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Abstract. We have developed an algorithm that retrieves the
size, number concentration and density of falling snow from
multifrequency radar observations. This work builds on pre-
vious studies that have indicated that three-frequency radars
can provide information on snow density, potentially improv-
ing the accuracy of snow parameter estimates. The algorithm
is based on a Bayesian framework, using lookup tables map-
ping the measurement space to the state space, which allows
fast and robust retrieval. In the forward model, we calculate
the radar reflectivities using recently published snow scat-
tering databases. We demonstrate the algorithm using multi-
frequency airborne radar observations from the OLYMPEX–
RADEX field campaign, comparing the retrieval results to
hydrometeor identification using ground-based polarimetric
radar and also to collocated in situ observations made us-
ing another aircraft. Using these data, we examine how the
availability of multiple frequencies affects the retrieval ac-
curacy, and we test the sensitivity of the algorithm to the
prior assumptions. The results suggest that multifrequency
radars are substantially better than single-frequency radars at
retrieving snow microphysical properties. Meanwhile, triple-
frequency radars can retrieve wider ranges of snow density
than dual-frequency radars and better locate regions of high-
density snow such as graupel, although these benefits are rel-
atively modest compared to the difference in retrieval perfor-
mance between dual- and single-frequency radars. We also
examine the sensitivity of the retrieval results to the fixed a

priori assumptions in the algorithm, showing that the multi-
frequency method can reliably retrieve snowflake size, while
the retrieved number concentration and density are affected
significantly by the assumptions.

1 Introduction

Atmospheric ice formation and growth processes have a ma-
jor impact on the Earth’s radiative balance and on the hy-
drological cycle. Ice clouds and snowfall occur nearly every-
where, as ice processes occur at high altitudes even in ar-
eas where freezing temperatures at the surface are rare (Field
and Heymsfield, 2015; Mülmenstädt et al., 2015). Ice clouds
have also long been a challenge for weather and climate
models (Waliser et al., 2009). Improving the microphysics
schemes, which describe nucleation of small ice crystals and
their transformation into precipitation-sized particles, is also
currently an active area of model development in which con-
ceptually new schemes have been recently introduced (Har-
rington et al., 2013; Morrison and Milbrandt, 2015).

Observational data are needed to evaluate the represen-
tation of ice and snow in models. While direct measure-
ments of ice particle properties can be made in situ, such
measurements only produce limited samples and are diffi-
cult and expensive to make, especially when surface ob-
servations are not possible and aircraft-based measurements
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are needed. Remote-sensing instruments are able to sample
far larger volumes. Radars, in particular, can make range-
resolved measurements and thus map the vertical structure
of the ice cloud–precipitation column. However, the inter-
pretation of radar signatures of ice particles is subject to
uncertainties because the microwave scattering properties of
icy hydrometeors depend on their size, shape and structure.
These are extremely variable, as deposition growth alone re-
sults in diverse and often complicated shapes, and further
growth through aggregation and riming adds to the complex-
ity (Pruppacher and Klett, 1997; Lamb and Verlinde, 2011).

Multifrequency radars have emerged as a potential tool for
ice microphysics investigations. It has been recognized for
a while that snowflake size can be constrained with collo-
cated measurements at two different frequencies (Matrosov,
1993, 1998; Hogan et al., 2000; Liao et al., 2005). More re-
cently, several studies have shown, using detailed numeri-
cal scattering simulations and empirical evidence, that triple-
frequency measurements provide information on both the
size and density of icy hydrometeors (Kneifel et al., 2011,
2015; Leinonen et al., 2012a; Kulie et al., 2014; Stein et al.,
2015; Leinonen and Moisseev, 2015; Leinonen and Szyrmer,
2015; Gergely et al., 2017; Yin et al., 2017). The availability
of this information has been expected to enable more accu-
rate quantitative estimation of ice water content (IWC) and
snowfall rate and to provide a method to remotely distinguish
and characterize icy hydrometeor growth processes.

Studies on the triple-frequency signatures of snow have, so
far, been mostly limited to numerical and theoretical inves-
tigations, as well as empirical studies that demonstrated the
plausibility of the concept. Only very recently have databases
of snow scattering properties covering a wide range of snow
growth processes (e.g., Leinonen and Szyrmer, 2015; Kuo
et al., 2016; Lu et al., 2016) become available, enabling the
development of a versatile radar forward model that can pro-
duce the radar signatures of many types of snowflakes. This,
together with the expanded availability of collocated triple-
frequency measurement datasets from field campaigns, has
provided the prerequisites for the development of a practical
snowfall retrieval algorithm for triple-frequency radars.

In this paper, we introduce a method for retrieving certain
microphysical properties of snow – namely, the number con-
centration, size and density – from multifrequency radar ob-
servations. The algorithm is based on a Bayesian framework
and uses radar cross sections from detailed snowflake mod-
els that cover a wide range of sizes and densities. In Sect. 2,
we describe the algorithm formulation. Section 3 describes
the datasets used for demonstrating and evaluating the algo-
rithm, and Sect. 4 describes how the a priori distributions
used in the retrieval were derived. In Sect. 5, we investigate
case studies of airborne radar data from the Olympic Moun-
tain Experiment–ACE Radar Definition Experiment 2015
(OLYMPEX–RADEX’15) coordinated by NASA and com-
pare the retrieval results to ground-based polarimetric radar
observations. Section 6 describes comparisons to collocated

in situ measurements. Section 7 presents statistical analyses
of the sensitivity of the algorithm to the number of frequen-
cies available and to the a priori assumptions. Finally, we dis-
cuss the implications of the results and summarize the study
in Sect. 8.

2 Algorithm

2.1 Physical basis

The objective of a radar retrieval algorithm for snowfall is to
provide the best estimate of the microphysical properties of
the snowflakes based on the received radar signals. The unat-
tenuated equivalent radar reflectivity factor Ze for a given
wavelength λ is

Ze =
λ4

π5|Kw|2

∞∫
0

σbsc(D)N(D)dD, (1)

where σbsc(D) is the backscattering cross section as a func-
tion of the maximum diameter D, N(D) is the particle size
distribution and Kw is the dielectric factor defined as Kw =
(n2

w−1)/(n2
w+2), where nw is the complex refractive index

of liquid water assumed at a reference temperature and fre-
quency.

The attenuation of the radar signal must be accounted for
in radar-only retrieval algorithms. The attenuated reflectivity
at distance r from the radar is given by

Z′e(r)= Ze(r)exp

−2

r∫
0

∞∫
0

σext(D,r
′)N(D,r ′)dD dr ′

 , (2)

where σext is the extinction cross section. The resulting re-
flectivity is usually expressed in logarithmic units of decibels
relative to Z (dBZ), defined by

Z′dB = 10log10
Z′e
Z0
, (3)

where Z0 = 1mm6 m−3. The attenuated reflectivity can be
written as

Z′dB(r)= 10log10
Ze(r)

Z0
−

r∫
0

AdB(r
′)dr ′, (4)

where AdB is the two-way specific attenuation, that is, the
attenuation in decibels per unit length.

