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Abstract. In this paper we propose two approaches to esti-
mating the turbulent kinetic energy (TKE) dissipation rate,
based on the zero-crossing method by Sreenivasan et al.
(1983). The original formulation requires a fine resolution of
the measured signal, down to the smallest dissipative scales.
However, due to finite sampling frequency, as well as mea-
surement errors, velocity time series obtained from airborne
experiments are characterized by the presence of effective
spectral cutoffs. In contrast to the original formulation the
new approaches are suitable for use with signals originating
from airborne experiments. The suitability of the new ap-
proaches is tested using measurement data obtained during
the Physics of Stratocumulus Top (POST) airborne research
campaign as well as synthetic turbulence data. They appear
useful and complementary to existing methods. We show the
number-of-crossings-based approaches respond differently
to errors due to finite sampling and finite averaging than the
classical power spectral method. Hence, their application for
the case of short signals and small sampling frequencies is
particularly interesting, as it can increase the robustness of
turbulent kinetic energy dissipation rate retrieval.

1 Introduction

Despite the fact that turbulence is one of the key physical
mechanisms responsible for many atmospheric phenomena,
information on the turbulent kinetic energy (TKE) dissipa-
tion rate ε based on in situ airborne measurements is scarce.
Research aircraft are often not equipped to measure wind

fluctuations with spatial resolution better than a few tens
of meters (Wendisch and Brenguier, 2013). Due to various
problems related to, for example, inhomogeneity of turbu-
lence along the aircraft track and/or artifacts related to in-
evitable aerodynamic problems (Khelif et al., 1999; Kalgo-
rios and Wang, 2002; Mallaun et al., 2015), estimates of ε at
such low resolutions using power spectral density (PSD) or
structure functions are complex and far from being standard-
ized (e.g., compare procedures in Strauss et al., 2015; Jen-La
Plante et al., 2016). The following question arises: can we do
any better or can we at least introduce alternative methods to
increase the robustness of ε retrievals?

In the literature, there exist several different methods to
estimate ε using the measured velocity signal as a start-
ing point. One of them is the zero- or threshold-crossing
method (Sreenivasan et al., 1983) which, instead of calcu-
lating the energy spectrum or velocity structure functions,
requires counting of the signal zero- or threshold-crossing
events (see Fig. 1a). Their mean number per unit length is
related to the turbulent kinetic energy dissipation rate. The
zero-crossing method is based on a direct relation between
ε and the root mean square of the velocity derivative (Pope,
2000); hence, the measured signal should be resolved down
to the smallest scales. However, this is not achievable in the
case of flight measurements with moderate time resolutions.
Using Taylor’s hypothesis, the measured time series can be
converted into a spatial signal and the sampling frequency
will correspond to scales which are typically 2–3 orders of
magnitude larger than the Kolmogorov scales. As a result,
the number of zero crossings per unit length for such signal is

Published by Copernicus Publications on behalf of the European Geosciences Union.



4574 M. Wacławczyk et al.: Novel approaches to estimating the turbulent kinetic energy dissipation rate

much smaller than the one corresponding to a high-resolution
velocity signal where turbulence intensity is the same.

Interestingly, Kopeć et al. (2016) have shown that the
dissipation rates estimated from such NL using very low-
resolution signals, although underestimated, were propor-
tional to ε calculated using structure functions scaling in the
inertial range. In the follow up analyses we found that this is
also the case for moderate-resolution airborne data from dif-
ferent sources. This led us to a question of whether it would
be possible to modify the zero-crossing method such that it
could also be applied to moderate- or low-resolution mea-
surements whilst mitigating the observed underestimation at
the same time. In this work we propose two possible modifi-
cations of the zero-crossing method. The first one is based on
a successive filtering of a velocity signal and inertial range ar-
guments. In the second approach we use an analytical model
for the unresolved part of the spectrum and calculate a cor-
recting factor to NL, such that the standard relation between
ε and NL can be used.

The new approaches are tested on velocity signals ob-
tained during the Physics of Stratocumulus Top (POST) re-
search campaign, which was designed to investigate the ma-
rine stratocumulus clouds and the details of vertical structure
of the stratocumulus-topped boundary layer (STBL; Ger-
ber et al., 2013; Malinowski et al., 2013). The observed
winds were measured using the CIRPAS Twin Otter research
aircraft with sampling frequency fs = 40 Hz, which corre-
sponds to a resolution of 2.75 m for the speed of the aircraft
55 m s−1. Additional tests of the method with synthetic ve-
locity signals as suggested by Frehlich et al. (2001) are also
performed.

The present paper is structured as follows. In Sect. 2 we re-
view existing methods to estimate the dissipation rate of the
turbulent kinetic energy. Next, in Sect. 3, we propose the two
modifications of the zero-crossing method. They are applied
to a single signal from flight 13 and synthetic turbulence data
and discussed in detail in Sect. 4. Next, in Sect. 5, we apply
the procedures to several data sets from flights 10 and 13 to
show that the results of new approaches compare favorably
with those obtained from standard power spectrum and struc-
ture function methods. This is followed by “Conclusions”,
where the advantages of the new proposals and perspectives
for further study are discussed.

