

Supplement of

Real-time measurement of phase partitioning of organic compounds using a proton-transfer-reaction time-of-flight mass spectrometer coupled to a CHARON inlet

Yarong Peng et al.

Correspondence to: Hongli Wang (wanghl@saes.sh.cn), Tiantao Cheng (ttcheng@fudan.edu.cn) and Xuan Zhang (xzhang87@ucmerced.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Compound	Molecular	Density (p,	Molecular weight	Vapor pressure
Compound	Formula	g cm ⁻³)	$(Mw, g mol^{-1})$	^a (p, Pa, 25 °C)
Ammonium nitrate	NH4NO3	1.7	80.043	
2,7-	CHO	1.2	160 170	1 10×10-4
dihydroxynaphthalene	$C_{10}\Pi_8 O_2$	1.5	100.170	1.10×10
Levoglucosan	$C_6H_{10}O_5$	1.7	162.140	9.98×10 ⁻⁶
Phthalic acid	C ₈ H ₆ O ₄	1.6	166.130	1.02×10^{-4}
Vanillic acid	$C_8H_8O_4$	1.4	168.150	1.97×10 ⁻⁴
Cis-pinonic acid	$C_{10}H_{16}O_{3}$	1.2	184.230	8.26×10 ⁻²
3-methylbutane-1,2,3-	Cillio	1 /	204 190	8 22×10-5
tricarboxylic acid	C8H12O6	1.4	204.180	8.22×10
2-pentadecanone	$C_{15}H_{30}O$	0.8	226.400	4.77×10 ⁻¹
1-pentadecanol	C15H32O	0.8	228.410	3.78×10 ⁻³
Sucrose	$C_{12}H_{22}O_{11}$	1.6	342.300	4.69×10 ⁻¹⁴

Table S1. The information of pure analytes, their molecular formula, density, molecular weight and vapor pressure.

^a Taken from Estimation Program Interface (EPI) Suite (Version v4.11), US EPA

Sizo (nm)	Mean EF for each size bin	DSD
Size (IIII)	(number of tests)	KSD
100	6 (11)	11%
150	13 (11)	8%
200	16 (11)	10%
250	17 (4)	10%
300	17 (11)	7%
350	18 (11)	8%
400	18 (4)	8%
450	18 (3)	9%

Table S2. Measured unitless enrichment factor (EF) of ammonium nitrate particles as a function of particle size in the 100–450 nm range and the corresponding relative standard deviation (RSD) from all replicating measurements.

Table S3. Measured unitless enrichment factor (EF) and corresponding relative standard deviation (RSD) of the selected organic standards under different temperatures. Overall RSD

v						
Standards	Molecular Formula	Mean signal in the 70– 140 °C range (ncps ppb ⁻¹)	RSD _{tem} in the 70– 140 °C range	EF	RSD _{each} at each temperatur e	Overal l RSD
2,7-						
dihydroxynaphthale	$C_{10}H_8O_2$	5551.44	3%	10	11%	12%
ne						
Levoglucosan	C6H10O5	6687.43	3%	14	13%	13%
Phthalic acid	$C_8H_6O_4$	10611.46	5%	13	11%	12%
Vanillic acid	$C_8H_8O_4$	9694.58	1%	16	7%	7%
Cis-pinonic acid	$C_{10}H_{16}O_{3}$	5381.82	6%	16	15%	16%
3-methylbutane-						
1,2,3-tricarboxylic	C8H12O6	6916.67	6%	13	21%	22%
acid						
2-pentadecanone	C15H30O	9370.66	3%	13	19%	19%
1-pentadecanol	C15H32O	12810.38	4%	20	10%	10%
Sucrose	$C_{12}H_{22}O_{11}$	6924.86	14%	10	20%	25%