It was shown as early as Hitschfeld and Bordan (1954)
that weather radar attenuation correction is subject to mathe-
matical instabilities that can lead to small errors multiplying
in a positive feedback loop. Namely, overestimation of at-
tenuation in one radar range bin leads to overcompensation
in all subsequent bins away from the radar, causing overes-
timation of the precipitation signal, which in turn leads to
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further overestimation of the attenuation. In multifrequency
radars, the lower-frequency signals are generally attenuated
less. In the case of snowfall, the W-band signal can be sig-
nificantly attenuated, the Ka band much less so, and the Ku
band is practically unattenuated by the snowflakes. Thus, the
Ku-band radar reflectivity can be used to correct the Ka- and
W-band signals in a stable manner.

We use a technique similar to Kulie et al. (2014) for at-
tenuation correction: we draw samples from the a priori dis-
tribution (described in Sect. 4), calculate both the Ku-band
reflectivity and the specific attenuation at the Ka or W band
for each sample, and fit a function between the reflectivity
and the attenuation. We found that a linear function between
ZdB and ln AdB fits the relationship well. We validated this
approach by computing attenuation afterwards from the re-
trieved microphysical values; the root-mean-square (RMS)
difference in the total attenuation, calculated over all bins
in the case shown in Sect. 5.2, is only 0.27dB, so this ap-
proximate approach to attenuation correction seems to work
adequately.

Attenuation also results from atmospheric gases and from
supercooled liquid water. The gaseous attenuation was cal-
culated and corrected for with the ITU-R P.676-11 model
(ITU, 2016), using radio sounding data for the temperature,
pressure and humidity required by the model. The gaseous
attenuation varies spatially since it is dependent on water va-
por, but the error introduced by this is likely small given that
the maximum two-way gaseous attenuation in the cases an-
alyzed in this study is only 1.1dB at 94GHz (W band), and
much less at the lower frequencies. However, supercooled
liquid water found in mixed-phase clouds can cause signifi-
cant radar attenuation. However, the radar echo of the super-
cooled water is very weak because of the small size of the
drops, making it practically impossible, using radar signals
alone, to detect supercooled water coexisting with ice. Thus,
we do not correct for attenuation caused by supercooled wa-
ter, while acknowledging its role as a potential error source.

In order to manage the dimensionality of the problem, the
microphysical properties of the snowflakes must be parame-
terized. We utilize two common assumptions for this. First,
we assume that the particle size distribution (PSD) follows
the exponential distribution

N(D)=N0 exp(−3D), (5)

where N0 and 3 are the intercept and slope parameters, re-
spectively. Although gamma distributions, and other forms
that introduce additional parameters, are sometimes used,
the exponential distribution has been found to describe
snowflake size distributions well (Sekhon and Srivastava,
1970; Heymsfield et al., 2008). We also found it to be a good
match to the in situ airborne size distribution measurements
used in this study (see Sect. 6). Therefore, we find it prefer-
able over more complicated alternatives. Second, we assume
that the mass of snowflakes is given as a function of the di-

ameter as

m(D)= αDβ (6)

as has been commonly done in microphysics literature (e.g
Pruppacher and Klett, 1997). In the following section, we
explain how these assumptions are used to compute the radar
reflectivities.

2.2 Forward model

The forward model in an inversion algorithm is responsi-
ble for calculating the measurements that correspond to a
given state vector – in our case, the radar reflectivity at each
wavelength given the microphysical parameters. The simu-
lation of radar reflectivity from snowflakes whose diameters
are comparable to or larger than the wavelength is known
to require calculations that account for the internal struc-
ture of the snowflake (Petty and Huang, 2010; Botta et al.,
2011; Tyynelä et al., 2011). Recently, such calculations have
been used for a wide variety of model snowflakes in order
to establish databases of scattering properties. We chose a
combination of two such datasets as the basis of our for-
ward model: the rimed snowflakes of Leinonen and Szyrmer
(2015) and the OpenSSP database of Kuo et al. (2016). The
dataset of Leinonen and Szyrmer (2015) covers a wide range
of snowflake densities, but due to the relatively coarse reso-
lution of the volume elements, it mostly contains moderate-
and large-sized snowflakes. The Kuo et al. (2016) dataset was
used to augment the set of snowflakes used by the forward
model at small sizes, D < 1mm.

While there have been considerable recent advances on
the problem of modeling snowflakes produced by different
ice processes and calculating their scattering properties, the
abundance of available snowflake models leads to another
question: which set of snowflakes should be used by the for-
ward model in a particular situation? We use an approach
that does not force us to select any one dataset. Instead, the
scattering properties are given as a function of mass and
size: σ(D,m), where σ can be one of σbsc, σsca or σabs, the
last two being the scattering and absorption cross sections,
respectively, with σext = σsca+ σabs. The function σ(D,m)
is constructed by organizing all model snowflakes from the
combined scattering database into bins by D and m; we use
128× 128 logarithmically spaced bins to cover the range of
diameters and masses found in the dataset. For each bin, we
compute the average of σnorm ≡ σ/m

γ , where γ = 2 for the
backscattering and scattering cross sections, and γ = 1 for
the absorption cross section. The reason for the normaliza-
tion by m2 or m is that in the Rayleigh scattering regime
(D� λ) σbsc and σsca are proportional to m2, and σabs is
proportional to m (Bohren and Huffman, 1983). It follows
that the normalized cross sections are roughly constant at
the small-particle limit. To smoothen the binned values, the
samples used in the averaging are weighted using a Gaussian
function of the distance from the bin center, with a standard
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deviation of 0.15 for both lnD and lnm. A continuous func-
tion of the form

ln σnorm(ln D, ln m) (7)

is then formed by interpolation among the bin centers. Not
all bins have snowflakes in them; for those we are unable
to do the averaging and instead assign the scattering prop-
erties to zero. This means that the limits of the coverage of
the snowflake database in the (D,m) space are effectively as-
sumed to be the limits of the natural variability in snowflakes.
While this is not exactly true, the combined database does
cover a wide range of microphysical processes. The assump-
tion that the cross section goes to zero (as opposed to, for
instance, extrapolating it) outside the coverage area also ef-
fectively truncates the integrals in Eqs. (1) and (2).

With a method to calculate the cross sections as a function
of D and m, it is relatively straightforward to compute radar
reflectivities from the microphysical inputs. As can be seen
from the previous section, the input parameters for the for-
ward model are N0, 3, α and β. We start with a fixed set of
1024 logarithmically spaced integration points that span the
interval [Dmin,Dmax]. The parameters α and β are used to
find the corresponding masses using Eq. (6). The cross sec-
tion for each integration point is then found from the lookup
table using interpolation. The cross sections are multiplied
with the size distribution determined by N0 and3, which al-
lows us to compute the integral in Eq. (1) with fixed-point
numerical integration.

2.3 Retrieval

A radar retrieval algorithm needs to invert Eqs. (1) and (2)
such that an input ofZ′e at one or more wavelengths yields the
properties of N(D) and m(D). The inversion is unavoidably
inexact, as the wide variety of snowflake number concentra-
tions, size distributions and densities leads to a variability too
large to constrain with a few radar reflectivities. The retrieval
must be performed in a probabilistic sense, deriving the most
likely solution from the possible alternatives, using the prior
information about snowflake properties as a constraint.