2 Previous methods for the retrieval of the energy
dissipation rate from measured velocity time series

The need to estimate the turbulent kinetic energy dissipa-
tion rate ε as well as the variety of available data resulted
in the formulation of a number of estimation methods. Two
of the most commonly used approaches are the power spec-
tral density and the structure function approach. Both are
based on the inertial range arguments, which follow from
Kolmogorov’s second similarity hypothesis (Kolmogorov,

1941); hence, they are also called “indirect methods” (Al-
bertson et al., 1997). With the assumption of local isotropy
the one-dimensional longitudinal and transverse wavenum-
ber spectra in the inertial range are given by (Monin and Ya-
glom, 1975; Pope, 2000)

E11(k1)= C1ε
2/3k

−5/3
1 , E22(k1)= C

′

1ε
2/3k

−5/3
1 . (1)

Here k1 is the longitudinal component of the wavenumber
vector k = (k1,k2,k3), C1 ≈ 0.49 and C′1 ≈ 0.65 if k1 units
are rad m−1 (cf. Pope, 2000, Eqs. 6.242, 6.243). E11 is re-
lated to the energy spectrum function E(k):

E11(k1)=

∞∫
k1

E(k)

k

(
1−

k2
1
k2

)
dk, (2)

where k = |k|. As discussed in Pope (2000) experimental
data confirm Eq. (1) within 20% of the predicted values ofC1
and C′1 over two decades of wavenumbers. Within the valid-
ity of the local isotropy assumption of Kolmogorov (1941),
the energy spectrum function can be approximated by the for-
mula (Pope, 2000)

E(k)= Cε2/3k−5/3fL(kL)fη(kη), (3)

where C ≈ 1.5 as supported by experimental data, and
fL and fη are nondimensional functions, which specify
the shape of energy spectrum in, respectively, the energy-
containing and the dissipation range. L= k3/2/ε denotes the
length scale of large eddies and η = (ν3/ε)1/4 is the Kol-
mogorov length scale connected with the dissipative scales
(Pope, 2000), where ν is the kinematic viscosity. The func-
tion fL tends toward unity for large kL, whereas fη tends
toward unity for small kη, such that in the inertial range the
formula E(k)= Cε2/3k−5/3 is recovered.

Within the validity of Taylor’s hypothesis, Eq. (1) can be
converted to the frequency spectra, where k1 = (2πf )/U and
U is the magnitude of the vector difference between the air-
craft velocity and the wind velocity, i.e., the true air speed.
The vector difference is averaged along the displacement
which defines k1. The frequency f is measured in 1 s−1, U
in m s−1 and k1 in rad m−1. In order to estimate the dissi-
pation rate from the atmospheric turbulence measurements,
several assumptions should be taken. Most importantly, one
assumes that the turbulence is homogeneous and isotropic
and that the inertial range scaling Eq. (1) holds. Then, the
frequency spectrum of the longitudinal velocity component
in the inertial range is (e.g., Oncley et al., 1996; Siebert et
al., 2006)

S(f )= C1

(
U

2π

)2/3

ε2/3f−5/3. (4)

The value of a constant C1 ≈ 0.49 used in this work is re-
lated to the one-sided spectra. Hence, by E11, E22 or S(f )
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we denote the one-sided spectra, which integrated over ar-
gument from 0 to ∞ yield the variance of the signal. With
Eq. (4), the turbulent kinetic energy dissipation rate can be
estimated from the power spectral density of the measured
signal.

Alternatively, one can consider the nth order longitudi-
nal structure functionsDn = 〈(uL(x+r, t)−uL(x, t))

n
〉; here

uL is the longitudinal component of velocity and r is a dis-
placement along the direction defined by uL. In the inertial
subrange, the second- and third-order structure functions are
related to the dissipation rate ε by the following formulas
(Pope, 2000):

D2(r)= C2ε
2/3r2/3, D3(r)=−

4
5
εr. (5)

Experimental results of Saddoughi and Veeravalli (1994) in-
dicate that C2 ≈ 2, with an accuracy of ±15%.

Another method, also based on Eq. (3), is the velocity
variance method (Fairall et al., 1980; Bouniol et al., 2004;
O’Connor et al., 2010). Let us consider a homogeneous ve-
locity field converted to time series u(t) with the use of
Taylor’s hypothesis. The mean-square value of this signal
〈u2(t)〉 = u′

2 is equal to the integral from 0 to∞ of the one-
sided power spectral density S(f ) over the frequency space.

The signal u(t) is next filtered with a band-pass filter with
cutoff numbers [flow,fup] in the frequency space. Assum-
ing that the filter is perfect, i.e., that it is a rectangle in the
frequency space, after the filtering, a signal uf (t) with the
variance

u′
2
f =

fup∫
flow

S(f )df (6)

is obtained. The above formula represents the portion of ki-
netic energy of u(t) contained in the frequencies between
flow and fup. Fairall et al. (1980), Bouniol et al. (2004) and
O’Connor et al. (2010) substitute Eq. (3) for S(f ) into Eq. (6)
and integrate to obtain the following formula for the dissipa-
tion rate:

ε =

 2(2π)2/3u′2f

3C1U2/3
(
f
−2/3
low − f

−2/3
up

)
3/2

. (7)

Yet another method, also used in the atmospheric turbulence
analysis (Sreenivasan et al., 1983; Poggi and Katul, 2009,
2010; Wilson, 1995; Yee et al., 1995), is based on the number
of zero or level crossings of the measured velocity signal. It
dates back to the early work of Rice (1945), who considered
a stochastic processes q and its derivative with respect to time
∂q/∂t . He then assumed that these two processes have Gaus-
sian statistics and are independent. The formulation of this
method results from investigating how frequently the signal
crosses the level zero q(t)= 0 (see Fig. 1a). Working under

those assumptions Rice (1945) showed that the number of
upcrossings of the zero level per unit time is

N2
=
〈(∂q/∂t)2〉

4π2〈q2〉
. (8)

As 〈(∂q/∂t)2〉 is proportional to the dissipation rate of the
kinetic energy, the zero-crossing method can be used to es-
timate this quantity. As it was argued by Sreenivasan et al.
(1983), Eq. (8) also holds with less restricted assumptions,
with only q having Gaussian statistics, and, moreover, even
for strongly non-Gaussian velocity signals, the number of
zero crossings was close to the theoretical value from Eq. (8).
For a spatially varying signal, Eq. (8) can be expressed as
follows, using the characteristic wavenumber kc and the one-
sided wavenumber spectra (He and Yuan, 2001):

kc =

√∫
∞

0 k2
1E11dk1∫
∞

0 E11dk1
. (9)

The characteristic wavelength is equal to λc = 2π/kc. Hence,
the mean number of crossings (up- and downcrossings) per
unit length NL with, on average, two crossings per λc is

NL =
2
λc
=

1
π
kc. (10)

We will now introduce the two-point longitudinal correlation
of velocity Rij (r1e1)= 〈ui(x, t)uj (x+r1e1, t)〉, where e1 is
the standard basis vector, and assume that the flow is statis-
tically stationary and homogeneous and that statistics do not
depend either on time t or point x.