	-	
=	$RSD_{tem}^{2} + RSD_{each}^{2}$	

Standarda	Molecular	Detected ion	I an ann fannala	Mean relative		Tempe	rature tes	ts (norma	lized rela	tive inte	nsity)		DCD
Standards	Formula	mass (m/z)	ion sum iormula	abundance	140 °C	130 °C	120 °C	110 °C	100 °C	90 °C	80 °C	70 °C	KSD
2,7- dihydroxynaphthalene	$C_{10}H_8O_2$	161.060	$C_{10}H_9O_2$	100%	1.000	1.072	1.066	1.069	1.043	1.057	1.086	1.120	3.0%
		69.033	C ₄ H ₅ O	13.5%	0.137	0.133	0.141	0.141	0.140	0.141	0.145	0.148	3.1%
		85.028	$C_4H_5O_2$	40.8%	0.406	0.414	0.415	0.420	0.424	0.428	0.439	0.451	3.4%
Levoglucosan		87.044	$C_4H_7O_2$	3.8%	0.039	0.040	0.039	0.040	0.039	0.038	0.040	0.042	2.7%
	$C_6H_{10}O_5$	97.028	$C_5H_5O_2$	11.8%	0.118	0.120	0.117	0.120	0.123	0.125	0.130	0.133	4.5%
		127.039	$C_6H_7O_3$	15.4%	0.152	0.161	0.154	0.160	0.158	0.162	0.166	0.172	4.0%
		145.050	$C_6H_9O_4$	14.2%	0.143	0.148	0.142	0.143	0.146	0.149	0.154	0.160	4.3%
		163.060	C ₆ H ₁₁ O ₅	0.5%	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	4.7%
NI 4 11 14		149.023	$C_8H_5O_3$	89.2%	0.899	0.914	0.875	0.844	0.816	0.810	0.798	0.805	5.4%
Phthalic acid	$C_8H_6O_4$	167.034	$C_8H_7O_4$	10.8%	0.101	0.106	0.108	0.102	0.102	0.100	0.100	0.101	3.0%
		151.039	$C_8H_7O_3$	10.5%	0.107	0.108	0.107	0.105	0.106	0.104	0.105	0.106	1.2%
Vanillic acid	$C_8H_8O_4$	169.050	C8H9O4	89.5%	0.893	0.921	0.901	0.902	0.904	0.890	0.901	0.912	1.1%
		71.049	C ₄ H ₇ O	27.9%	0.279	0.262	0.260	0.260	0.298	0.277	0.267	NA	6.6%
Cis-pinonic acid	$C_{10}H_{16}O_{3}$	115.075	$C_6H_{11}O_2$	36.0%	0.364	0.326	0.345	0.334	0.385	0.361	0.342	NA	7.2%
		139.112	$C_9H_{14}O$	6.1%	0.062	0.059	0.057	0.057	0.065	0.061	0.058	NA	6.4%

Table S4. Relative abundance of all product ions observed from nine organic standards tested under different desorption temperatures (70–140 °C). The protonated parent molecule, $[M+H]^+$, is highlighted in bold. RSD: relative standard deviation. NA: Not Available. ND: Not Detected.

		167.107	$C_{10}H_{15}O_2$	18.5%	0.185	0.172	0.177	0.167	0.199	0.185	0.177	NA	7.1%
		185.117	$C_{10}H_{17}O_3$	11.4%	0.111	0.106	0.112	0.104	0.120	0.116	0.111	NA	6.4%
		141.055	C7H9O3	20.2%	0.180	0.206	0.201	0.181	0.205	0.230	0.182	0.181	9.3%
3-methylbutane-1,2,3-	$C_8H_{12}O_6$	187.060	$C_8H_{11}O_5$	79.8%	0.820	0.836	0.857	0.872	0.889	0.959	0.946	0.808	6.3%
tricarboxylic acid		205.071	C8H13O6	0	ND								
		211.206	C ₁₄ H ₂₇ O	32.6%	0.305	0.314	0.301	0.294	0.308	0.322	0.328	NA	3.9%
2-pentadecanone	C ₁₅ H ₃₀ O	227.237	C ₁₅ H ₃₁ O	19.8%	0.237	0.194	0.204	0.158	0.180	0.171	0.182	NA	13.7%
		229.216	$C_{14}H_{29}O_2$	47.6%	0.458	0.447	0.437	0.441	0.453	0.460	0.478	NA	3.0%
		41.039	C_3H_5	1.0%	0.011	0.011	0.011	0.011	0.011	0.011	0.012	NA	2.7%
		43.054	C_3H_7	3.1%	0.032	0.034	0.033	0.033	0.035	0.036	0.037	NA	6.7%
		57.070	C ₄ H ₉	28.5%	0.284	0.313	0.309	0.311	0.316	0.323	0.331	NA	6.6%
		71.086	C5H11	32.2%	0.322	0.347	0.346	0.352	0.354	0.368	0.375	NA	7.4%
		85.101	C ₆ H ₁₃	26.6%	0.265	0.285	0.286	0.294	0.294	0.303	0.310	NA	7.4%
		99.117	C7H15	1.8%	0.017	0.018	0.019	0.019	0.019	0.020	0.021	NA	12.3%
1-pentadecanol	C ₁₅ H ₃₂ O	113.132	$C_{8}H_{17}$	0.9%	0.009	0.010	0.009	0.010	0.010	0.010	0.011	NA	13.4%
		127.148	C9H19	0.9%	0.009	0.010	0.010	0.010	0.010	0.011	0.011	NA	12.6%
		141.164	C10H21	0.9%	0.009	0.009	0.009	0.010	0.010	0.011	0.011	NA	12.4%
		155.179	C11H23	0.5%	0.005	0.005	0.005	0.006	0.006	0.006	0.006	NA	15.2%
		169.195	C ₁₂ H ₂₅	0.2%	0.002	0.002	0.002	0.002	0.002	0.002	0.002	NA	7.5%
		211.242	C ₁₅ H ₃₁	2.9%	0.029	0.031	0.030	0.032	0.032	0.034	0.035	NA	10.9%

