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Abstract—Cancer detection in histopathology slides is not easy 
even today. CNN (Convolutional Neural Network) based Object 
identification and segmentation algorithms work very well. A
large dataset of medical images is required for classification which 
may not be available especially for rare diseases. Therefore, deep 
learning and machine learning may not be effective for rare 
disease classification. If CNN architecture is trained on one dataset 
then it performs well but the same architecture may not achieve 
good accuracy on other datasets. So, generalization is one of main
issues. This paper proposes FSL (Few-Shot Learning) to solve 
generalization and size of dataset. This paper uses Prototypical 
networks and MAML (Model Agnostic Meta Learning) 
simultaneously on four different datasets. Along with this, it has 
also been checked whether these two networks meet the concept of
generalization or not. The paper also finds accuracy of both 
networks in 2-way, 3-way, and 5-way modes. Simulation results 
show that MAML achieves accuracy of 84.56% in the 2-way 2-shot 
2 query mode. Further, simulation results show that Prototypical 
Network achieves accuracy of 74.575%, 61.9889% and 45.762% 
in 2-way 2-shot 2 query mode, 3-way 3-shot 3-query mode and 5-
way 5-shot 5-query mode, respectively.
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I. INTRODUCTION

Cancer causes a lot of deaths in the world. It is a type of 
disease in which the cells of the body start growing in an 
uncontrollable manner. If it is found early, the right treatment 
can be given and the patient has a better chance of staying alive. 
Otherwise, the situation can become quite dire. According to a 
WHO study [1], cancer caused nearly 10 million deaths 
worldwide in 2020. Its cases are increasing day by day all over 
the world, which means the probability of death of a person is 
increasing. Histopathology is a method to detect and classify 
cancer. By using this, a doctor can determine the grade of 
cancer and plan the strategy for the operation. But still, there is 
a lack of experienced pathologists in the area of histopathology. 
With this method, the diagnosis of cancer is extremely difficult. 

Without experience, no one can make a reliable guess.
    Since the invention of DL (Deep Learning) and ML (Machine 
Learning), there are many techniques and CNN architectures 
that can recognise and segment images. These techniques 
provide efficient results. There are also many experiments in 
medical imaging that use DL and ML on histopathology images. 
All these methods are data-driven, requiring large amounts of 
labelled data. It is a very time-consuming task for the pathologist 
to scan and label medical images from the slides. To avoid this 
problem, some researchers employ data augmentation so that the 
model can get a variety of data points to learn from. In the 
second method, a researcher first trains the model on a large 
dataset and then fine-tunes it on a smaller dataset. We can say 
that both strategies use a large amount of data or expend it 
through augmentation. Another challenging issue of DL 
techniques is high computation, in which models need to be run 
on high computational resources.

    This study employs FSL techniques that don't necessitate a
large-scale dataset. Human intelligence serves as the inspiration 
for the FSL concept. Even if a small child begins to recognise 
things after a few exposures, then artificial intelligence methods 
should not need such a large dataset. Similar to this, FSL learns 
from a small number of images. This paper employs the 
prototypical network and MAML on the four different datasets, 
namely (i) BRACS (BReAst Carcinoma Subtyping) (ii) 
BrakeHIS (Breast Cancer Histopathological Database) (iii) 
BACH (BreAst Cancer Histology Images) and (iv) LC25000 
(Lung and Colon Cancer). Most of this paper is about the idea 
of generalization, which is a feature of FSL. FSL methods 
require a dataset with a high number of classes and a lower 
number of samples. Thus, this study utilises one dataset for 
training and another for validation, as well as one for train-
validation and another for testing.

    This study begins with an overview of the related works in 
Section 2. Section 3 gives an overview of the methodology. This 
paper provides a brief overview of the datasets in Section 4. This 
study highlights the outcomes of experiments described in brief 
in Section 5. The paper reaches its conclusion in Section 6.