The retrieval problem is commonly stated as finding a state
vector x that explains a given measurement vector y. The for-
mulation of the state vector depends on which variables are
chosen for retrieval and which ones are simply assumed. In
our experimentation with different combinations, we found
that the most stable solution was to retrieve N0, 3 and α.
The β parameter was fixed at 2.1. While β varies in na-
ture, many experimental and modeling studies (e.g., Mitchell
et al., 1990; Pruppacher and Klett, 1997; Westbrook et al.,
2004; Leinonen and Moisseev, 2015; Delanoë et al., 2014;
Erfani and Mitchell, 2017; Moisseev et al., 2017; Mascio
et al., 2017; Mascio and Mace, 2017) have found exponents
near this value for various types of snowflakes; we will ex-
amine the sensitivity of the results to this assumption in
Sect. 7.3. We retrieve the logarithm of each microphysical

parameter because the dynamic ranges of the retrieved values
are large and because using the logarithmic values makes the
forward model more linear; this was examined analytically
for the simpler case of cloud water retrieval by Leinonen
et al. (2016). The state vector then becomes

x = [ln N0 ln 3 ln α]T . (8)

In our multifrequency radar retrieval algorithm, the most
straightforward way to formulate the measurement vector
would be to use each of the three radar reflectivities. How-
ever, earlier studies (e.g., Kneifel et al., 2011; Leinonen
and Szyrmer, 2015) have shown that combinations of dual-
wavelength ratios (DWRs), such as simultaneous measure-
ments of Ka–W-band and Ku–Ka-band DWRs, contain infor-
mation about the size and density of the snowflakes. Follow-
ing this concept, we form the measurement vector with the
Ku-band reflectivity and the Ka–W-band and Ku–Ka-band
DWRs. The measurement vector is then

y =
[
ZdB,Ku DWRKa/W DWRKu/Ka

]T
. (9)

The choice of the Ku-band reflectivity is somewhat arbitrary,
as any of the three bands could be used, but the Ku band does
benefit from that band being the least attenuated of the three.
In studies in which we omit one of the radar bands, instead
operating with a dual-frequency radar, y consists of the re-
flectivity from the lowest-frequency radar and the DWR. For
single-frequency retrievals, y simply contains ZdB at the sin-
gle band.

The measurement vector must be accompanied by an er-
ror estimate, which should include not only the radar instru-
ment error but also the error due to the forward model as-
sumptions. In our case, the latter includes the errors due to
the assumptions of an exponential size distribution, a fixed
mass–dimensional exponent β and the orientation distribu-
tions assumed in the scattering databases. The extent of these
errors is difficult to quantify, but their effect should be simi-
lar on each collocated radar frequency: for example, the radar
cross section will increase with increasing particle size for all
frequencies, and thus the errors in radar reflectivity at differ-
ent frequencies will partially cancel out when computing the
DWRs. This suggests that the DWRs can be assumed to have
smaller errors than the absolute value of the reflectivity. Ac-
cordingly, we assign 3dB of error standard deviation for the
absolute value of the radar reflectivity and 1dB for each of
the DWRs.

In atmospheric remote sensing, the inversion problem is
often solved using optimal estimation (OE; Rodgers, 2000).
This is a Bayesian method that assumes that x and y are
jointly distributed according to the multivariate normal dis-
tribution and which is solved using optimization methods.
We found this technique to be problematic for our retrieval,
partly due to the limited and discrete nature of the snowflake
scattering database used in the forward model. The optimiza-
tion in OE often converged to local minima, especially near
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the extreme values supported by the snowflake database, in-
troducing sudden changes to the retrieved values.

Despite the shortcomings of OE, a Bayesian approach was
still desirable in order to constrain the retrieved microphysi-
cal parameters. We found that the retrieval can be performed
in a robust way through a global calculation of the expected
value of the state x given a measurement y. This is given by

E[x|y] =
∫

x p(x|y)dx =
1

p(y)

∫
x p(y|x)p(x)dx, (10)

where p(y) is the marginal probability of y, p(y|x) is the
conditional probability of a measurement y given a state x

and p(x) is the a priori probability of x, described in detail in
Sect. 4. This approach is slightly different from the common
strategy of finding the most likely solution given the prior
and the measurement: That method aims to find the mode of
the conditional distribution; ours determines the mean.

Using Eq. (10), we can construct a lookup table that maps
discrete values of y to the corresponding expected values
E[x|y]. Multilinear interpolation is used to estimate E[x|y]
for values of y that fall between the discrete values used
in the table. The errors associated with the discretization
can be reduced to be arbitrarily small by making the inter-
vals between the values finer. In the studies presented here,
the lookup table for E[x|y] ranged between 0 and 35dBZ
for ZdB,Ku, between −2 and 14dB for DWRKa/W, and be-
tween −2 and 9dB for DWRKu/Ka, with 0.25dB discretiza-
tion for each dimension. The integral in Eq. (10) was com-
puted by evaluating the integrand at approximately 10000
discrete points, which were distributed uniformly across a
finite search space spanning (xi − 3σi ,xi + 3σi) along each
variable, where xi is the prior mean of the ith variable in x,
and σi is its prior standard deviation. Making the discretiza-
tion finer than this did not seem to change the retrieval results
significantly in our case, although we encourage those using
this approach for other problems to establish the appropriate
discretization for their problem.

Error estimates for the retrieved values can be computed
using the same technique. The error covariance matrix of the
state given an observation, Sx|y , can be computed as

Sx|y = E[x⊗ x|y] −E[x|y]⊗E[x|y], (11)

where “⊗” is the outer product. E[x⊗x|y] can be evaluated
using a lookup table and interpolation in the same manner as
explained for E[x|y] above.

The method described above allows the state and its co-
variance to be retrieved robustly and very quickly, with only
a table lookup and an interpolation needed for each measure-
ment. This comes at the cost of a relatively expensive ini-
tialization of the tables before the retrieval is started. How-
ever, with our parameters for the discretization, this only took
about 1 min on a modern laptop computer with no paral-
lelization, so it does not present a major computational bur-
den.

2.4 Derived variables

The results of the retrieval are the parameters of Eq. (8), but
for further analysis of the results, it is useful to derive other
variables that are important for microphysics or more intu-
itively understood by end users. Perhaps most importantly,
the IWC (denoted by Wice), which expresses the ice mass in
a unit volume of air, is given by

Wice =

∞∫
0

m(D)N(D)dD. (12)

Consistently with the calculation of the scattering properties,
we set m(D)= 0 in the integral (and other integrals in this
section) where no snowflake samples are available for the
(D,m) combination. If this truncation is not used, the as-
sumptions of Eqs. (5) and (6) give Wice in the simple form

Wice =N0α3
−β−10(β + 1), (13)

where 0 is the gamma function.
When discussing the snowflake size, 3−1 gives the aver-

age diameter for the untruncated exponential size distribu-
tion, but it is often clearer and more convenient to state the
diameter that contributes most to the IWC. This is the mass-
weighted mean diameter

Dm =

∫
∞

0 Dm(D)N(D)dD∫
∞

0 m(D)N(D)dD
. (14)

Similarly, the total number concentration of snowflakes may
be a more meaningful quantity than N0. This is given simply
by

NT =

∞∫
0

N(D)dD. (15)

Also, the density of the snowflakes depends on the diameter,
but a bulk density for the snowflake ensemble can be com-
puted by dividing the IWC by the volume spanned by the
enclosing spheres of the snowflakes in a unit volume:

ρbulk =
Wice∫

∞

0
π
6D

3N(D)dD
. (16)

We use this definition for simplicity; a somewhat higher den-
sity would be obtained by using the volume of the enclosing
spheroid or ellipsoid in the integral in the denominator, but
the shape of this ellipsoid is in general dependent on D and
m, which would complicate the calculation.