		227.237	C ₁₅ H ₃₁ O	0.4%	0.005	0.005	0.005	0.005	0.005	0.005	0.005	NA	8.0%
		229.253	C ₁₅ H ₃₃ O	0	ND	NA							
		69.033	C4H5O	8.8%	0.079	0.083	0.077	0.067	0.066	0.073	0.091	0.075	10.7%
		85.028	$C_4H_5O_2$	23.9%	0.206	0.235	0.211	0.191	0.180	0.204	0.254	0.203	11.3%
		97.028	$C_5H_5O_2$	19.2%	0.218	0.229	0.197	0.175	0.164	0.177	0.218	0.177	12.6%
Sucrose	$C_{12}H_{22}O_{11}$	109.028	$C_6H_5O_2$	4.6%	0.056	0.052	0.047	0.039	0.037	0.041	0.048	0.040	15.1%
		127.039	$C_6H_7O_3$	35.0%	0.369	0.385	0.325	0.289	0.266	0.293	0.351	0.290	13.4%
		145.050	$C_6H_9O_4$	8.5%	0.071	0.083	0.076	0.068	0.064	0.071	0.091	0.071	11.7%
		343.123	C ₁₂ H ₂₃ O ₁₁	0	ND								

Table S5. Campaign average fraction of measured $(F_{p,m})$ and predicted $(F_{p,p})$ organic species in the particle phase grouped by the oxygen number, and predicted F_p was also corrected assuming the identified species are fragments of corresponding parent compounds through neutral losses of H₂O, CO, CO₂, and C₂H₆O, respectively.