                                                                                                                     .
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II. RELATED WORKS

Cancer is a common disease these days. The majority of 
cancer diseases occur in old people. According to a report [2], 
slightly more than 70% of cancer cases include those over 50. 
In medical imaging, researchers have been trying to develop 
artificial intelligence for a long time. In 1955, Lee Lusted [3] 
was the first person to say that computers could be used to 
diagnose diseases. Lodwick et al. [4] digitized chest X-rays for 
the first time to make CAD systems, which they used to find 
lung cancer eight years later. One of the earliest and most 
extensively researched CAD applications in the 1970s and 
1980s included the diagnosis of lung cancer by employing chest 
radiography images. However, the advent of Deep Learning 
methods has fundamentally altered this field. Researchers are 
using different ways to learn, like deep learning, to diagnose 
cancer.

In [6], M. Nishio et al. suggest a computer-aided diagnosis 
system. To classify lung cancer images, the study uses 
homology-based feature extraction with ML algorithms. In [7], 
E. W. Teh et al. transfer the features extracted from one weakly 
labelled dataset to a less labelled dataset. The study employs the 
ProxyNCA method for classification. In [8], Y. M. Attias et al. 
show the effectiveness of metric learning with proxies in DL. It 
reduces the training time and uses fewer resources. In [9], A. 
Medela et al. demonstrate the histopathology-based Siamese 
network for FSL. This study also shows the transfer of 
knowledge from one dataset to another. In [10], A. Foucart et 
al. show artifact identification in histopathology slides using 
DL methods. The study uses the weak and noisy data for the 
supervision of CNN. The paper also shows the generalization 
capability of the network. In [11], N. N. Shaikh et al. employ
FSL for artifact identification in histopathology slides. The 
study uses an approach based on a prototypical network.

U.K. Das et al. use metric-based learning for segmentation in 
[17]. The study uses CNN with K-Means clustering and median 
filtering. M. Masud et al. propose a new method for DL-based 
classification in [18]. The paper uses two transformations for 
feature extraction (2D Fourier transformation and 2D Wavelet 
transformation) and then combines the features for 
classification via CNN. In [19], M. Toğaçar employs the 
DarkNet-19 with Support Vector Machine (SVM) and the 
Manta Ray Forging optimization algorithm for classification. In 
[20], M. Ali et al. suggest a multi-input dual stream capsule 
network. The network uses convolutional layers' strong feature 
learning abilities to categorize histopathology images. In [21], 
S. Garg et al. use CNN with feature extraction methods. The 
paper shows class activation and saliency maps by using 
SmoothGrad and GradCAM. In [22], M. Phankokkruad uses 
ResNet50V2, VGG16, and DenseNet201 with ensemble 
transfer learning to classify lung cancer. In [23], J. Lin et al. 
propose Pyramidal Deep-Broad Learning (PDBL), which is a 
plug-and-play module. PDBL is a backbone module that helps 
to train CNN with less training time. In [24], R. D. Mohalder et 
al. use deep learning-based methods to predict colon cancer. In 
[25], J. Fan et al. propose a transfer learning architecture based 

on SVM. K. Adu et al. [26] propose a dual horizontal squash 
capsule network (DHS-CapsNet) for the classification of lung 
and colon cancers. DHS-CapsNet is a combination of a 
horizontal squash function and an encoder feature fusion
module.

III. METHODS

A. Few-shot Learning
In the FSL, there are two types of sets: a support set (S) and 

a query set (Q). An M-way N-shot classification is a structure of 
support set in which M stands for M-classes and N for N-
samples per class. The Query set contains images drawn at 
random from N classes. The images in the query set are different 
from the support set images. Suppose a dataset A contains some 
E samples with F classes like:        ܣ = ,ଵݔ)} ,(ଵݕ ,ଶݔ) ,(ଶݕ … … ,ாݔ) (ாݕ … … ,ாݔ) ி)}       (1)ݕ
Here, ௜ݕ ∈ {1,2, … . {ܨ is the corresponding label for the sampleݔ . These support and query sets are the subset of superset 
A where ܯ < ܭ and ܰ < .ܨ Here, ݔ௜ ∈ ℝ஽is a D-dimensional 
feature vector.

