µ2. Notice that by Theorem 2 we can get this mistake bound also
using the positive margin ρ = µ/2 with suitable α. However, a positive margin
obviously leads to a larger number of updates; the margin error bound we get
from Theorem 1 with this tuning is worse by a factor of 4 compared to ρ = 0.

In the noisy case K > 0, we get additional terms K/µ + O(
√
K/µ) as ex-

pected. For a discussion of how different choices of p affect this kind of a bound,
see [8] and [7]. If the target movement boundD is non-zero, it will appear linearly
in the mistake bound as expected.

Our bounds generalise those of Gentile [6] in that we allow a moving target.
Also, Gentile was concerned only with margin error bounds and not obtaining
mistake bounds using a nonzero margin. However, in the case of no target move-
ment (D = 0), Gentile gets better bounds than ours by using special techniques
we have not been able to apply to the moving target case (D > 0). Also, Gentile’s
algorithm includes a dynamical tuning of the parameters, unlike the simplified
version we here call Alma.

We now go to bounds for Norma. Since Norma does not maintain a bound
on the norm of the weight vector, the meaning of margin errors is not as clear as
for Alma. However, the number of margin errors, i.e., updates, is still interesting
as a measure of the complexity of the hypothesis produced by the algorithm.

Theorem 3. Let X > 0 and suppose that ||xt||p ≤ X for all t. Fix K ≥ 0,
B > 0, D1 ≥ 0 and D2 ≥ 0. Write

C =
p− 1

4
X2
(
B2 +B

(√
TD2 +D1

))
(7)

and, given parameters µ > ρ ≥ 0, let α′ = 2h(µ−ρ,K,C)/((p−1)X2). Consider
Norma with weight decay parameter

λ =
1

Bα′

√
D2

T
, (8)

learning rate parameter α = α′/(1+α′λ) and margin ρ. If we have Lossµ(U) ≤ K
for some U ∈ U ′

q(B,D1, D2), then

MEρ(Norma) ≤ K

µ− ρ
+

2C
(µ− ρ)2

+ 2
(

C

(µ− ρ)2

)1/2(
K

µ− ρ
+

C

(µ− ρ)2

)1/2

.

122 J. Kivinen, A.J. Smola, and R.C. Williamson

Proof. It will be convenient to write θt = f(wt). We also define θ′
t+1 = θt +

α′σtytxt, so θt+1 = (1 − αλ)θ′
t+1, and let w′

t+1 be such that θ′
t+1 = f(w′

t+1).
As in the proof of Lemma 1, we split the progress into three parts:

dq(ut,wt) − dq(ut+1,wt+1) = (dq(ut,wt) − dq(ut,w
′
t+1))

+ (dq(ut,w
′
t+1) − dq(ut,wt+1))

+ (dq(ut,wt+1) − dq(ut+1,wt+1)) . (9)

For the first part we have
dq(ut,wt) − dq(ut,w

′
t+1) ≥ α′(σtµ− Lµ(ut,xt, yt)) − α′(σtρ− Lρ(wt,xt, yt))

− p− 1
2

α′2σtX
2 . (10)

as in the proof of Lemma 1.
For the second part, the definition of dq gives

dq(ut,w
′
t+1) − dq(ut,wt+1) = dq(wt+1,w

′
t+1) + (θ′

t+1 − θt+1) · (wt+1 − ut) .

By using wt+1 = (1 − αλ)w′
t+1 and the fact w · f(w) = ||w||2q we get

dq(wt+1,w
′
t+1) =

1
2
||(1 − αλ)w′

t+1||2q − 1
2
||w′

t+1||2q + αλw′
t+1 · θ′

t+1

=
1
2

(
αλ

1 − αλ

)2

||wt+1||2q .

Also, since θ′
t+1 − θt+1 = αλθ′

t+1 = αλθt+1/(1 − αλ), we have

(θ′
t+1 − θt+1) · (wt+1 − ut) =

αλ

1 − αλ
(θt+1 · wt+1 − θt+1 · ut)

=
αλ

1 − αλ
(||wt+1||2q − θt+1 · ut) .