Detected ion	Mass	Class	F _{p,m}	F _{p,p}	$F_{p,p}$ (+H ₂ O)	<i>F</i> _{p,p} (+CO)	$F_{p,p}$ (+CO ₂)	$F_{p,p}$ (+C ₂ H ₆ O)
$C_{3}H_{4}H^{+}$	41.039	C _x H _y	5.08×10 ⁻³	2.59×10 ⁻¹⁰	1.83×10 ⁻⁸	5.11×10 ⁻⁸	4.88×10 ⁻⁶	1.46×10 ⁻⁷
$C_2H_2OH^+$	43.018	C _x H _y O	6.30×10 ⁻³	6.88×10 ⁻⁹	8.68×10 ⁻⁷	1.96×10 ⁻⁶	2.59×10 ⁻⁴	4.88×10 ⁻⁶
$C_{3}H_{6}H^{+}$	43.054	C_xH_y	4.64×10 ⁻³	2.59×10 ⁻¹⁰	1.83×10 ⁻⁸	5.11×10 ⁻⁸	4.88×10 ⁻⁶	1.46×10 ⁻⁷
$C_2H_4OH^+$	45.033	C_xH_yO	3.34×10 ⁻²	6.88×10 ⁻⁹	8.68×10 ⁻⁷	1.96×10 ⁻⁶	2.59×10 ⁻⁴	4.88×10 ⁻⁶
$C_2H_6OH^+$	47.049	C _x H _y O	1.62×10 ⁻²	6.88×10 ⁻⁹	8.68×10 ⁻⁷	1.96×10 ⁻⁶	2.59×10 ⁻⁴	4.88×10 ⁻⁶
$C_{3}H_{4}OH^{+}$	57.033	C_xH_yO	7.75×10 ⁻³	1.83×10 ⁻⁸	1.96×10 ⁻⁶	4.88×10 ⁻⁶	5.75×10 ⁻⁴	1.28×10 ⁻⁵
$C_{3}H_{6}OH^{+}$	59.049	C _x H _y O	5.87×10 ⁻³	1.83×10 ⁻⁸	1.96×10 ⁻⁶	4.88×10 ⁻⁶	5.75×10 ⁻⁴	1.28×10 ⁻⁵
$C_2H_4O_2H^+$	61.028	$C_xH_yO_2$	2.97×10-3	8.66×10-7	1.31×10 ⁻⁴	2.59×10 ⁻⁴	3.70×10 ⁻²	5.75×10 ⁻⁴
$C_2H_6O_2H^+$	63.044	$C_xH_yO_2$	3.62×10 ⁻²	8.66×10 ⁻⁷	1.31×10 ⁻⁴	2.59×10 ⁻⁴	3.70×10 ⁻²	5.75×10 ⁻⁴
$C_2H_8O_2H^+$	65.060	$C_xH_yO_2$	3.26×10 ⁻²	8.66×10-7	1.31×10 ⁻⁴	2.59×10 ⁻⁴	3.70×10 ⁻²	5.75×10 ⁻⁴
$C_5H_6H^+$	67.054	C_xH_y	1.46×10 ⁻²	2.31×10-9	1.46×10 ⁻⁷	4.21×10 ⁻⁷	3.45×10 ⁻⁵	1.23×10 ⁻⁶
$C_4H_4OH^{\scriptscriptstyle +}$	69.033	C_xH_yO	7.75×10 ⁻²	5.10×10 ⁻⁸	4.88×10 ⁻⁶	1.28×10 ⁻⁵	1.37×10 ⁻³	3.45×10 ⁻⁵
$C_5H_8H^+$	69.070	C_xH_y	5.73×10 ⁻³	2.31×10-9	1.46×10 ⁻⁷	4.21×10 ⁻⁷	3.45×10 ⁻⁵	1.23×10 ⁻⁶
$C_{3}H_{2}O_{2}H^{+}$	71.013	$C_xH_yO_2$	7.81×10 ⁻²	1.96×10 ⁻⁶	2.59×10 ⁻⁴	5.75×10 ⁻⁴	7.18×10 ⁻²	1.37×10 ⁻³
$C_4H_6OH^{\scriptscriptstyle +}$	71.049	$\mathrm{C}_{\mathrm{x}}\mathrm{H}_{\mathrm{y}}\mathrm{O}$	8.01×10 ⁻³	5.10×10 ⁻⁸	4.88×10 ⁻⁶	1.28×10 ⁻⁵	1.37×10 ⁻³	3.45×10 ⁻⁵
$C_5H_{10}H^+$	71.086	C_xH_y	6.52×10 ⁻³	2.31×10-9	1.46×10 ⁻⁷	4.21×10 ⁻⁷	3.45×10 ⁻⁵	1.23×10 ⁻⁶
$C_{3}H_{4}O_{2}H^{+}$	73.028	$C_xH_yO_2$	1.82×10 ⁻²	1.96×10 ⁻⁶	2.59×10 ⁻⁴	5.75×10 ⁻⁴	7.18×10 ⁻²	1.37×10 ⁻³
$C_3H_6O_2H^+$	75.044	$C_xH_yO_2$	5.28×10 ⁻³	1.96×10 ⁻⁶	2.59×10 ⁻⁴	5.75×10 ⁻⁴	7.18×10 ⁻²	1.37×10 ⁻³