Using the inverse Fourier transform, the 11 component of
the two-point correlation tensor R11 and its derivatives can
be written in terms of E11 as follows (Pope, 2000):

R11(r1e1)=

∞∫
0

E11(k1)cos(k1r1)dk1,

R′′11(r1e1)=−

∞∫
0

E11(k1)k
2
1 cos(k1r1)dk1, (11)

where R′′11 denotes the second-order derivative of R11. With
those relationships we can rewrite Eq. (9) in the following
manner:

kc =

√∫
∞

0 k2
1E11(k1)dk1∫
∞

0 E11(k1)dk1
=

√
−R′′11(0)
R11(0)

. (12)

We further define the Taylor longitudinal microscale λf with
the use of R′′11(0) and R11(0):

λf =

(
−

1
2
R′′11(0)
R11(0)

)−1/2

. (13)
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Hence, Eq. (10) implies that the number of crossings per
unit length is related to the longitudinal Taylor microscale
λf through

λf =

√
2
π

1
NL

H⇒
1
λ2
f

=
1
2
π2N2

L. (14)

Relations (11–14) are valid for any statistically homogeneous
vector fields, regardless of whether or not they are isotropic
(Monin and Yaglom, 1975), provided that kc is the charac-
teristic wavenumber along the longitudinal direction. How-
ever, homogeneity alone is not a sufficient assumption to es-
timate the TKE dissipation rate ε of a 3-D turbulent field
from velocity signals measured along the 1-D aircraft flight
path (Chamecki and Dias, 2004). We further use the local
isotropy assumption to write a relation between dissipation
and the Taylor microscales (Pope, 2000):

ε =
30νu′2

λ2
f

=
15νu′2

λ2
g

, (15)

where λg = λf /
√

2 is the Taylor transverse microscale.
Hence, finally, substituting Eq. (14) into Eq. (15) we obtain
(Poggi and Katul, 2010)

ε = 15π2νu′
2
N2

L. (16)

For the transverse velocity time series, Eq. (16) has a factor
of 7.5 instead of 15.

3 New proposals for the estimation of the dissipation
rate from a velocity signal with a truncated
high-frequency part of the energy spectrum

Based on Eqs. (9) and (10) it is clear that the number of zero
crossings is related to the 11 component of the dissipation
tensor D11(k)= 2νk2E11(k):

π2u′
2
N2

L =

∞∫
0

k2E11dk. (17)

Figure 1b presents the profile of D(k)= 2νk2E(k) where
E(k) is described by the model spectrum (Eq. 3) with fη =
exp(−βkη) (Pope, 2000); here β = 2.1 and η = 2 mm. It is
seen that the large wavenumber (small scale) part of the spec-
trum has the most significant impact on the resulting value of
NL.

At the same time the data available from the POST mea-
surements can only account for a small part of the total dis-
sipation spectrum, shown qualitatively as a shaded region in
Fig. 1b. The lower bound of this region follows from a finite
size of the averaging window, while the upper bound is re-
lated to the finite Nyquist frequency which equals 20Hz for
the POST measurements.

If one was to use the zero-crossing method (Eq. 16) in or-
der to estimate ε, it is clear that the measured number of sig-
nal zero crossings would lead to a significant underestima-
tion of the spectrum integral as compared to the full spectrum
measurements down to the very small scales. We would like
to propose the reformulation of the original zero-crossing
method in order to estimate the dissipation rate from the
number of signal zero crossings based on a restricted range
of k values available from the airborne measurements. Two
proposals for such procedures are given later in the article.

3.1 Method based on successive filtering of a signal

Let us consider a signal u1(t) resolved in a certain range of
frequencies f0 < f < f1. Converting the wavenumber spec-
trum to the frequency spectrum, we obtain from Eq. (17) the
following relation for the number of signal crossings per unit
time

u′1
2
N2

1 = 4

f1∫
f0

f 2S(f )df. (18)

Similarly as in the velocity variance method described in
Sect. 2, let us now filter the signal using a band-pass filter
characterized by a different cutoff frequency f2 < f1. In such
a case we obtain a different signal u2(t) with a reduced num-
ber of zero crossings N2 <N1:

u′2
2
N2

2 = 4

f2∫
f0

f 2S(f )df. (19)

If we subtract Eq. (19) from Eq. (18) we obtain

u′1
2
N2

1 − u
′

2
2
N2

2 = 4

f1∫
f2

f 2S(f )df. (20)

In the inertial range, S(f ) is described by Eq. (4); hence, if
both f1 and f2 belong to the inertial range,

u′1
2
N2

1 − u
′

2
2
N2

2 = 4C1

(
U

2π

)2/3

ε2/3

f1∫
f2

f 1/3df

= 3C1

(
U

2π

)2/3

ε2/3
(
f

4/3
1 − f

4/3
2

)
. (21)

If we proceed further and filter the signal using a series of
cutoff frequencies fi < f2, we can estimate ε from Eq. (21)
using a linear-least-squares fitting method.

In the above derivation we assumed that the applied filter
is rectangular in the frequency space. The issue of frequency
response characteristics of a filter will be discussed further in
Sect. 4.1.
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Figure 1. (a) A signal q(t) crossing the level q = 0. (b) Dissipation spectra: the range of k numbers covered by the POST measurements is
denoted by the color shading.