B. Prototypical Network [12]
     The prototypical network calculates the prototype ௙ܿ ∈ ℝ௚
for each class using an embedding function ఏ݂: ℝ஽ → ℝ௚
with ߠ learnable parameters. A prototype for its class is:                              ௙ܿ = 1หܣ௙ห ෍ ఏ݂(ݔ௜)(௫೔,௬೔)∈஺೑                               (2)
Here ܣ௙ stands for the collection of samples tagged with the 
class ݂.

Fig 1: Prototypical networks in few-shot and zero-shot 
scenarios [12]

Using the distance function ݀: ℝ௚ × ℝ௚ → [0, +∞) ,
prototypical Networks compute a probability distribution over 
classes for a sample x using a SoftMax function covering 
distances towards the prototypes throughout the embeddings:                ݌ఏ(ݕ = (ݔ|݂ = exp (−݀( ఏ݂(ݔ), ௙ܿ))∑ exp (−݀( ఏ݂(ݔ), ܿ௙ᇲ))௙ᇲ                (3)
C. Model Agnostic Meta-Learning [13]
    The MAML algorithm tries to train a model with quick 
adaptation to a problem in FSL. Consider a task ܶ ,ଵݔ)ܮ}= ,ଵݕ … … , ,ுݔ ,(ுݕ ,(ଵݔ)ݍ ,௧ݔ|௧ାଵݔ)ݍ ,(௧ݕ {ܪ that has the 
following components: a loss function an episode length ,ܮ  a ,ܪ
distribution over beginning observations (ଵݔ)ݍ , and a 
distribution over transitions ,௧ݔ|௧ାଵݔ)ݍ  ௧). The algorithm trainsݕ
the modal to a distribution over tasks ݌(ܶ). For ܰ-shot learning 
a task ௜ܶ from ݌(ܶ) learns using ܰ samples through observation 
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௜ݍ and loss function ்ܮ೔ . In training phase, model learns from ܰ
samples with loss ்ܮ೔ , and then tested on the new samples of ௜ܶ .
Then, the model ݂ is refined by looking at how the test error on
new samples from ݍ௜ changes as the parameters change.

    The algorithm's objective is to develop a model that 
employs gradient-based learning rule to learn fast and no overfit 
on incoming tasks ௜ܶ from distribution (ܶ)݌ . The approach 
discovers parameters that are responsive to changes in the task. 
It means that even small changes to the parameters can have a 
big effect on the loss function for any task. Suppose a model 
function ఏ݂with parameters ߠ. For a new task ௜ܶ , parameter ߠ௜ᇱis 
computed using gradient descent as shown in equation 4.                                    ߠ௜ᇱ = ߠ − )೔்ܮఏ∇ߙ ఏ݂)                                 (4)
    Here ߙ stands for step size, which is fixed. In training, 
parameters of model ݂ఏ೔ᇲ optimize for the tasks through 
distribution ݌(ܶ) using equation 5.      ݉݅݊ఏ ∑ (்)೔(݂ఏ೔ᇲ)்೔~௣்ܮ = ∑ )೔்ܮ ఏ݂ିఈ∇ഇ௅೅೔(௙ഇ))்೔~௣(்)    (5)
   The algorithms optimise the tasks overall using stochastic 
gradient descent (SGD). Then equation 6 updates the model 
parameters as follows:                            ߠ ← ߠ − ఏ∇ߚ ෍ ೔்ܮ ቀ݂ఏ೔ᇲቁ்೔~௣(்)                        (6)
    Here ߚ stands for meta step size.

IV. DATASETS

This study utilizes four publicly available datasets for the 
implementation of FSL. In FSL, a model learns from various 
classes, but medical imaging datasets normally contain fewer 
classes and samples. Therefore, the study effectively integrates 
transfer learning with FSL.