$C_2H_4O_3H^+$	77.023	$C_xH_yO_3$	2.33×10 ⁻³	1.31×10 ⁻⁴	2.13×10 ⁻²	3.70×10 ⁻²	8.60×10 ⁻¹	7.18×10 ⁻²
$C_5H_4OH^+$	81.033	C_xH_yO	5.53×10 ⁻²	1.45×10-7	1.28×10 ⁻⁵	3.45×10 ⁻⁵	3.44×10 ⁻³	9.55×10 ⁻⁵
$C_6H_8H^+$	81.070	C_xH_y	1.24×10 ⁻²	6.88×10 ⁻⁹	4.21×10 ⁻⁷	1.23×10 ⁻⁶	9.55×10 ⁻⁵	3.59×10 ⁻⁶
$C_4H_2O_2H^+$	83.013	$C_xH_yO_2$	4.21×10 ⁻²	4.87×10 ⁻⁶	5.75×10 ⁻⁴	1.37×10 ⁻³	1.45×10 ⁻¹	3.44×10 ⁻³
$C_5H_6OH^+$	83.049	C_xH_yO	2.59×10 ⁻²	1.45×10 ⁻⁷	1.28×10 ⁻⁵	3.45×10 ⁻⁵	3.44×10 ⁻³	9.55×10 ⁻⁵
$C_6H_{10}H^+$	83.086	C_xH_y	7.98×10 ⁻³	6.88×10 ⁻⁹	4.21×10 ⁻⁷	1.23×10 ⁻⁶	9.55×10 ⁻⁵	3.59×10 ⁻⁶
$C_4H_4O_2H^+$	85.028	$C_xH_yO_2$	1.03×10 ⁻¹	4.87×10 ⁻⁶	5.75×10 ⁻⁴	1.37×10 ⁻³	1.45×10 ⁻¹	3.44×10 ⁻³
$C_5H_8OH^{\scriptscriptstyle +}$	85.065	$\mathrm{C}_{\mathrm{x}}\mathrm{H}_{\mathrm{y}}\mathrm{O}$	1.02×10 ⁻²	1.45×10 ⁻⁷	1.28×10 ⁻⁵	3.45×10 ⁻⁵	3.44×10 ⁻³	9.55×10 ⁻⁵
$C_6H_{12}H^+$	85.101	C_xH_y	5.96×10 ⁻³	6.88×10-9	4.21×10 ⁻⁷	1.23×10 ⁻⁶	9.55×10 ⁻⁵	3.59×10 ⁻⁶
$C_{3}H_{2}O_{3}H^{+}$	87.008	$C_xH_yO_3$	1.66×10 ⁻¹	2.59×10 ⁻⁴	3.70×10 ⁻²	7.18×10 ⁻²	9.19×10 ⁻¹	1.45×10 ⁻¹
$C_4H_6O_2H^+$	87.044	$\mathrm{C}_{x}\mathrm{H}_{y}\mathrm{O}_{2}$	1.51×10 ⁻²	4.87×10 ⁻⁶	5.75×10 ⁻⁴	1.37×10 ⁻³	1.45×10 ⁻¹	3.44×10 ⁻³
$C_{3}H_{4}O_{3}H^{+}$	89.023	$C_xH_yO_3$	1.20×10 ⁻¹	2.59×10 ⁻⁴	3.70×10 ⁻²	7.18×10 ⁻²	9.19×10 ⁻¹	1.45×10 ⁻¹
$C_2H_2O_4H^+$	91.003	$\mathrm{C}_{x}\mathrm{H}_{y}\mathrm{O}_{4}$	5.99×10 ⁻²	2.10×10 ⁻²	7.92×10 ⁻¹	8.60×10 ⁻¹	9.99×10 ⁻¹	9.19×10 ⁻¹
$C_3H_6O_3H^+$	91.039	$C_xH_yO_3$	5.58×10 ⁻³	2.59×10 ⁻⁴	3.70×10 ⁻²	7.18×10 ⁻²	9.19×10 ⁻¹	1.45×10 ⁻¹
$C_7H_{10}H^+$	95.086	$\mathrm{C}_{\mathrm{x}}\mathrm{H}_{\mathrm{y}}$	1.71×10 ⁻²	2.05×10 ⁻⁸	1.23×10 ⁻⁶	3.59×10 ⁻⁶	2.68×10 ⁻⁴	1.06×10 ⁻⁵
$C_5H_4O_2H^+$	97.028	$C_xH_yO_2$	5.11×10 ⁻²	1.28×10 ⁻⁵	1.37×10 ⁻³	3.44×10 ⁻³	2.84×10 ⁻¹	8.90×10 ⁻³
$C_6H_8OH^+$	97.065	$\mathrm{C}_{\mathrm{x}}\mathrm{H}_{\mathrm{y}}\mathrm{O}$	2.47×10 ⁻²	4.20×10 ⁻⁷	3.45×10 ⁻⁵	9.55×10 ⁻⁵	8.90×10 ⁻³	2.68×10 ⁻⁴
$C_7H_{12}H^+$	97.101	C_xH_y	1.40×10 ⁻²	2.05×10 ⁻⁸	1.23×10 ⁻⁶	3.59×10 ⁻⁶	2.68×10 ⁻⁴	1.06×10 ⁻⁵