Hence, recalling the definition of α′ and using the fact ||w||q = ||f(w)||p, we get

dq(ut,w
′
t+1) − dq(ut,wt+1)

=
(
α′λ+

α′2λ2

2

)
||wt+1||2q − α′λθt+1 · ut

=
(
α′λ+

α′2λ2

2

)
||θt+1||2p − α′λθt+1 · ut . (11)

For the third part of (9) the definition of dq directly gives

dq(ut,wt+1)−dq(ut+1,wt+1) =
1
2
||ut||2q − 1

2
||ut+1||2q +(ut+1−ut) ·θt+1 . (12)

Substituting (10), (11) and (12) into (9) gives us
dq(ut,wt) − dq(ut+1,wt+1)

≥ α′(σtµ− Lµ(ut,xt, yt)) − α′(σtρ− Lρ(wt,xt, yt))

− p− 1
2

α′2σt||xt||2p +
1
2
||ut||2q − 1

2
||ut+1||2q +R(θt+1) (13)

where

Large Margin Classification for Moving Targets 123

R(θ) =
(
α′λ+

α′2λ2

2

)
||θ||2p − α′λθ · ut + (ut+1 − ut) · θ .

To bound R(θt+1) from below, we notice that R is convex. Its gradient is given
by

∇R(θ) =
(
2α′λ+ α′2λ2

)
f−1(θ) + ut+1 − (1 + α′λ)ut

where f−1 is the inverse of f . Therefore, R(θt+1) ≥ R(θ∗) where

f−1(θ∗) =
ut − ut+1 + α′λut

2α′λ+ α′2λ2
.

Write w∗ = f−1(θ∗). First using ||w||q = ||f(w)||p and w · f(w) = ||w||2q and
then observing that ||ut − ut+1 + α′λut||q ≤ ||ut − ut+1||q + α′λ||ut||q gives us

R(θ∗) = (α′λ+
α′2λ2

2
)||θ∗||2p − (2α′λ+ α′2λ2)w∗ · θ∗

= −1
2
(2α′λ+ α′2λ2)||w∗||2q

≤ −1
2

1
2α′λ+ α′2λ2

(||ut − ut+1||q + α′λ||ut||q)2

= −1
2

1
2 + α′λ

(
||ut − ut+1||2q

α′λ
+ 2||ut − ut+1||q||ut||q + α′λ||ut||2q

)
.

By applying R(θt+1) ≥ R(θ∗) in (13) and noticing that −1/(2 + α′λ) > −1/2,
we get

dq(ut,wt) − dq(ut+1,wt+1)
≥ −α′(σtρ− Lρ(wt,xt, yt)) + α′(σtµ− Lµ(ut,xt, yt))

− α′2σt
p− 1

2
||xt||2p +

1
2
||ut||2q − 1

2
||ut+1||2q

− 1
4

(
||ut+1 − ut||2q

α′λ
+ 2||ut||q||ut+1 − ut||q + α′λ||ut||2q

)
. (14)

By summing over t = 1, . . . , T and using the assumption that U ∈ U ′
q(B,D1, D2)

we get

dq(u1,w1) − dq(uT+1,wT+1)
≥ α′Lossρ(Norma) − α′Lossµ(U)

+ α′MEρ(Norma)
(
µ− ρ− α′ p− 1

2
X2
)

+
1
2
||u1||2q − 1

2
||uT+1||2q

− 1
4

(
D2

α′λ
+ 2BD1 + Tα′λB2

)
.

124 J. Kivinen, A.J. Smola, and R.C. Williamson

Now λ appears only in a subexpression S(α′λ) where

S(z) = −D2

z
− zTB2 .