3.2 Method based on recovering the missing part of the
spectrum

In this method we attempt to account for the impact of the
missing part of the dissipation spectrum by introducing a cor-
recting factor to the number of zero crossings per unit length
NL. The number of crossings per unit length is calculated
from the measured signal where the fine-scale fluctuations
having the highest wavenumber kcut will be denoted by Ncut
and the variance of this signal will be denoted by u′cut

2. From
Eq. (17) it follows that Ncut is related to NL by the formula

u′
2
N2

L = u
′
cut

2
N2

cut

∫
∞

0 k2
1E11dk1∫ kcut

0 k2
1E11dk1

= u′cut
2
N2

cut

(
1+

∫
∞

kcut
k2

1E11dk1∫ kcut
0 k2

1E11dk1

)
. (22)

We then assume a certain form of the energy spectrum,
Eq. (3). For simplicity we take fL = 1, i.e., we neglect the
contribution of the largest scales to the value of the dissipa-
tion rate based on zero crossings and we consider two differ-
ent forms of fη, as proposed in Pope (2000). The first is the
simple exponential form

fη = e−βkη, (23)

with β = 2.1. The second is the more complex formula

fη = e

{
−

[
(βkη)4+(βcη)

4
]1/4
+βcη

}
, (24)

where β = 5.2 and cη = 0.4. With this, the energy spectrum
reads

E(k)= Cε2/3k−5/3fη(βkη), (25)

where C = 1.5. The integral from 0 to∞ of the dissipation
spectrum 2νk2E(k) should be equal to ε, which results in
β = 2.1 in Eq. (23) and provides a relation between β and cη

in Eq. (24). The latter case, due to the additional degree of
freedom in fη fits the experimental data better in the dissipa-
tive range (Pope, 2000).

The corresponding one-dimensional spectrum E11 can be
calculated from Eq. (2):

E11(k1)= Cε
2/3

∞∫
k1

k−8/3fη(βkη)

(
1−

k2
1
k2

)
dk. (26)

Next we change the variables in the integral Eq. (26) to ξ =
βkη, introduce Eq. (26) into Eq. (22) and once again change
the variables to ξ1 = βk1η. As a result we obtain

u′
2
N2

L ≈ u
′
cut

2
N2

cut1+

∫
∞

kcutβη
ξ2

1
∫
∞

ξ1
ξ−8/3fη(ξ)

(
1− ξ2

1
ξ2

)
dξdξ1∫ kcutβη

0 ξ2
1
∫
∞

ξ1
ξ−8/3fη(ξ)

(
1− ξ2

1
ξ2

)
dξdξ1


︸ ︷︷ ︸

CF

= u′cut
2
N2

cutCF, (27)

here CF is the correcting factor.
The value of ε can be calculated numerically using an it-

erative procedure.
As a starting point for this procedure, a first guess for

the Kolmogorov length η = (ν3/ε)1/4 should be given. With
this, we calculate the correcting factor CF from Eq. (27) tak-
ing either the form of Eq. (23) or (24) for fη. Next, from
Eq. (16) the value of dissipation can be estimated as

ε = 15π2νu′cut
2
N2

cutCF. (28)

We start the next iteration by calculating again the Kol-
mogorov length η = (ν3/ε)1/4, the corrected value of CF
from Eq. (27) and the new value of ε from Eq. (28). After
several iterations the procedure converges to the final values
of the dissipation rate and Kolmogorov’s length η with an er-
ror defined by a prescribed norm1η = |ηn+1

−ηn| ≤ dη. The
successive steps are summarized in the form of Algorithm 1.
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Algorithm 1 Procedure of iterative ε determination based
on missing spectrum part recovery.

ε← 15π2νu′2N2
cut

η← (ν3/ε)1/4

1η← 100dη
while 1η > dη do

Use Eq. (27) to calculate CF
ε← 15π2νu′2N2

cutCF
1η← |η− (ν3/ε)1/4|
η← (ν3/ε)1/4

end while

It should be noted that in this approach we do not have
the empirical inertial range constant C, and we calculate
the dissipation rate directly from the formula with viscosity,
Eq. (28), as in the original zero-crossing method (see Eq. 16
and Poggi and Katul, 2010).

4 In-depth analysis of the proposed methods’ behavior

4.1 Method based on the number of zero crossings of
successively filtered signals

In order to present the more detailed properties of the pro-
cedure, we used the velocity signal from one of the horizon-
tal flight segments that took place within the turbulent at-
mospheric boundary layer. This segment was a part of flight
13 of the POST airborne research campaign (Gerber et al.,
2013; Malinowski et al., 2013). The data were provided in the
east, north, up (ENU) coordinate system. For further study
we have calculated time series of the longitudinal velocity
component along the track. The signals’ sampling frequency
was fs = 40Hz and the duration was T = 438.75s. The mag-
nitude of the vector difference between the aircraft velocity
and the wind velocity U , averaged over the track vector, was
about 55ms−1 and the standard deviation u′ = 0.28ms−1.

We have estimated the dissipation rate based on the num-
ber of zero crossings, according to the methods outlined
in Sect. 3.1. The average dissipation rate calculated from
the frequency spectrum and the structure function for the
whole flight fragment Eqs. (4) and (5) was close to equal,
with εPSD = 2.48 × 10−4 and εSF = 2.52 × 10−4 m2 s−3, re-
spectively. These values were obtained from the linear-least-
squares fit procedure in the range f = 0.3–5 Hz for the fre-
quency spectrum and r = 11–183 m for the structure function
(see Fig. 2).

Before applying the threshold-crossing procedures the sig-
nal had to be filtered in order to eliminate errors due to large-
scale tendencies as well as small-scale measurements noise.
For this purpose we used the sixth-order low-pass Butter-
worth filter (Butterworth, 1930) implemented in Matlab®.
Figure 3 presents the velocity signal over t = 50s before fil-

Figure 2. (a) Frequency spectrum of the measured signal (POST);
(b) second order structure function. The polynomial fit is presented
as a colored dashed line.

tering (top graph) and the same signal after filtering with
fcut = 5 and fcut = 1Hz.