$C_4H_2O_3H^+\\$	99.008	$C_xH_yO_3$	2.85×10 ⁻²	5.74×10 ⁻⁴	7.18×10 ⁻²	1.45×10 ⁻¹	9.58×10 ⁻¹	2.84×10 ⁻¹
$C_5H_6O_2H^+$	99.044	$C_xH_yO_2$	3.67×10 ⁻²	1.28×10 ⁻⁵	1.37×10 ⁻³	3.44×10 ⁻³	2.84×10 ⁻¹	8.90×10 ⁻³
$C_6H_{10}OH^+$	99.080	C _x H _y O	5.13×10 ⁻³	4.20×10 ⁻⁷	3.45×10 ⁻⁵	9.55×10 ⁻⁵	8.90×10 ⁻³	2.68×10 ⁻⁴
$C_4H_4O_3H^+$	101.023	$C_xH_yO_3$	1.02×10 ⁻¹	5.74×10 ⁻⁴	7.18×10 ⁻²	1.45×10 ⁻¹	9.58×10 ⁻¹	2.84×10 ⁻¹
$C_5H_8O_2H^+$	101.060	$C_xH_yO_2$	8.67×10 ⁻³	1.28×10 ⁻⁵	1.37×10 ⁻³	3.44×10 ⁻³	2.84×10 ⁻¹	8.90×10 ⁻³
$C_4H_6O_3H^+$	103.039	$C_xH_yO_3$	5.49×10 ⁻²	5.74×10 ⁻⁴	7.18×10 ⁻²	1.45×10 ⁻¹	9.58×10 ⁻¹	2.84×10 ⁻¹
$C_{3}H_{4}O_{4}H^{+}$	105.018	$C_xH_yO_4$	3.48×10 ⁻¹	3.62×10 ⁻²	8.60×10 ⁻¹	9.19×10 ⁻¹	9.99×10 ⁻¹	9.58×10 ⁻¹
$C_7H_8OH^+$	109.065	C_xH_yO	4.26×10 ⁻²	1.22×10 ⁻⁶	9.55×10 ⁻⁵	2.68×10 ⁻⁴	2.34×10 ⁻²	7.61×10 ⁻⁴
$C_8H_{12}H^+$	109.101	C_xH_y	1.84×10 ⁻²	6.13×10 ⁻⁸	3.59×10 ⁻⁶	1.06×10 ⁻⁵	7.61×10 ⁻⁴	3.11×10 ⁻⁵
$C_6H_6O_2H^+$	111.044	$C_xH_yO_2$	9.37×10 ⁻²	3.45×10 ⁻⁵	3.44×10 ⁻³	8.90×10 ⁻³	4.92×10 ⁻¹	2.34×10 ⁻²
$C_7H_{10}OH^+$	111.080	C_xH_yO	2.49×10 ⁻²	1.22×10 ⁻⁶	9.55×10 ⁻⁵	2.68×10 ⁻⁴	2.34×10 ⁻²	7.61×10 ⁻⁴
$C_8H_{14}H^{\scriptscriptstyle +}$	111.117	C_xH_y	8.78×10 ⁻³	6.13×10 ⁻⁸	3.59×10 ⁻⁶	1.06×10 ⁻⁵	7.61×10 ⁻⁴	3.11×10 ⁻⁵
$C_5H_4O_3H^+$	113.023	$C_xH_yO_3$	1.01×10 ⁻¹	1.37×10 ⁻³	1.45×10 ⁻¹	2.84×10 ⁻¹	9.81×10 ⁻¹	4.92×10 ⁻¹
$C_6H_8O_2H^+$	113.060	$C_xH_yO_2$	3.02×10 ⁻²	3.45×10 ⁻⁵	3.44×10 ⁻³	8.90×10 ⁻³	4.92×10 ⁻¹	2.34×10 ⁻²
$C_7H_{12}OH^+$	113.096	C_xH_yO	1.07×10 ⁻²	1.22×10 ⁻⁶	9.55×10 ⁻⁵	2.68×10 ⁻⁴	2.34×10 ⁻²	7.61×10 ⁻⁴
$C_4H_2O_4H^+$	115.003	$C_xH_yO_4$	2.13×10 ⁻¹	6.90×10 ⁻²	9.19×10 ⁻¹	9.58×10 ⁻¹	1.00	9.81×10 ⁻¹
$C_5H_6O_3H^+$	115.039	$C_xH_yO_3$	7.16×10 ⁻²	1.37×10 ⁻³	1.45×10 ⁻¹	2.84×10 ⁻¹	9.81×10 ⁻¹	4.92×10 ⁻¹
$C_6H_{10}O_2H^+ \\$	115.075	$C_xH_yO_2$	1.34×10 ⁻²	3.45×10 ⁻⁵	3.44×10 ⁻³	8.90×10 ⁻³	4.92×10 ⁻¹	2.34×10 ⁻²
$C_4H_4O_4H^+$	117.018	$C_xH_yO_4$	6.98×10 ⁻²	6.90×10 ⁻²	9.19×10 ⁻¹	9.58×10 ⁻¹	1.00	9.81×10 ⁻¹
$C_5H_8O_3H^+$	117.055	$C_xH_yO_3$	4.48×10 ⁻²	1.37×10 ⁻³	1.45×10 ⁻¹	2.84×10 ⁻¹	9.81×10 ⁻¹	4.92×10 ⁻¹
$C_4H_6O_4H^+$	119.034	$C_xH_yO_4$	1.17×10 ⁻¹	6.90×10 ⁻²	9.19×10 ⁻¹	9.58×10 ⁻¹	1.00	9.81×10 ⁻¹
$C_9H_{10}H^+$	119.086	$C_x H_y$	6.79×10 ⁻³	1.83×10 ⁻⁷	1.06×10 ⁻⁵	3.11×10 ⁻⁵	2.17×10 ⁻³	9.19×10 ⁻⁵