Since S(z) is maximized for z =
√
D2/(TB2), we choose λ as in (8)

which gives S(α′λ) = −2B
√
TD2. We assume w1 = 0, so dq(u1,w1) −

dq(uT+1,wT+1) ≤ dq(u1,w1) = ||u1||2q/2. By moving some terms around and
estimating ||uT+1||q ≤ B and Lossµ(U) ≤ K we get

Lossρ(Norma) + MEρ(Norma)
(
µ− ρ− α′ p− 1

2
X2
)

≤ K +
B2 +B(

√
TD2 +D1)

2α′ . (15)

To get a bound for margin errors, notice that the value α′ given in the
theorem satisfies µ − ρ − α′(p − 1)X2/2 > 0. We make the trivial estimate
Lossρ(Norma) ≥ 0, which gives us

MEρ(Norma) ≤ K

µ− ρ− α′(p− 1)X2/2
+

B2 +B(
√
TD2 +D1)

2α′(µ− ρ− α′(p− 1)X2/2)
.

The bound follows by applying Lemma 2 with γ = µ−ρ and z = α′(p−1)X2/2.

As with Alma, we can get a mistake bound either by setting ρ = 0 in the
margin error bound or doing a slightly different analysis that leads to a non-zero
margin.

Theorem 4. Let X > 0 and suppose that ||xt||p ≤ X for all t. Fix K ≥ 0,
B > 0, D1 ≥ 0 and D2 ≥ 0. Define C as in (7), and given µ > 0 let α′ = 2r/((p−
1)X2) where r = h(µ,K,C). Consider Norma with weight decay parameter as in
(8), learning rate α = α′/(1−α′λ), and margin set to either ρ = 0 or ρ = µ− r.
Then for both of these margin settings, if there exists a comparison sequence
U ∈ U ′

q(B,D1, D2) such that Lossµ(U) ≤ K, we have

Mist(Norma) ≤ K

µ
+

2C
µ2

+ 2
(
C

µ2

)1/2(
K

µ
+

C

µ2

)1/2

.

Proof of Theorem 4 from Theorem 3 is completely analogous with the proof
of Theorem 2 from Theorem 1. We omit the details.

Comparing the bounds for the algorithms, we notice that the Norma bound
has a term

√
TD2 replacing D in the Alma bound. Suppose the parameters here

have been chosen optimally: D =
∑T

t=1 ||ut − ut+1||q and D2 =
∑T

t=1 ||ut −
ut+1||2q. Then it is easy to see that

√
TD2 ≥ D always holds, with equality if

the target speed is uniform (||ut − ut+1||q = ||ut′ − ut′+1||q for all t, t′). Thus,
the bound for Norma gets worse if the target speed changes a lot. We believe
that this may be due to our proof techniques, since the experiments reported in
Section 5 do not show such differences between Alma and Norma.

Large Margin Classification for Moving Targets 125

0 2000 4000 6000 8000 10000 12000
0

500

1000

1500

2000

2500

3000

3500

trials

m
is

ta
ke

s

Perceptron
ALMA

0
NORMA

0
ALMA
NORMA

0 2000 4000 6000 8000 10000 12000
0

200

400

600

800

1000

1200

trials

m
is

ta
ke

s

Perceptron
ALMA

0
NORMA

0
ALMA
NORMA

Fig. 1. Mistakes made by the algorithms on drifting (above) and switching (below)
data

5 Experiments

The mistake bounds in Section 4 are of course only worst-case upper bounds, and
even as such maybe not very tight. Hence, we have performed some preliminary
experiments on artificial data to see qualitatively how the bounds relate to the
actual performance of the algorithms. Our bounds would suggest that some

126 J. Kivinen, A.J. Smola, and R.C. Williamson

form of regularisation is useful when the target is moving, and forcing a positive
margin may give an additional benefit. Further, the difference in the assumptions
of Theorems 1 and 3 suggests that Norma might not perform so well when the
movement rate of the target varies a lot.