The original formula of Rice (1945) was derived for the
case when both the signal and its derivative have Gaussian
probability density functions (PDFs) and are statistically in-
dependent. In general, such assumptions do not hold for
turbulent signals. However, as discussed by Sreenivasan et
al. (1983), experimental observations and further theoreti-
cal studies indicate that the formula of Rice (1945) has a
more general applicability than for what it was mathemati-
cally proven for originally and is satisfied with a fair accu-
racy even for the case of strongly non-Gaussian signals. Fig-
ure 4a presents PDFs of the normalized original signal and
the filtered signals compared with the normalized Gaussian
distribution. As it is seen, filtering does not lead to significant
changes in the investigated PDFs.

It is worth noting that the spectra (f 2S(f ), Fig. 4b) dis-
play a peak at f = 10 Hz. This phenomenon has been indi-
cated in the previous analyses of POST (Jen-La Plante et al.,
2016) and appears due to measurement errors. However, as
the highest cutoff frequencies used in the present study are
5 Hz, it should not affect our results.

In order to use the method based on successive signal fil-
tering we filtered the signal with different values of fcut in the
range fcut = 0.1−19Hz. For each fcut = fi we calculated the
number of zero crossingsNi based on the filtered signal. The
zero-crossing event was detected when the product of two
consecutive values of velocity fluctuation is less than zero:
v(t)v(t +1t) < 0, here 1t = 1/fs = 0.025s. In order to es-
timate the value of dissipation rate we used Eq. (21). The
values u′i

2 were calculated from filtered time series. Results
for f1 = 0.3Hz and fi in the range (0.3,5)Hz are presented
in Fig. 5.

Using Eq. (21) we have used linear fitting of the dif-
ferences u′i

2
N2
i − u

′

1
2
N2

1 against f 4/3
i − f

4/3
1 . The result-

ing value for the analyzed flight section was εNCF = 2.54 ×
10−4 m2 s−3, where the subscript NCF denotes variables esti-
mated from the number-of-crossings method with successive
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Figure 3. Measured velocity fluctuations: (a) unfiltered signal; (b) signal filtered with fcut = 5Hz; (c) signal filtered with fcut = 1Hz.

Figure 4. (a) PDFs of the normalized unfiltered and filtered measured signals compared with the normalized Gaussian curve. (b) Spectra
f 2S(f ) of the unfiltered signal (black line with symbols), signal filtered with fcut = 5Hz (green, solid line), signal filtered with fcut = 2Hz
(red dotted line) and signal filtered with fcut = 1Hz (blue, dashed line).

filtering of a signal. This value is comparable with the esti-
mations performed using classic methods based on the power
spectra and structure functions.

4.2 Simulation analysis and error estimates

Even if the local isotropy assumption of Kolmogorov (1941)
is satisfied with a good accuracy, the TKE dissipation rate
estimates are subject to errors that can result from a finite
sampling frequency of a signal, a finite time window, sensor
bias and noise. The last of those three causes was investigated
in Sreenivasan et al. (1983), where it was shown that both the
variance of the noise 〈n2

〉 and the variance of its derivative
〈ṅ2
〉 influence the measured number of crossings. A possi-

ble remedy was proposed by Poggi and Katul (2010), who
suggested to use the threshold crossings, i.e., counting the

number of times a signal crosses a given threshold T 6= 0,
instead of the zero crossings in the case of signals with low
signal-to-noise ratios. As for the signal considered in the pre-
vious section the signal-to-noise ratio becomes significant at
higher frequencies (above 5 Hz), see Fig. 2, which are re-
moved by the low-pass filter used in the proposed number-
of-crossings method. We also applied the method of Poggi
and Katul (2010); however, as it did not lead to any system-
atic change in our estimates, we further present results for the
zero crossings only.

In order to quantify the errors resulting from the finite sam-
pling frequency and finite time window and to test the per-
formance of the proposed method, we performed the simu-
lation analysis (Frehlich et al., 2001; Sharman et al., 2014).
Results are compared with the standard spectral retrieval es-
timates without any additional corrections. However, we note
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Figure 5. Scaling of N2
i
u2
i

with filter cutoff fcut calculated for the
measured signal (POST). The linear fit from Eq. (21) is given by the
magenta dashed line.

in passing that spectral methods can be improved to account
for the bias errors. The example is the maximum likelihood
approach (Sharman et al., 2014) where, instead of the von
Kármán model, a model power spectral density Smodel

f is
used, which takes into account the procedure for generat-
ing the empirical spectrum from discrete time series of finite
length. Analogous approaches could also be formulated for
the methods based on the number of crossings, which is a
perspective for a further study.

To test the performance of the new proposals we gener-
ated a number of artificial velocity signals with frequency
spectra and two point correlation functions prescribed by the
von Kármán (1948) model. The equations resulting from the
application of this model to the one-sided spectra considered
in this paper are written below.

R11(r1e1)≈ 0.592548 u′2
(
r

L0

)1/3

K1/3

(
r

L0

)
,

S(f )≈ 0.475448
2π
U

u′
2
L0[

1+L2
0

(
2πf
U

)2
]5/6 , (29)

whereK1/3 is the modified Bessel function of order 1/3. Co-
efficients of the Fourier series expansion of velocity signal
were calculated as

wj =
√
Wj (a+ ib) (30)

where i =
√
−1, a and b are random numbers from the stan-

dard Gaussian distribution with zero mean and unit variance,
and Wj = S(fj )1f , j = 1, . . .,N . Alternatively, the coeffi-
cients Wj can be calculated as the discrete Fourier transform
of R11, as described in Frehlich et al. (2001). The artificial
velocity signal is finally constructed as the discrete inverse
Fourier transform of wj (see Frehlich et al., 2001).