$C_9H_{12}H^+$	121.101	C_xH_y	1.72×10 ⁻³	1.83×10 ⁻⁷	1.06×10 ⁻⁵	3.11×10 ⁻⁵	2.17×10 ⁻³	9.19×10 ⁻⁵
$C_7H_6O_2H^+$	123.044	$C_xH_yO_2$	2.03×10 ⁻²	9.53×10 ⁻⁵	8.90×10 ⁻³	2.34×10 ⁻²	7.10×10 ⁻¹	6.11×10 ⁻²
$C_8H_{10}OH^+ \\$	123.080	C_xH_yO	4.38×10 ⁻²	3.58×10 ⁻⁶	2.68×10 ⁻⁴	7.61×10 ⁻⁴	6.11×10 ⁻²	2.17×10 ⁻³
$C_9H_{14}H^+$	123.117	C_xH_y	1.88×10 ⁻²	1.83×10 ⁻⁷	1.06×10 ⁻⁵	3.11×10 ⁻⁵	2.17×10 ⁻³	9.19×10 ⁻⁵
$C_6H_4O_3H^+$	125.023	$C_xH_yO_3$	4.61×10 ⁻²	3.43×10 ⁻³	2.84×10 ⁻¹	4.92×10 ⁻¹	9.91×10 ⁻¹	7.10×10 ⁻¹
$C_7H_8O_2H^+$	125.060	$C_xH_yO_2$	6.95×10 ⁻²	9.53×10 ⁻⁵	8.90×10 ⁻³	2.34×10 ⁻²	7.10×10 ⁻¹	6.11×10 ⁻²
$C_8H_{12}OH^+ \\$	125.096	C_xH_yO	2.55×10 ⁻²	3.58×10 ⁻⁶	2.68×10 ⁻⁴	7.61×10 ⁻⁴	6.11×10 ⁻²	2.17×10 ⁻³
$C_9H_{16}H^+$	125.132	C_xH_y	1.99×10 ⁻²	1.83×10 ⁻⁷	1.06×10 ⁻⁵	3.11×10 ⁻⁵	2.17×10 ⁻³	9.19×10 ⁻⁵
$C_6H_6O_3H^+$	127.039	$C_xH_yO_3$	1.81×10 ⁻¹	3.43×10 ⁻³	2.84×10 ⁻¹	4.92×10 ⁻¹	9.91×10 ⁻¹	7.10×10 ⁻¹
$C_7H_{10}O_2H^+ \\$	127.075	$C_xH_yO_2$	3.87×10 ⁻²	9.53×10 ⁻⁵	8.90×10 ⁻³	2.34×10 ⁻²	7.10×10 ⁻¹	6.11×10 ⁻²
$C_8H_{14}OH^+$	127.112	C_xH_yO	1.17×10 ⁻²	3.58×10 ⁻⁶	2.68×10 ⁻⁴	7.61×10 ⁻⁴	6.11×10 ⁻²	2.17×10 ⁻³
$C_5H_4O_4H^+$	129.018	$\mathrm{C}_{x}\mathrm{H}_{y}\mathrm{O}_{4}$	1.86×10 ⁻¹	1.36×10 ⁻¹	9.58×10 ⁻¹	9.81×10 ⁻¹	1.00	9.91×10 ⁻¹
$C_6H_8O_3H^+$	129.055	$C_xH_yO_3$	7.18×10 ⁻²	3.43×10 ⁻³	2.84×10 ⁻¹	4.92×10 ⁻¹	9.91×10 ⁻¹	7.10×10 ⁻¹
$C_7H_{12}O_2H^+ \\$	129.091	$C_xH_yO_2\\$	1.36×10 ⁻²	9.53×10 ⁻⁵	8.90×10 ⁻³	2.34×10 ⁻²	7.10×10 ⁻¹	6.11×10 ⁻²
$C_5H_6O_4H^+$	131.034	$\mathrm{C}_{x}\mathrm{H}_{y}\mathrm{O}_{4}$	2.38×10 ⁻¹	1.36×10 ⁻¹	9.58×10 ⁻¹	9.81×10 ⁻¹	1.00	9.91×10 ⁻¹
$C_6H_{10}O_3H^+$	131.070	$C_xH_yO_3$	3.49×10 ⁻²	3.43×10 ⁻³	2.84×10 ⁻¹	4.92×10 ⁻¹	9.91×10 ⁻¹	7.10×10 ⁻¹
$C_5H_8O_4H^+$	133.050	$\mathrm{C}_{x}\mathrm{H}_{y}\mathrm{O}_{4}$	1.17×10 ⁻¹	1.36×10 ⁻¹	9.58×10 ⁻¹	9.81×10 ⁻¹	1.00	9.91×10 ⁻¹
$C_9H_8OH^+$	133.065	$\mathrm{C}_{\mathrm{x}}\mathrm{H}_{\mathrm{y}}\mathrm{O}$	4.52×10 ⁻²	1.05×10 ⁻⁵	7.61×10 ⁻⁴	2.17×10 ⁻³	1.52×10 ⁻¹	6.24×10 ⁻³
$C_{10}H_{12}H^{\scriptscriptstyle +}$	133.101	C_xH_y	7.02×10 ⁻³	5.47×10 ⁻⁷	3.11×10 ⁻⁵	9.19×10 ⁻⁵	6.24×10 ⁻³	2.72×10 ⁻⁴
$C_8H_6O_2H^+$	135.044	$C_xH_yO_2$	4.00×10 ⁻²	2.68×10 ⁻⁴	2.34×10 ⁻²	6.11×10 ⁻²	8.64×10 ⁻¹	1.52×10 ⁻¹