A. BRACS (BReAst Carcinoma Subtyping)[15]
    This dataset was generated through the collaboration of the 
National Cancer Institute (Italy), the Institute for High 
Performance Computing and Networking of the Research 
Council of Italy (Italy), IBM Research (Zurich), and the 
University of Naples(Italy). The BRACS dataset includes 547 
Whole Slide Images (WSIs) that were taken from 189 distinct 
patients. It also contains 4539 patched images that were taken 
from 387 WSIs that were gathered from 151 patients. The 
dataset is made up of seven different groups, namely : (i)Normal 
Tissue(N), (ii)Pathological Benign (PB), (iii)Usual Ductal 
Hyperplasia (UDH), (iv)Flat Epithelial Atypia (FEA), (v) 
Atypical Ductal Hyperplasia (ADH), (vi) Ductal Carcinoma in 
Situ (DCIS), and (vii) Invasive Carcinoma (IC). The researchers 
used a 40X magnification factor to capture images from WSI. 
Table 1 displays the distribution of the dataset.

TABLE I. BRACS DATASET

Data N PB UDH FEA ADH DCIS IC

Images 484 836 517 756 507 790 649

B. BrakeHIS (Breast Cancer Histopathological 
Database)[14]

    This dataset was developed by the P&D Laboratory, Brazil. It 
contains 7909 histopathology images that were taken from 82 
patients. It has eight distinct classes, namely: (i) Adenosis (A), 
(ii) Fibroadenoma (F), (iii) Phyllodes Tumor (PT), (iv) Tubular 
Adenoma (TA), (v) Ductal Carcinoma (DC), (vi) Lobular 
Carcinoma (LC), (vii) Mucinous Carcinoma
(MC), and (viii) Papillary Carcinoma (PC). The authors used 
four magnification factors (40x, 100x, 200x, and 400x) to 
capture images from WSIs. Table 2 shows the distribution of 
dataset.

TABLE II. BRAKEHIS DATASET

A F PT TA DC LC MC PC

40x 114 253 109 149 864 156 205 145

100x 113 260 121 150 903 170 222 142

200x 111 264 108 140 896 163 196 135

400x 106 237 115 130 788 137 169 138

C. BACH (BreAst Cancer Histology Images)[16]
    This dataset consists of microscopic histopathology images 
that have been expertly annotated by two pathologists from the 
Institute for Research and Innovation in Health and the Institute 
of Molecular Pathology and Immunology of the University of 
Porto. It was created for the ICIAR 2018 grand challenge. It 
contains 400 training and 100 testing microscopy 
histopathology images acquired from 33 patients. This dataset 
has four groups: (i) Normal (N), (ii) Benign (B), (iii) In Situ 
Carcinoma (ISC), and (iv) Invasive Carcinoma (IC). Table 3 
displays the distribution of the dataset.

TABLE III. BACH DATASET

Data N B ISC IC

Training Images 100 100 100 100

Test Images 25 25 25 25

D. LC25000 (Lung and Colon Cancer)[5]
    This dataset was created with the help of James A. Haley 
Veterans’ Hospital. It contains 25,000 histology images with 
five classes. The dataset is a combination of lung cancer tissues 
and colon cancer tissues. It consists of five classes, named as: (i) 
Benign Lung (BL), (ii) Lung Adenocarcinomas (LA), (iii) Lung 
Squamous Cell Carcinomas (LSC), (iv) Benign Colon (BC) and 
(v) Colon Adenocarcinomas (CA). Table 4 shows the 
distribution of the dataset.

TABLE IV. LC25000 DATASET

Data BL LA LSC BC CA

Images 5000 5000 5000 5000 5000
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V. EXPERIMENT AND RESULTS ON PROTOTYPICAL NETWORKS 
AND MAML

    This study employs four different datasets combinedly on 
prototypical networks and MAML. This is because FSL focuses 
on generalisation and learning from fewer samples. Fig. 2. 
shows the workings of FSL in which there are two types of sets 
of images: one is a support image set and the other is a query 
image set. A few-shot learner trains itself using support images. 
Assume a model is learning using the 5-way, 5-shot method. 
Here, this means that the support image set will contain a total 
of 25 images (5 images per class). The query image set may 
contain any number of images (e.g., 5, 10, or 15). The FSL 
model learns through the support set and its weights are updated 
through the loss function calculated on the query image. This 
process is repeated many times. In every iteration, the model 
picks the images randomly from the dataset. Assume there are 
1000 classes in a dataset and each class contains 50 images. It 
means that each class has fewer data samples for training a deep 
learning architecture. The FSL model can easily learn from this 
and achieve good accuracy. For this, there is a need to create 
class-wise partitions of the dataset (e.g., 500 classes for training, 
300 classes for validation, and 200 classes for testing). Then, the 
model needs to train itself on the M-way N-shot method, and 
after that, validation and testing.