To generate the examples, we use one mixture of 2-dimensional Gaussians
for the positive examples and another for negative ones. We remove all examples
that would be misclassified by the Bayes-optimal classifier (which is based on the
actual distribution known to us) or are close to its decision boundary. This gives
us data that are cleanly separable using a Gaussian kernel. Target movement
takes place as random changes in the parameters of the Gaussians. We use two
movement schedules: In the drifting case, there is a relatively small parameter
change after every ten trials. In the switching case, there is a very large parameter
change after every 1000 trials. Thus, other things being equal, our bound for
Norma would be much better in the drifting than in the switching case. In
either case, we ran each algorithm for 10000 trials and cumulatively summed up
the mistakes made by them.

In our experiments we compare Norma and Alma with p = 2 and the basic
Perceptron algorithm (which is the same as Norma with the margin and weight
decay parameters set to zero). We also consider variants Norma0 and Alma0
where we fix the margin to zero but keep the weight decay (or regularisation)
parameter. We used Gaussian kernels to handle the non-linearity of the data.
For these experiments, the parameters of the algorithms were tuned by hand
optimally for each example distribution.

Figure 1 shows the cumulative mistake counts for the algorithms. There does
not seem to be any decisive differences between the algorithms. In particular,
Norma seems to work quite well also on switching data. In general, it does
seem that using a positive margin is better than fixing the margin to zero,
and regularisation even with zero margin is better than the basic Perceptron
algorithm.

Acknowledgments. This work was support by the Australian Research Coun-
cil.

References

[1] P. Auer, N. Cesa-Bianchi and C. Gentile. Adaptive and self-confident on-line
learning algorithms. Technical Report NC-TR-00-083, NeuroCOLT, 2000.

[2] P. Auer and M. K. Warmuth. Tracking the best disjunction. Machine Learning,
32(2):127–150, August 1998.

[3] P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector
machines and other pattern classifiers. In B. Schölkopf, C. J. C. Burges and A. J.
Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 43–
54. MIT Press, 1999.

[4] L. M. Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Physics, 7:200–217, 1967.

Large Margin Classification for Moving Targets 127

[5] Y. Freund and R. E. Schapire. Large margin classification using the perceptron
algorithm. Machine Learning, 37(3):277–296, 1999.

[6] C. Gentile. A new approximate maximal margin classification algorithm. Journal
of Machine Learning Research, 2:213–242, December 2001.

[7] C. Gentile and N. Littlestone. The robustness of the p-norm algorithms. In Proc.
12th Annu. Conf. on Comput. Learning Theory, pages 1–11. ACM Press, New
York, NY, 1999.

[8] A. J. Grove, N. Littlestone and D. Schuurmans. General convergence results for
linear discriminant updates. Machine Learning, 43(3):173–210, 2001.

[9] M. Herbster. Learning additive models online with fast evaluating kernels. In
D. Helmbold and B. Williamson, editors, Proc. 14th Annu. Conf. on Comput.
Learning Theory, pages 444–460. Springer LNAI 2111, Berlin, July 2001.

[10] M. Herbster and M. K. Warmuth. Tracking the best linear predictor. Journal of
Machine Learning Research, 1:281–309, September 2001.

[11] J. Kivinen, A. J. Smola and R. C. Williamson. Online learning with kernels.
In T. G. Dietterich, S. Becker and Z. Ghahramani, editors, Advances in Neural
Information Processing Systems 14, pages 785–792. MIT Press, Cambridge, MA,
2002.

[12] Y. Li and P. M. Long. The relaxed online maximum margin algorithm. Machine
Learning, 46(1):361–387, January 2002.

[13] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2(4):285–318, 1988.

[14] C. Mesterharm. Tracking linear-threshold concepts with Winnow. In J. Kivinen
and B. Sloan, editors, Proc. 15th Annu. Conf. on Comput. Learning Theory, pages
138–152. Springer LNAI 2375, Berlin, July 2002.

[15] A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the
Symposium on the Mathematical Theory of Automata, volume 12, pages 615–622.
Polytechnic Institute of Brooklyn, 1962.

	Introduction
	Basic Setting
	The Algorithms
	Worst-Case Mistake Bounds
	Experiments