The quantities in Eqs. (12)–(16) are nonlinear functions
of the state x, and consequently estimating their errors is
not completely straightforward. Since our algorithm returns
a probability distribution function (PDF) for x, we can obtain
statistically valid error estimates by computing the standard
deviation of a quantity over the PDF. This can be estimated
quickly with Gauss–Hermite quadratures; see Appendix A.
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3 Data

The main source of data that we use to demonstrate the
triple-frequency retrieval is from the Airborne Third Genera-
tion Precipitation Radar (APR-3; Sadowy et al., 2003) flown
onboard the NASA DC-8 aircraft during the OLYMPEX–
RADEX experiment, which took place around the Olympic
Mountains of Washington State, USA, in late 2015 (Houze
et al., 2017). The RADEX involvement in this field cam-
paign was intended specifically to assess the the capabili-
ties of multifrequency radar observations for satellite remote
sensing of precipitation processes. APR-3 acquired simul-
taneous measurements at three frequencies: 13.4GHz (Ku
band), 35.6GHz (Ka band) and 94.9GHz (W band). APR-3
is a scanning polarimetric cloud-profiling radar with Doppler
capability. With a vertical resolution of 30m, it provides
high-resolution 3-D measurements of clouds and precipita-
tion. OLYMPEX was the first time it was deployed in its
triple-frequency configuration.

We investigated the ability of the triple-frequency algo-
rithm to identify snowfall processes qualitatively by compar-
ing the results to collocated ground-based dual-polarization
radar observations. These observations were made by the
NASA S-Band Dual-Polarimetric Radar (NPOL), which was
deployed 2km from the coast at 47.277◦N, 124.211◦W,
157m above mean sea level (m.s.l.). The NPOL scanning
strategy interleaved planned position indicator scans (PPIs)
with a series of high-resolution range-height indicator (RHI)
sector scans to the west over the ocean and to the east over the
Quinault River valley (Houze et al., 2017). During OLYM-
PEX, the NASA DC-8 aircraft frequently flew directly along
NPOL RHI azimuths, making it relatively straightforward to
collocate with the nadir-pointing scans from APR-3. We col-
located NPOL data to the APR-3 radar coordinates using the
Python ARM Radar Toolkit (Helmus and Collis, 2016) by
first identifying RHI scans whose time and direction coin-
cided with the APR-3 overpass, then copying data from the
nearest NPOL bin to each APR-3 bin. We used two variables
from NPOL: the radar reflectivity and the hydrometeor iden-
tification (HID) product (Dolan and Rutledge, 2009). The lat-
ter uses fuzzy logic to assign the most likely hydrometeor
class to each radar bin based on temperature and the radar
reflectivity and polarimetric parameters. We use this product
to provide independent estimates of the type of icy hydrom-
eteors and compare them to the microphysical properties re-
trieved by our algorithm.

During the OLYMPEX campaign, the University of North
Dakota Citation aircraft often flew in the same area as the
NASA DC-8. Typically, the Citation flew at lower altitudes
than the DC-8, and consequently there are many data points
where the Citation measurements are collocated with the
APR-3. A total of 16 cases from OLYMPEX were analyzed.
The APR-3 gate closest to the Citation is found using a k-
dimensional-tree search algorithm. The Citation measured
the PSD using the 2D-S (Stereo) Probe (Lawson et al., 2006)

in the range of 225µm≤D < 1mm and the High-Volume
Particle Spectrometer (1mm≤D ≤ 3.25cm). To eliminate
shattered artifacts created from ice crystals colliding with
the probe housing, anti-shattering tips are used in conjunc-
tion with the University of Illinois Oklahoma Optical Array
Probe Processing Software (Jackson et al., 2014). In addition
to the optical array probes, the Citation also carried a Nev-
zorov probe (Korolev et al., 1998) to measure bulk total water
content.

The ground-based observations of snowfall microphysics
used to derive the a priori distribution were gathered at the
Hyytiälä Forestry Field Station (61.845◦N, 24.287◦E, 150m
above mean sea level) of the University of Helsinki, Finland,
during the Biogenic Aerosols – Effects on Clouds and Cli-
mate (BAECC) campaign (Petäjä et al., 2016) and the fol-
lowing winter of 2014–2015. The weather conditions dur-
ing BAECC and the following winter were mostly mild, and
most of the snowfall observations were collected at temper-
atures above −4 ◦C. Both aggregation and riming occurred
frequently during the measurement period (Moisseev et al.,
2017). The PSDs were measured with a video disdrometer,
the Snowflake Video Imager (SVI; Newman et al., 2009), as
a function of the disk-equivalent diameter (the diameter of a
disk with the projected area of the particle image). The mean
PSD was calculated for every 5 min period. The resolution
of the SVI is 0.1mm, although in practice, the smallest disk-
equivalent diameter used in the computations was approx-
imately 0.2mm. The PSD was divided into 120 bins with a
bin size of 0.2mm; the highest bin is for diameters larger than
26.0mm. A linear scaling factor between the disk-equivalent
diameter and the maximum diameter was determined by an-
alyzing SVI images of snowflakes from each case and uti-
lized to give the PSD as a function of maximum diameter.
The mass retrievals were obtained by combining SVI obser-
vations with a collocated precipitation gauge. Based on the
particle fall velocity and shape measurements provided by
the SVI, the masses of individual falling snow particles were
estimated with hydrodynamic theory (Mitchell and Heyms-
field, 2005; von Lerber et al., 2017). The mass–dimensional
relation in the form of Eq. (6) was determined for every 5min
with mass as a function of maximum diameter and with a lin-
ear regression fit in the log scale.

We also used balloon sounding data to support the anal-
ysis of the case studies. These data were derived from pub-
licly available operational soundings launched daily at 00:00
and 12:00 UTC from Quillayute, Washington, near the area
where the radar measurements took place.

4 A priori assumptions

Bayesian retrievals depend on the availability of a priori data.
We based our a priori values on two sources of in situ data:
the Citation dataset from OLYMPEX and the ground-based
measurements from BAECC. Both of these datasets can be
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used to derive theN0,3 and α parameters. For both datasets,
N0 and 3 can be derived from the binned PSDs. The α pa-
rameter can be derived by fitting a curve defined by Eq. (6)
to the mass as a function of diameter; this is included in
the BAECC data, in which the mass was derived from the
snowflake fall velocity (von Lerber et al., 2017). In calculat-
ing α from the BAECC dataset, we fixed β to 2.1, consistent
with the assumptions in the retrieval algorithm. For the Ci-
tation data, mass is not directly available as a function of
diameter, but Wice is estimated with the Nevzorov probe and
thus α can be roughly estimated using Eq. (13).

For the purposes of demonstrating the algorithm, we based
the a priori distribution used in this study on a combination
of the two datasets, taking an equal number of samples from
each for a total N ≈ 6000. We recognize that this is an im-
perfect solution, and a further analysis using these and other
datasets should be conducted to establish a priori distribu-
tions suitable for remote-sensing retrievals of snowfall under
various atmospheric conditions. Doing this rigorously will
likely require an entire study of its own.