We used artificial signals with U = 55ms−1 and the stan-
dard deviation u′ = 0.28ms−1. Those characteristics corre-
spond to the ones of the signal considered in the previous
Sect. 4.1. We set L0 = 83.9 m in Eq. (29) to also obtain a
comparable dissipation rate estimate ε = 2.5 × 10−4m2 s−3.
Our first aim was to test how a finite sampling rate influences
the number of crossings. For this purpose in each run we cre-
ated an artificial signal of lengthN = 217 points and with the
sampling frequency 200Hz (5 times larger than the sampling
of the signal considered in Sect. 4.1), which resulted in signal
duration t ≈ 650s. We treated this velocity series as a refer-
ence. Next, we took every fifth sample of this signal to create
a 40Hz velocity time series. We then calculated the number
of crossings, as described in Sect. 4.1, and the power spectral
density. We repeated the procedure 500 times and calculated
the average of the obtained profiles (see Fig. 6). Due to the
finite sampling frequency we observe the effect of aliasing
– spectral densities for f higher than the Nyquist frequency
are added to the spectral densities at f < 20 Hz. Distortions
are visible for higher frequencies both in the power spectrum,
Fig. 6a, and theN2

i u
2
i profiles, Fig. 6b. We estimated the TKE

dissipation rate from the averaged profiles using the method
described in Sect. 4.1, Eq. (21), keeping the lower bound of
the fitting range f1 = 0.3Hz constant and changing the upper
bound f2 from 1 to 19Hz. Results are presented in Fig. 7 and
compared with the corresponding εPSD values, using the von
Kármán model as the reference model spectrum.

We observe an increase in εPSD estimates with increas-
ing f2 and a moderate increase in εNCF over the input ε =
2.5× 10−4 m2 s−3, which shows that the number of crossings
respond to finite sampling effects differently than the power
spectrum. We note here that εNCF values calculated from the
averaged profiles of the 200Hz reference signal (black line in
Fig. 7) seem to be slightly overpredicted in comparison to the
input ε, especially for smaller f2. A possible reason is the re-
sponse of the filter used in the number-of-crossings method.
We attempted to estimate this error using relation (18) be-
tween the number of crossings and the dissipation spectrum.
We first integrated f 2Sf of an unfiltered signal from f0 to
fi . Next, we calculated a spectrum Sfiltered

f of a band-pass-
filtered signal taking f1 and fi as the lower and upper bounds
of a filter. We integrated f 2Sfiltered

f over the whole available
range of f . The difference between the two integrals should
represent a correction due to filter response. The ε values es-
timated from the corrected N2

i u
′

i
2 are presented in Fig. 7 as

a black dot-dashed line. As it is seen that the estimations for
the lower f2 are improved as f2 increases, εNCF seems to be
underpredicted. A possible reason for this might be that the
filter influences the number-of-crossings statistics somewhat
differently than the spectrum alone.

Next, we tested the influence of the finite temporal win-
dow on the calculated statistics. We generated 1000 artificial
signals, each time changing slightly the u′ value in Eq. (29),
which led to a change in input ε (see Sharman et al., 2014);
the value of L0 remained unchanged. For each signal we es-
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Figure 6. (a) Mean S(f ) profiles calculated from the simulation
analysis: blue dashed lines – synthetic signal sampled with 200Hz;
blue line with symbols – synthetic signal sampled with 40Hz;
black lines – profiles from a single signal with u′2 = 0.0885ms−1.
(b) Corresponding averaged N2

i
u2
i

profiles: solid line – 200Hz sig-
nal; line with symbols – 40Hz signal; thin black line – profile from
a single signal with u′2 = 0.28ms−1.

Figure 7. Values of the dissipation rate from simulation analysis as
a function of higher value of the fitting range f2 estimated based on
the averaged profiles from Fig. 6 of the following: S(f ), where the
blue dashed line is the synthetic 200Hz signal and the blue line with
+ symbols is the 40Hz synthetic signal; N2

i
u2
i
, Eq. (21), where the

solid line is the 200Hz synthetic signal and the line with F symbols
is the 40Hz synthetic signal; and N2

i
u2
i

for the 200Hz signal with
the filter response correction – black dot-dashed line. The input ε =
2.5 × 10−4 m2 s−3.

timated εPSD from the standard power spectral density us-
ing the Welch overlapped segment averaging estimator im-
plemented in Matlab® with a 28 window and εNCF from the
number of crossings, Eq. (21). We performed these tests for
the 40Hz signals and the fitting range 0.3–5 Hz.

We first decreased the time window, taking each time only
1/8 of the created artificial signal for the analysis, which, in
terms of L0 from Eq. (29), resulted in the signal length L ≈
50L0. Results of εPSD and εNCF estimates as functions of the

Figure 8. Estimated values of εPSD and εNCF for synthetic 40Hz
signals and fitting range 0.3–5 Hz as functions of the correspond-
ing input ε resulting from the theoretical profile, Eq. (29), for
(a) and (b) signals with L ≈ 50L0 and for (c) and (d) signals with
L ≈ 400L0.

corresponding input ε from the theoretical profile Eq. (29)
are presented in Fig. 8 (upper plots). It can be seen that the
bias error is larger for εPSD; however, the scatter of εNCF is
larger. The linear fits and the correlation coefficients are

εPSD = 0.9104 ε− 2.32 × 10−5, r = 0.9898,

εNCF = 0.9878 ε+ 6.80 × 10−5, r = 0.9343. (31)

We repeated the simulation analysis for signals with 217

points, i.e., with L≈ 400L0, obtaining

εPSD = 1.0377 ε+ 4.56 × 10−6, r = 0.9898,

εNCF = 1.0379 ε+ 2.25 × 10−5, r = 0.9989. (32)

Hence, for the signal length comparable to the lengths from
the POST campaign we can expect a small underprediction
of εPSD estimates due to bias error and some overprediction
due to aliasing (see Fig. 7). Both result in a small overpredic-
tion of εPSD (Fig. 8, left column, lower plot). As far as εNCF
is concerned, the simulation analysis shows that it is less sen-
sitive to the bias error (Fig. 8, right column); however, it has
a larger scatter than εPSD, at least for the generated artifi-
cial velocity fields. Results for the 40Hz signal are slightly
overpredicted (Fig. 8, right column, lower plot) due to alias-
ing and the fact that the number-of-crossings method gives
somewhat larger ε estimates in this fitting range (see Fig. 7).