Fig. 2: Block Diagram of Few-shot learning

A. Prototypical Networks
The study employs the BRACS dataset for training, the 

BACH dataset for validation, BrakeHis for train-validation, and 
LC25000 data for testing. In the pre-processing step, the study 
resizes the image to a 28x28 size and performs image rotation 
at 90, 180, 270, and 360 degrees for data augmentation. Images 
are also converted from RGB to grayscale. The study uses the 
ADAM optimizer for optimization. The learning rate is 0.01. 
The architecture's training epochs are 10000. The model's 
learning rate starts to decay after twenty epochs. The model 
runs for 1000 iterations for testing. Fig. 2, Fig. 3 and Fig. 5 
display the results of the experiments in 2-way 2-shot 2-query 
mode, 3-way 3-shot 3-query mode and 5-way 5-shot 5-query 
mode, respectively. As shown in the figures, it is clear that the 
model achieves the highest accuracy of 74.575% in the 2-way 
2-shot 2 query mode. The model achieves an accuracy of 
61.9889% and 45.762% in 3-way 3-shot 3-query mode and 5-
way 5-shot 5-query mode, respectively. As the number of 
classes increases, the accuracy of the model decreases. The 
training accuracy is also decreasing in every mode with an 
increase in classes. Fig. 6 and Fig. 7 show the training accuracy 
and loss of the model, respectively.

Fig. 3: Prototypical networks in the 2-way 2-shot 2-query 
mode

Fig. 4: Prototypical networks in the 3-way 3-shot 3-query 
mode

Fig. 5: Prototypical networks in the 5-way 5-shot 5-query 
mode

B. Model Agnostic Meta Learning
    The study employs the BRACS dataset for training, the 
BACH and BrakeHis datasets for validation, and LC25000 data 
for testing. The pre-processing is similar to the prototypical 
networks. The study uses a learning rate of 0.001. The model 
trains for 15000 epochs. The architecture employs 125 tasks to 
sample per meta-update. The step size alpha for inner gradient 
update is 0.001. The number of inner gradient updates in 
training is 1. The model runs for 15000 iterations for testing. 
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Fig. 6: Training accuracy of Prototypical networks in the 2-
way 2-shot 2-query mode

Fig. 7: Training loss of Prototypical networks in the 2-way 2-
shot 2-query mode

Fig. 8: MAML in the 2-way 2-shot 2-query mode

    Fig. 8 displays the results of the experiments in 2-way 2-shot 
2-query mode. The model achieves the accuracy of 84.56% in 
the 2-way 2-shot 2 query mode. Fig. 9 and Fig. 10 show the 
training accuracy and loss of the model, respectively. Fig.10 
displays the result of the experiments in 3-way 3-shot 3-query 
mode. The model achieves the accuracy of 60.72% in 3-way 3-
shot 3-query mode.

Fig. 9: Training accuracy of MAML in the 2-way 2-shot 2-
query mode

Fig. 10: Training loss of MAML in the 2-way 2-shot 2-query 
mode

Fig. 11: MAML in the 3-way 3-shot 3-query mode

VI. CONCLUSION

This study shows the effectiveness of FSL in histopathology 
image classification. It demonstrates that a model can be trained 
with a few samples on different datasets. The results show the 
generalization of the models. A few-shot model learns the 
features of the dataset and better generalises them to a new 
dataset. In the experiment, MAML achieved the highest 
accuracy of 84.56% in the 2-way 2-shot 2 query mode. The 
study demonstrates the training of FSL models on four different 
datasets, which is the first time ever in FSL. The outcomes of 
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the study demonstrate that there is still an opportunity for 
enhancing performance. Future research will look into the 
effects of various FSL models on histopathology classification. 
It is still an assumption that the change in the backbone of CNN 
may improve the performance. For a more thorough evaluation 
of the FSL-based approach's potential, researchers may test the 
algorithms on different disease datasets.
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