The analysis resulted in means of ln N0 = 15.4, ln 3=
7.50, and ln α =−2.30 and standard deviations of
Std[ln N0] = 1.67, Std[ln 3] = 0.52 and Std[ln α] = 0.69.
Because the two datasets cannot be expected to cover the
entire natural distribution of these parameters, basing the a
priori distribution on them would likely result in an overly
restrictive prior. To compensate for this, we increase the stan-
dard deviations given above by a factor of 1.5, acknowledg-
ing that this choice is somewhat arbitrary. The correlation
matrix of x derived from the datasets is

Ca =

 1 0.46 −0.07
0.46 1 0.54
−0.07 0.54 1

 , (17)

from which the a priori covariance matrix can be computed
as

Sa = DCaD, (18)

where D is a diagonal matrix with the standard deviations
of x on the diagonal. The resulting distribution, used as the
prior in all retrievals in this study, is then given by the mean
xa and covariance Sa:

xa =
[

15.4 7.50 −2.30
]T
, (19)

Sa =

 6.28 0.90 −0.18
0.90 0.61 0.44
−0.18 0.44 1.07

 . (20)

In Sect. 7.2 we examine the sensitivity of the results to the
choice of prior.

We assume that the a priori distribution is multivariate
normal. Given the limited scope of the datasets used to de-
rive the prior distribution in this study, we cannot rigorously
test this assumption, but the choice is motivated by proba-
bilistic arguments that the normal distribution is the most
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Figure 1. The paths of the flights used in Sect. 5.1 (a) and 5.2 (b).
The darker sections of the paths show the flight data used in this
study (the rest of the measurements were discarded for the lack of
useful data). The time stamps (UTC) denote the beginning and end
of each flight and the beginning and end of the data that were used.
The gray background shows the outline of the Olympic Peninsula,
with Vancouver Island to the north.

natural choice for an unknown distribution (Jaynes, 2003).
Global distributions for microphysical quantities have also
often been found to be lognormal (e.g., Kedem and Chiu,
1987; Leinonen et al., 2012b), meaning that the distributions
of their logarithms (we use the logarithmic values in the state
vector) are normal. Thus a multivariate normal distribution
is a reasonable assumption for this study, although larger
datasets should be analyzed in this manner in order to derive
appropriate global priors.

5 Case studies and comparison to NPOL

5.1 3 December 2015

The first of the two cases that we examined together with
NPOL data took place on 3 December 2015. The APR-3
flight leg started at 16:17:23 UTC over the Olympic Moun-
tains, from where the DC-8 flew towards the coast, passing
directly over the NPOL site. A map of the flight path is shown
in Fig. 1a. The case consisted primarily of prefrontal strati-
form precipitation; see Houze et al. (2015a) for details. We
only used data from regions above the melting layer, which
we identified just below 3km in altitude based on the the
radar bright band; this also agrees with the 0 ◦C isotherm
of 2.85km in the 12:00 UTC balloon sounding from nearby
Quillayute, Washington.

The retrievals from the case are shown in Fig. 2a–e. On
the left side of Fig. 2a–c, an orange box delineates a col-
umn in which Dm increases significantly with decreasing al-
titude, accompanied by a rapid decrease in ρbulk. Together,
these changes point to the onset of aggregation, which re-
sults in rapid growth of snowflakes accompanied by a de-
crease in density as single ice crystals stick together to form
aggregates, whose density decreases as a function of size.
The transition can also be seen in Fig. 2e, in which orange
dots denote the data points from the orange box in Fig. 2a–c.
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Figure 2. Data from the 3 December 2015 case described in Sect. 5.1. (a) The mass-weighted mean diameter Dm (Eq. 14). (b) The bulk
density ρbulk (Eq. 16). (c) The ice water content (Eq. 12). (d) The NPOL hydrometeor identification. (e) A scatter plot ofDm and ρbulk from
(a) and (b), with the red and orange points identifying the data inside the boxes of corresponding colors shown in those panels. (f) The radar
reflectivity observed by NPOL.

The transition from ice crystals to aggregates is also de-
tected at around 5 km in altitude, 20–45km on the distance
scale, by both the triple-frequency retrieval, which shows a
sudden increase in Dm (Fig. 2a), and by NPOL, which iden-
tifies a change in the hydrometeor type at roughly the same
altitude. According to NPOL HID, the hydrometeors above
this altitude consist mostly of a mixture of ice crystals and
aggregates, while the hydrometeors below it are identified as
aggregates. While the altitude at which aggregation initiates
appears to be similar between NPOL and our retrieval, small
discrepancies are to be expected because the APR-3 obser-
vations are not perfectly simultaneous with the NPOL scan.
The time difference ranges from 4min at the beginning of
the observations shown in Fig. 2 to 14min at the end. Fur-
ther evidence for aggregation is provided by sounding data,
which indicate a temperature between−15 and−12 ◦C in the
layer at 5.0–5.5km in altitude, a common temperature range
for the onset of aggregation driven by dendritic growth of
ice crystals at these temperatures (Bailey and Hallett, 2009;
Lamb and Verlinde, 2011).

Another interesting feature found in this case is denoted
by the red boxes in Fig. 2a–c. In this region, the retrieved mi-
crophysical variables indicate moderately sized snowflakes

with relatively high ρ, which suggests that rimed snowflakes
occur in the area. The data points located within this box are
shown in red in the scatter plot of Fig. 2e, which confirms
these attributes. It is interesting to note that the red region
and the bottom of the orange region have similar IWCs, but
the sizes and densities are very different. NPOL also detects
some graupel in this region, which suggests that the three-
frequency retrieval detects snowflake riming and graupel for-
mation. In the following case, we further explore this capa-
bility.

5.2 4 December 2015

On 4 December 2015, precipitation originated mostly from
postfrontal convection following the passage of the front
on the previous day (Houze et al., 2015b). The DC-8 fol-
lowed a flight path similar to in the previous case (Fig. 1b);
APR-3 data collection for the dataset shown here started at
14:53:21 UTC. We collocated two NPOL RHIs to APR-3 co-
ordinates, one pointing toward land and the other toward the
ocean. For the ocean-pointing scan, we selected an RHI that
is offset by 4◦ from the optimal collocation with APR-3 in or-
der to better capture a convective plume that was observed by
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APR-3 but had moved before being scanned by NPOL 2 min
later. This shifted the location of the scan by only 500 m at the
distance of the plume. The sounding data and the radar bright
band both placed the melting level at around 1.3km, lower
than on the previous day. We again only used data points lo-
cated above the melting layer.

The large convective plume found by APR-3 in this case is
marked with a red box in Fig. 3a–c. As with Fig. 2, the data
points from this box are denoted with red dots in Fig. 3e. In
this case, the data points from the plume are particularly dis-
tinct from the rest of the joint distribution of Dm and ρbulk,
indicating moderately large particles with high density, char-
acteristic of graupel. NPOL also indicates a similarly sized
plume of graupel in this region. The time separation of the
scans in the region to the right of NPOL in Fig. 3 is only
2min, so it seems likely that the same plume was captured
by both radars. The spatial shift between the plumes observed
by APR-3 and NPOL appears to be 1–2km; this is consistent
with the 13ms−1 wind speed measured by the sounding at
3km in altitude, which translates to a 1.5km distance over
2min.

On the left side of NPOL, another graupel-containing re-
gion is denoted by an orange box. This region is also ac-
companied by an NPOL detection of graupel in the vicinity.
The time separation in this region was longer, between 4 and
8min, so the plume had more time to move away from the
vertical cross section before being observed by APR-3. Re-
gardless, the two radars agree on location of the plume to
within 2km and on its height to within 0.5km.