Finally, we would like to address the issue of larger scatter
observed for εNCF. It follows from our study that the scat-
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Figure 9. TKE dissipation rate estimates from simulation analy-
sis for synthetic signals sampled with 200Hz with u′ = 0.28ms−1

normalized by the input epsilon ε = 2.5× 10−4 m2 s−3. Black lines
with + symbols – εNCF, blue lines with ∗ symbols – εPSD.

ter in εNCF depends on the value of filter cutoffs in the fit-
ting range. In the final test, we set u′ = 0.28ms−1 and input
epsilon ε = 2.5 × 10−4 m2 s−3 and repeated the simulation
500 times for consecutively, 1/512, 1/265, 1/128, 1/65 of
the original signal of 217 points. This corresponds to approx-
imately 1L0, 2L0, 4L0, 6L0 for L0 in Eq. (29). We band-
pass filtered the signal and consider small fitting range of
16–18 Hz. We normalized the results obtained by the input ε
and calculated their standard deviations. Results presented in
Fig. 9 show that at least for this case the standard deviations
of ε+NCF is comparable with the standard deviation of ε+PSD

4.3 Method based on missing spectrum recovery

The measurement signal used in Sect. 4.1 was also analyzed
using the second method proposed in Sect. 3.2, Eqs. (27)
and (28). We consider both formulas for the function fη,
Eqs. (23) and (24). The advantage of the simpler, exponential
formula (23) is that the one-dimensional spectrum function
E11(k1), Eq. (26), can be written in terms of the incomplete
0 function as follows

E11(k1)= Cε
2/3(βη)5/3[

0(−5/3,k1βη)− (βη)
2k2

10(−11/3,k1βη)
]
, (33)

where

0(a,x)=

∞∫
x

e−t ta−1dt. (34)

The correcting factor (27) in terms of the 0 functions reads

CF = 1+

∫
∞

kcutβη
ξ2

1
[
0(−5/3,ξ1)− ξ

2
10(−11/3,ξ1)

]
dξ1∫ kcutβη

0 ξ2
1
[
0(−5/3,ξ1)− ξ

2
10(−11/3,ξ1)

]
dξ1

. (35)

If Eq. (24) is used as a model for fη, both integrals in Eq. (27)
must be calculated numerically. On the other hand, as dis-
cussed in Pope (2000), Eq. (24) provides a better fit of exper-
imental data in the dissipative range.

With such preparation we applied the iterative proce-
dure, as described in Sect. 3.2. In the POST experiment
the effective cutoff frequency was estimated at fcut = 5Hz,
which corresponds to kcut = (2πf )/U = 0.57m−1. Using
the sixth-order Butterworth filter, this resulted in u′2N2

cut =

0.0000719 · 1 s−2 for this signal. Accordingly we used Algo-
rithm 1 with ν = 1.5× 10−5 m2s−1 and dη = 10−6 m. We ap-
proximated the integrals in Eq. (35) using the trapezoid rule.
The results of successive approximations of CF and ε con-
verge fast to a fixed value, independently of the initial guess
of ε = ε0 (Fig. 10a). The increment dk1 in Eq. (35) was ap-
proximated by 1k1 = 5 · 10−6 m−1. For such choice we ob-
tained εNCR = 2.61× 10−4 m2 s−3, where the subscript NCR
denotes variables calculated with the number-of-crossings
method based on the recovered part of the spectrum. We used
this as a reference value. In order to estimate the numerical
accuracy of the proposed algorithm, we calculated the error
1ε = |ε− εNCR| for different values of 1k1 (see Fig. 10b).
We obtain 1ε ∼1k1.3

1 .
Next we considered Eq. (24) as a model for fη and cal-

culated the double integral in Eq. (27) using the trapezoid
rule. We obtained the corresponding value εNCR = 2.58 ×
10−4 m2 s−3, which is very close to the estimate from the
simple exponential form Eq. (23) and (35).

It is worth noting that the proposed method is accounting
for a dominant (and not directly measured) part of the spec-
trum based on the theoretical knowledge about its shape. This
knowledge is simply reduced to the form of the correcting
factor CF, Eq. (27), which contains the integral of k2

1E11(k1).
Fig. 11 illustrates the relation between the measured and the
estimated part of the spectrum for the analyzed case with
both forms of the function fη, Eqs. (23) and (24). The spec-
tral cutoff of the data considered here (5Hz) is in the inertial
range, where k2

1E11(k1) with both forms of fη functions is
almost indistinguishable (see Fig. 11). At the same time in-
tegrals of the remaining (recovered) parts of k2

1E11(k1) are
almost equal, as independently of the choice of fη both dis-
sipative spectra 2νk2E(k)must integrate to ε. As a result, for
the given spectral cutoff, εNCR estimates with the simple ex-
ponential Eq. (23) and (24) forms of fη are very close. This
might change for larger cutoff frequencies. We expect that,
in the case where the cutoff frequency is placed in a region
influenced by the form of the fη function, the spectrum with
Eq. (24) will provide better estimates of the TKE dissipation
rate.

The result of application of this method εNCR = 2.58 ×
10−4 m2 s−3 with fη described by Eq. (24) and εNCR =

2.61 × 10−4 m2 s−3 with fη from Eq. (23) is comparable
with the dissipation rates obtained using other methods, as
discussed in Sect. 3.1, εPSD = 2.48 × 10−4 m2 s−3, εSF =
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Figure 10. (a) Values of ε calculated during the iterative procedure
for different initial guesses of ε0. (b) Error of ε as a function of1k.
The reference value is ε calculated with 1k = 5 × 10−6 m−1.

Figure 11. One-dimensional spectra: black solid line – measured
part; dashed magenta line – recovered part with fη described by
Eq. (23); dot-dashed blue line – recovered part with fη described
by Eq. (24). (a) Energy spectrum E11(k1); (b) k2

1E11(k1).

2.52 × 10−4 and εNCF = 2.54 × 10−4 m2 s−3. The relative
differences between those estimations are less than 5%.