Our retrieval and the NPOL HID also seem to be in rea-
sonably good agreement regarding the transition from ice
crystals to aggregates. Both indicate the presence of ice crys-
tals (i.e., small, relatively dense hydrometeors) at higher alti-
tudes and aggregates at lower altitudes (below approximately
4km), with the transition point varying considerably within
this case. Both products also identify the presence of smaller
particles at 2–3km in altitude in the region, around 20km on
the horizontal scale.

6 Comparison to in situ data

As described in Sect. 3, the UND Citation aircraft gathered
particle probe measurements simultaneously with the NASA
DC-8 radar observations during OLYMPEX. This resulted in
a set of collocated radar and in situ data. The retrieval algo-
rithm was run using the collocated and attenuation-corrected
radar reflectivity values. The retrieved microphysical quanti-
ties were then compared to those measured in situ. The avail-
ability of variables from the in situ dataset is somewhat lim-
ited: while the number and projected sizes of the ice particles
can be measured quite accurately using the imaging probes,
the two-dimensional nature of the imager limits the accuracy
of the maximum dimension as this must be estimated from a
projection of the particle. The snowflake masses are also dif-

ficult to determine. The bulk IWC can be estimated with the
Nevzorov probe, but its inlet is only 8mm in diameter, which
causes it to underestimate IWC when the maximum particle
size exceeds approximately 4mm (Korolev et al., 2013). Un-
fortunately, the cases with large snowflakes are where one
would expect the largest benefits from multifrequency meth-
ods because of the stronger resonance effects involved in
scattering. Thus, this limitation of the Nevzorov probe some-
what diminishes its value in validating the retrievals. While
the Citation measurements do not give the masses of individ-
ual particles, α can be estimated from Eq. (13) if the IWC
given by the Nevzorov probe is assumed to be correct.

To filter out outliers and poor collocations, we applied two
filters. First, to ensure an acceptably accurate collocation be-
tween the two measurements, the time separation between
them was required to be less than 2min. Second, for adequate
sampling, the total number concentrationNT was required to
be more than 103 m−3. These criteria successfully removed
most outliers that we found in the unfiltered comparisons.

The comparisons of the retrievals against the in situ values
are shown on the top row of Fig. 4 (the same analysis run
with reduced frequencies, shown on the other rows of Fig. 4,
is discussed in Sect. 7.1). The figures show that retrievals
of the slope parameter 3 compare considerably better to the
in situ values than do the retrievals of the intercept param-
eter N0, which in turn are better than those of the mass–
dimensional factor α. The 3 parameters agree well through-
out the range of values (for ln3, root-mean-square error is
RMSE[ln3] = 0.41, bias is bias[ln3] = 0.023 and correla-
tion is Cor[ln3] = 0.70), showing that particle sizing can
be carried out reliably using the multifrequency retrieval. N0
is also quite well matched (Cor[ln N0] = 0.56), but the rela-
tive errors are much larger than for3 (RMSE[ln N0] = 3.01,
bias[ln N0] = −0.73). The α parameters are poorly matched
between the two datasets, although the retrieval produces
some variation in this parameter. In any case, one should be
skeptical of the α comparison as the in situ values have been
derived from the Nevzorov probe data, which suffers from
the abovementioned problems, and using Eq. (13), which is
an approximation. Furthermore, fixing the β parameter may
further exacerbate the problem with estimating α.

The retrieved IWCs Wice correspond quite well to the
in situ values (RMSE[lnWice] = 0.72, bias[lnWice] = 0.30,
Cor[lnWice] = 0.67). Interestingly, the IWC, which is a
function of N0 and α, appears to be better retrieved than ei-
ther of those parameters. Opposite errors in N0 and α, seen
in their respective scatter plots, suggest that their retrieval er-
rors compensate for each other in a way that allows Wice to
be constrained better than either N0 or α alone. This is also
supported by the correlation matrix of the retrieval errors, for
which the error correlation between ln N0 and ln α is −0.30
on average. The red dots in Fig. 4 correspond to larger ice
particles, where the Nevzorov probe might be prone to un-
derestimation. However, there does not appear to be a signifi-
cant difference inWice between the small and large particles.
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Figure 3. As Fig. 2, except for the 4 December 2015 case described in Sect. 5.2. The location of NPOL on the flight track is marked by the
arrow in panels (a)–(d) and (f).

However, the large particles stand out in the α scatter plot,
where they are clearly the worst match between the in situ
and retrieved values.

7 Sensitivity analysis

7.1 Sensitivity to the number of frequencies

In the assessment of a multifrequency algorithm, one inter-
esting question is what are the benefits of introducing addi-
tional frequencies? To evaluate this, we reran the analysis of
Sect. 6 with subsets of the frequencies used in the full anal-
ysis. We examined all the possible combinations of available
bands, always using the lowest frequency for the absolute re-
flectivity, combined with the DWRs that were available (one
DWR for dual-frequency retrievals and two DWRs for the
triple-frequency retrieval).

The scatter plots of the in situ and retrieved microphysical
parameters are shown in Fig. 4. These plots suggest that the
results of the triple-frequency retrieval are similar to those of
the dual-frequency retrievals. However, the multifrequency
retrievals clearly outperform single-frequency retrievals. The
triple- and dual-frequency scatter plots are visually similar
for all two- and three-frequency combinations for 3, and

to a lesser extent N0. The dual-frequency retrieval using the
Ka–W bands seems to be limited in its ability to determine
the size of large particles (small 3), presumably because the
dual-frequency ratio saturates at large sizes, while the Ku–
Ka-band retrieval suffers from a similar problem with small
particles. The Ku–W-band retrieval and the triple-frequency
retrieval do not suffer from this problem. Meanwhile, the
single-frequency retrievals all have poor sensitivity to N0.
Ku- and Ka-band single-frequency retrievals have some sen-
sitivity to 3 for small particles, while the W-band retrieval
also cannot discern this parameter particularly well. None of
the retrievals perform adequately with α, although the multi-
frequency retrievals, especially the triple-frequency retrieval,
permit considerably more variation in the values of that pa-
rameter: α is almost constant with the single-frequency re-
trievals, while its relative standard deviation is about 60 % in
the triple-frequency results, indicating that the retrieval algo-
rithm is confident enough in the signal to estimate α as some-
thing other than the a priori mean. The results for α should be
interpreted skeptically because of the issues with the deriva-
tion of α, as explained in Sect. 6. The single-frequency re-
trievals appear to constrain Wice much better than they con-
strain any of the individual microphysical parameters.
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Figure 4. Scatter plots of in situ measured (horizontal axis) and retrieved (vertical axis) microphysical values from the collocated Citation–
APR-3 dataset. The columns correspond to different microphysical parameters: from left to right, the intercept parameter N0, the slope
parameter 3, the mass–dimensional prefactor α and the ice water content Wice. The rows correspond to different combinations of radar
frequencies and DWRs used to run the retrieval, as shown to the left of each row. The color denotes the size of the snowflakes: blue dots
correspond to small particles (largest 25% of 3), orange to medium-sized particles and red to large particles (smallest 25% of 3). In each
plot, the black line is the 1 : 1 line. Note the logarithmic scales on the axes.
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Figure 5. The average posterior retrieval errors of the logarithms
of microphysical variables with different combinations of radar fre-
quencies. The data from the 4 December 2015 case (Sect. 5.2) are
used in this figure.

Another way to evaluate the sensitivity to the number of
frequencies is to examine the a posteriori errors reported by
the algorithm itself. These errors, derived from the 4 Decem-
ber 2015 case, are shown in Fig. 5 for the different frequency
combinations. According to the error estimate from the algo-
rithm, the three-frequency retrieval seems to yield a modest
but fairly consistent improvement over the dual-frequency re-
sults. These, like with the in situ data comparison, are clearly
better than the single-frequency results for all parameters,
although the differences for α, Wice and ρbulk are less pro-
nounced.

The errors in the single-frequency retrievals are all sim-
ilar; the W band seems to have somewhat smaller errors
for Wice and N0 while the Ku band is slightly better with
the particle size. Notably, the a posteriori errors for the
single-frequency retrievals are not much smaller than the a
priori errors of Stda[ln N0] = 2.45, Stda[ln 3] = 0.83 and
Stda[ln α] = 1.13, which emphasizes the poor information
content in the single-frequency retrievals. Regardless, with
Wice the single-frequency retrievals perform nearly as well as
the multifrequency ones, consistent with what was shown in
the comparison to in situ values. None of the dual-frequency
options are significantly better than the others, either, al-
though the Ku–Ka-band configuration underperforms the
Ka–W-band and Ku–W-band configurations in retrievals of
N0 and NT , and to a lesser extent Wice. The Ka–W- and Ku–
W-band configurations are nearly equally good.

We have additionally created plots of the microphysical
parameters shown in Fig. 3 using each of the frequency com-
binations found in Fig. 5. Due to the large number of plots
resulting from this analysis, these plots are not shown here,
but can be found in Figs. S1–S21 of the Supplement accom-
panying this article. A notable feature of these plots is the
higher level of detail and wider range of variation found in
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ln a + 0.78
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Figure 6. The root-mean-square changes in the microphysical pa-
rameters in response to changes in the prior. The change in the prior
is indicated on the left side of each row. The data are from the 4 De-
cember 2015 case (Sect. 5.2).

the triple-frequency plots of Dm and especially ρbulk com-
pared to the dual-frequency plots. The Ka–W band dual-
frequency retrieval appears to capture the plume found by the
triple-frequency approach, albeit with a more subdued signal;
the other two dual-frequency configurations miss the plume
altogether. Consistent with the results of other comparisons
shown in this section, the dual-frequency plots capture more
detail than the single-frequency plots. This is especially strik-
ing for the plots of ρbulk, in which the single-frequency re-
trievals appear to always give nearly the same density. In
contrast to Dm and ρbulk, Wice has only small differences,
and similar levels of detail between the single-frequency and
multifrequency retrievals. This is again similar to the findings
in Fig. 4.

7.2 Sensitivity to prior assumptions

In order to examine the sensitivity of the results of the re-
trieval algorithm to the prior assumptions, we ran the case of
4 December 2015 with shifted prior means. We changed the
mean of each variable in the state vector x, one at a time, by
±1 standard deviation of that variable. The results are shown
in Fig. 6. The results are consistent with the retrievals in the
sense that a shift in the prior of a variable causes a smaller
shift of the same sign in the a posteriori value of that variable.

The effects on other variables from adjusting the prior of
one variable are not straightforward to interpret. These are
connected in a complicated way due to the significant a pri-
ori correlations among the different variables, as well as the
necessity of explaining the observed reflectivities with other
parameters when one of them is shifted. The dependencies
are clearly not linear. The shifts in the prior also interact with
the limits of the scattering database, which further compli-
cates the interpretation. The IWC is the most sensitive to
the prior of ln N0. The results are the least sensitive to the
prior assumption of ln 3, indicating that ln 3 is very well
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Figure 7. The root-mean-square changes in the microphysical pa-
rameters in response to changes in the mass–dimensional exponent
β. The standard assumption of this paper, β = 2.1, is used as the
baseline. The value of β is indicated on the left side of each row.
The analysis is based on the 4 December 2015 case (Sect. 5.2).

constrained by the observations. Changes to the priors of ei-
ther ln N0 or lnα induce considerably larger changes in the
results. Thus, the triple-frequency algorithm is clearly still
somewhat dependent on the a priori assumptions, although
the changes in the posterior values are much smaller than the
corresponding changes in the prior, showing that the radar
signal constrains them quite effectively.

In Figs. S22–S28, we repeat this analysis with the re-
duced frequencies. These clearly show the increasing depen-
dence on the prior assumptions with fewer available frequen-
cies. Again, the difference between triple and dual frequency
is fairly modest, while the single-frequency retrievals shift
much more in response to changes in the prior.

7.3 Sensitivity to mass–dimensional exponent

The most significant fixed parameter in the retrieval is the ex-
ponent β of the mass–dimensional relationship (Eq. 6). Simi-
lar to Sect. 7.2, we carried out an analysis of the sensitivity of
the retrieval results to the choice of β. We used the value usu-
ally adopted in this paper, β = 2.1, as the reference and com-
pared the results obtained with β = 1.9, β = 2.3 and β = 2.5
to the reference retrieval. The values were chosen based on
exponents found in the literature for single crystals, aggre-
gate snowflakes and rimed particles (e.g., Mitchell et al.,
1990, their Tables 1 and 2); higher exponents such as those
close to 3.0 often found for graupel (Locatelli and Hobbs,
1974; Heymsfield and Kajikawa, 1987) were not tested be-
cause the distribution of particles in the scattering databases
does not support such high exponents well. The results are
shown in Fig. 7. This figure is similar to Fig. 6, but we have
omitted the changes in the mass–dimensional prefactor α be-
cause this parameter does not have a physical meaning inde-
pendent of β.

The changes in the retrieval results for different values of β
exhibit patterns similar to those resulting from the change in
prior values: The parameters corresponding to number con-
centration (N0 and NT ) and density (ρbulk) are the most sen-
sitive to the assumptions. Meanwhile, parameters related to

particle size (3 and Dm) and, to a lesser extent, the IWC
Wice are less affected by changes in β. The changes in re-
trieved parameters with changing β can be substantial, sug-
gesting that a good estimate of β is important for quantita-
tively correct retrievals. However, the changes are predictable
and reasonable, which suggests that the algorithm is robust
and can function with different values of β without major
problems. A notable exception to the predictable behavior is
that of Wice, whose retrieved value increases in response to
both increase and decrease in β from 2.1.

8 Conclusions

In this study, we described and evaluated an algorithm for
snow microphysical retrievals using multifrequency radar
measurements. The probabilistic method is based on direct
application of Bayes’ theorem using lookup tables. We exam-
ined the capabilities and limitations of the retrieval algorithm
using data from the OLYMPEX–RADEX measurement cam-
paign, comparing the results to ground-based radar measure-
ments from the NASA NPOL radar and to in situ measure-
ments from the UND Citation aircraft, both of which were
collocated with the APR-3 measurements. We also examined
the sensitivity of the algorithm to various assumptions used
in its formulation.