We finally checked the estimates of the second method us-
ing synthetic signals as described in Sect. 4.2. For the cut-
off fcut = 5Hz, we generated 500 artificial signals of length
L ≈ 400L0 and with input ε = 2.5 × 10−4 m2 s−3. We ob-
tained the mean 〈εNCR〉 = 2.55× 10−4 m2 s−3 and a standard
deviation equal to 9 % of the input ε value.

5 Broader overview of the methods’ performance

Following the findings presented in the previous section both
proposed methods were tested on much larger collection of
data. For this purpose we used velocity signals also obtained
during the POST research campaign. We have chosen hori-
zontal segments at various levels within the boundary layer
from flights TO10 and TO13. These flights were investigated
in detail by Malinowski et al. (2013), due to the fact that
they represent two thermodynamically and microphysically
different types of stratocumulus-topped boundary layer.

Figure 12. Dissipation rate of the kinetic energy estimated from the
structure function method εSF, zero crossings of successively fil-
tered signals εNCF and zero crossings of signals with recovered part
of the spectrum εNCR as a function of εPSD (from the power spectra
method). Each point represents an estimate from a single horizontal
segment of flight in the atmospheric boundary layer. (a) Flight 10;
(b) flight 13.

The dissipation rates of turbulent kinetic energy estimated
from the standard structure function method εSF and dissipa-
tion rates estimated from the modified zero-crossing meth-
ods εNCF and εNCR introduced in Sect. 3.1 and 3.2, respec-
tively, are compared with the results obtained from the spec-
tral method εPSD in Fig. 12. The use of the simple exponen-
tial form of fη, Eq. (23) or (24) did not lead to any visible
change in the results in Fig. 12. For flight 10 we obtained the
following linear fits and the correlation coefficients r:

εSF = 0.74 εPSD+ 9.1 × 10−5, r = 0.997,

εNCF = 0.88 εPSD+ 1.2 × 10−5, r = 0.995,

εNCR = 0.89 εPSD+ 2.9 × 10−5, r = 0.999,

while for flight 13 we have

εSF = 0.76 εPSD+ 1.4 · 10−4, r = 0.956,

εNCF = 0.75 εPSD+ 1.2 · 10−4, r = 0.881,

εNCR = 0.79 εPSD+ 1.0 · 10−4, r = 0.987.

The methods based on the signal zero crossings give com-
parable results to those resulting from standard methods, in
spite of the fact that the second method is based on different
physical arguments (assumes form of the whole spectrum,
including the dissipative range of frequencies).

We believe that the there is a fair consistency in those re-
sults because one should take into account that the standard
frequency spectra and structure function methods calculate
approximate values of ε. Moreover, we have indicated in
Sect. 2 that the constants C1 and C2 in Eqs. (4) and (5) are
estimated with an accuracy of ±15%.
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6 Conclusions

In the present work we proposed two novel modifications
of the zero-crossing method, such that it can be applied to
moderate-resolution measurements. The turbulent kinetic en-
ergy dissipation rates obtained using the proposed methods
show fair agreement with results of the standard power spec-
trum and structure function approaches.

We note that the standard structure function and power
spectra methods are often used simultaneously, for better ε
estimates (Chamecki and Dias, 2004), in spite of the same
underlying physical arguments (second similarity hypothesis
of Kolmogorov, 1941). Here, the proposed approach offers
yet another option. Additionally, the second method with the
spectrum recovery is based on different physical arguments,
as it additionally makes use of Kolmogorov’s first similarity
hypothesis and a model for the dissipation range of the spec-
trum. Nevertheless, it can be used for signals with spectral
cutoffs; hence, it offers an alternative to the spectral retrieval
methods.

From the perspective of practical applications we can think
of several possible advantages of the zero-crossing methods.
First, the number of signal zero crossings can be calculated
without difficulty and the proposed procedures are easy to
implement. Other advantages follow from the results of the
simulation analysis performed in Sect. 4.2. For the created
artificial velocity signals, the εNCF estimates responded dif-
ferently to errors due to finite sampling or finite time win-
dows than εPSD. These differences in errors of the number-
of-crossings and the power spectral method can make the for-
mer an additional tool to improve estimates from the atmo-
spheric measurements. Here, a further, detailed study of bias
assessment and removal is needed.

Moreover, we argue that the number-of-crossings method
applied to the fully resolved signals has become a fairly
standard tool for ε estimates, which are also used in the at-
mospheric measurements (see e.g., Poggi and Katul, 2010).
Therein, the discussed advantages of the method are that no
measurements of the signal gradients (to calculate the Taylor
microscale) are required, no assumptions about scaling laws
in structure functions (and power spectra) are needed and no
simplifications in the TKE budget are adopted (for which ε is
computed as a residual). The methods proposed in the current
paper generalize the number-of-crossings method and makes
it applicable also for signals with spectral cutoff. In the sec-
ond approach a certain form of the energy spectrum must be
assumed in order to calculate the correcting factor CF. Never-
theless, the proposed method can be interesting in particular
for data with cutoffs reaching the dissipation range but still
with part of this range missing (or contaminated with noise).
In such cases, using only the inertial range estimates may
lead to a significant loss of information, as the data from the
dissipation range are not taken into account. Finally, we can
deal with a situation when the recorded amplitude of certain
frequencies is deteriorated due to measurement errors; nev-

ertheless, the counted number of signal zero crossings could
remain unaffected. In such cases the zero-crossing method
could be advantageous over the power spectrum and struc-
ture function methods.

There are several perspectives for further work. First, the
proposed methods could be tested for a wider range of sig-
nals (e.g., from Eulerian measurements within the boundary
layer adopting the Taylor hypothesis), characterized by dif-
ferent resolutions and obtained under varying atmospheric
conditions, to assess the scope of their applicability. Second,
as far as the model spectrum is concerned, comparison with
fully resolved experimental signals or direct numerical sim-
ulations data would be valuable to test different forms of the
model spectra from Pope (2000) or Bershadskii (2016).
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