The results indicate that, at least for the retrieval ap-
proach presented here, triple-frequency radar retrievals pro-
vide modest benefits over dual-frequency retrievals of snow-
fall properties. The probabilistic error estimates from the
triple-frequency retrievals are generally only slightly smaller
than those from dual-frequency retrievals, but closer exami-
nation of the retrieved values shows that the triple-frequency
approach produces more detailed retrievals with higher de-
grees of variability than the dual-frequency retrievals. The
triple-frequency method can also determine particle size
throughout the range of snowflake sizes studied here, avoid-
ing problems with some of the dual-frequency methods with
sizing either small or large particles. Multifrequency re-
trievals significantly outperform those using only one fre-
quency, and none of the three dual-frequency configura-
tions studied (Ka–W-, Ku–Ka- and Ku–W-bands) appear
to be decisively better than the others, although the Ka–W
band combination was found to have more sensitivity to the
snowflake density than the Ku–Ka- or Ku–W-band combina-
tions. Similarly, we found the relative performances of Ku-,
Ka- and W-band single-frequency retrievals to be approxi-
mately equal. Thus, information content analysis appears to
suggest that multifrequency radars are preferable to single-
frequency radars in snowfall retrievals, but it does not pro-
vide much insight into the exact choice of frequencies; this
choice should probably be more dependent on other factors
such as achievable sensitivity and resolution, the importance
of attenuation, and cost.
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The triple-frequency technique appears to be useful at
identifying graupel, that is, ice particles that are heav-
ily rimed and thus considerably denser than most aggre-
gate snowflakes, providing a sufficient signal for the triple-
frequency retrieval to detect. This was confirmed in this study
with the comparison to polarimetric observations with the
NPOL ground-based radar. Globally, graupel occurs in rela-
tively rare events that represent only a small fraction of snow
cases, and consequently graupel events do not impact the
statistics much. However, graupel (and hail, which is even
denser) can have a substantial societal impact where it oc-
curs, and thus detecting it can be valuable even though it only
occurs in a small percentage of icy precipitation. Detecting
graupel plumes, together with accurate snowflake size deter-
mination elsewhere in a precipitating region, can also shed
light on the processes involved in the formation of graupel.
These plumes are usually small in their horizontal extent, of
the order of 1km, requiring a fairly high spatial resolution in
the radars used to detect them, which can be challenging to
achieve if multifrequency radars are considered for satellite
applications.

Despite the improvements in retrieval precision in mul-
tifrequency retrievals, the retrieved results are still depen-
dent on the assumptions regarding the a priori distribution of
the retrieved microphysical parameters, as well as the mass–
dimensional exponent β. Different retrieved parameters have
widely different sensitivities to the assumptions: the retrieved
snow particle size changes only modestly in response to
changes to the prior and to β, indicating that the size can
be retrieved robustly with the multifrequency method. In
contrast, the retrieved number concentration and density are
much more sensitive to the assumptions and therefore po-
tentially susceptible to retrieval errors caused by inaccurate
prior data. Therefore, it is still vital to constrain the algorithm
using in situ measurements that provide not only the size
and number concentration of snowflakes but also their mass–
dimensional scaling parameters α and β. Later versions of
the algorithm should include β as a retrievable parameter and
incorporate it in the multivariate prior so that the retrieval er-
rors originating from the uncertainty of β can be properly
quantified.

The findings of this study concern the retrieval accuracy
of multifrequency radars and do not address their other po-
tential benefits. For instance, multifrequency radars can uti-
lize lower-frequency channels (e.g., Ku band) to penetrate
deeper into precipitation, particularly heavy rain that can at-
tenuate higher frequencies (e.g., W band) heavily enough
to block detection altogether. Conversely, higher-frequency
radars can generally be made more sensitive, allowing de-
tection in regions below the sensitivity thresholds of low-
frequency bands. These benefits should be considered to-
gether with the retrieval performance when decisions about
instrument specifications are made; see, e.g., Leinonen et al.
(2015) for a quantitative assessment of retrieval capabilities
of a potential spaceborne triple-frequency radar.

This work builds on earlier experimental and modeling re-
sults that suggested that triple-frequency radars can be used
to constrain snowflake habits and examines this capability
in practice with a prototype retrieval algorithm. Based on
the experience gained in this study, we can identify two re-
quirements for future research that need to be fulfilled in or-
der to use such an algorithm in an operational setting. First,
the snowflake scattering database, while more extensive than
those previously available, is still limited in its scope, and
its coverage of snowflake sizes, densities and habits should
be expanded in order to support the forward model in all sce-
narios. Second, the a priori distributions used in the retrievals
in this study are based on relatively few data points. An abun-
dance of in situ data from ice clouds and snowfall currently
exists as a result of many ground- and aircraft-based field
campaigns; analyses of the data from these are needed to
support retrieval algorithm development by providing rep-
resentative a priori distributions of snowfall properties. The
substantial cross correlations found in this study among the
snow microphysical properties (Eq. 17) emphasize the need
for a multivariate analysis of these datasets.

Data availability. The APR-3 data files can be down-
loaded from the OLYMPEX data repository at
https://doi.org/10.5067/GPMGV/OLYMPEX/APR3/DATA201
(Durden and Tanelli, 2018), and the NPOL data from
https://doi.org/10.5067/GPMGV/OLYMPEX/NPOL/DATA301
(Wolff et al., 2017). The Citation data are available at
https://github.com/dopplerchase/Chase_et_al_2018 (last ac-
cess: 1 October 2018), maintained by Randy J. Chase (email:
randyjc2@illinois.edu). The BAECC campaign data are available
at https://github.com/dmoisseev/Snow-Retrievals-2014-2015
(last access: 1 October 2018). The sounding data can be
obtained from the University of Wyoming collection at
http://weather.uwyo.edu/upperair/sounding.html (last access:
1 October 2018). The retrieval results, used to generate the plots,
are available in numerical form from Jussi Leinonen (email:
jussi.s.leinonen@jpl.caltech.edu).
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Appendix A: Fast derivation of error estimates for
retrieved quantities

Consider a scalar Q(x) that is a function (not necessarily a
linear function) of the vector x of normally distributed ran-
dom variables, whose probability distribution p(x) is given
by the mean 〈x〉 and the covariance S. For example, Q can
be ln Wice or the logarithm of any variable introduced in
Sect. 2.4. Then, a probabilistic error estimate is given by the
standard deviation

1Q= Std[Q] =
√
〈Q2〉− 〈Q〉2, (A1)

where the expectation, denoted by 〈·〉, is taken over the PDF
of x. The expectation can be estimated efficiently using a
Gauss–Hermite quadrature. For a three-variable x (general-
ization to other numbers of variables is straightforward), the
expectation 〈Q〉 is obtained as follows:

〈Q〉 =

∫
x

Q(x)p(x)dx ≈
∑
i,j,k

wiwjwkQ(xijk), (A2)

wi =
1
√
π
wGH,i, (A3)

xijk = 〈x〉+
√

2V31/2[xGH,i xGH,j xGH,k
]T
, (A4)

where

– V is a matrix whose columns contain the normalized
eigenvectors of S,

– 3 is a diagonal matrix containing the corresponding
eigenvalues of S,

– xGH and wGH are the points and weights of a Gauss–
Hermite quadrature that gives the approximation

∞∫
−∞

exp(−x2)f (x)dx ≈
N∑
i=1

wGH,i f (xGH,i), (A5)

where the approximation is exact if f is a polynomial
of at most degree 2N − 1; xGH and wGH can be found
in many tables (e.g., Beyer, 1987) and in scientific soft-
ware packages (e.g., SciPy; Oliphant, 2007).

〈Q2
〉 can also be estimated using the above method, thus giv-

ing the error estimate when substituted into Eq. (A1). This
is derived by computing the Gauss–Hermite quadrature for
the standard multivariate normal distribution with zero mean
and identity covariance, then mapping the quadrature points
to the corresponding points in the distribution of x.
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/amt-11-5471-2018-supplement.
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