$C_9H_{10}OH^+$	135.080	C_xH_yO	2.53×10 ⁻²	1.05×10 ⁻⁵	7.61×10 ⁻⁴	2.17×10 ⁻³	1.52×10 ⁻¹	6.24×10 ⁻³
$C_{10}H_{14}H^{\scriptscriptstyle +}$	135.117	C_xH_y	3.18×10 ⁻³	5.47×10 ⁻⁷	3.11×10 ⁻⁵	9.19×10 ⁻⁵	6.24×10 ⁻³	2.72×10 ⁻⁴
$C_7H_4O_3H^+$	137.023	$C_xH_yO_3$	6.61×10 ⁻²	8.84×10 ⁻³	4.92×10 ⁻¹	7.10×10 ⁻¹	9.96×10 ⁻¹	8.64×10 ⁻¹
$C_8H_8O_2H^+$	137.060	$C_xH_yO_2$	3.00×10 ⁻²	2.68×10 ⁻⁴	2.34×10 ⁻²	6.11×10 ⁻²	8.64×10 ⁻¹	1.52×10 ⁻¹
$C_9H_{12}OH^+$	137.096	C _x H _y O	3.99×10 ⁻²	1.05×10 ⁻⁵	7.61×10 ⁻⁴	2.17×10 ⁻³	1.52×10 ⁻¹	6.24×10 ⁻³
$C_{10}H_{16}H^{\scriptscriptstyle +}$	137.132	C_xH_y	7.83×10 ⁻³	5.47×10 ⁻⁷	3.11×10 ⁻⁵	9.19×10 ⁻⁵	6.24×10 ⁻³	2.72×10 ⁻⁴
$C_7H_6O_3H^+$	139.039	$C_xH_yO_3$	5.92×10 ⁻²	8.84×10 ⁻³	4.92×10 ⁻¹	7.10×10 ⁻¹	9.96×10 ⁻¹	8.64×10 ⁻¹
$C_8H_{10}O_2H^+$	139.075	$C_xH_yO_2$	5.51×10 ⁻²	2.68×10 ⁻⁴	2.34×10 ⁻²	6.11×10 ⁻²	8.64×10 ⁻¹	1.52×10 ⁻¹
$C_9H_{14}OH^+$	139.112	C _x H _y O	1.74×10 ⁻²	1.05×10 ⁻⁵	7.61×10 ⁻⁴	2.17×10 ⁻³	1.52×10 ⁻¹	6.24×10 ⁻³
$C_6H_4O_4H^+$	141.018	$C_xH_yO_4$	9.21×10 ⁻²	2.57×10 ⁻¹	9.81×10 ⁻¹	9.91×10 ⁻¹	1.00	9.96×10 ⁻¹
$C_7H_8O_3H^+$	141.055	$C_xH_yO_3$	1.62×10 ⁻¹	8.84×10 ⁻³	4.92×10 ⁻¹	7.10×10 ⁻¹	9.96×10 ⁻¹	8.64×10 ⁻¹
$C_8H_{12}O_2H^+ \\$	141.091	$C_xH_yO_2$	3.99×10 ⁻²	2.68×10 ⁻⁴	2.34×10 ⁻²	6.11×10 ⁻²	8.64×10 ⁻¹	1.52×10 ⁻¹
$C_9H_{16}OH^+$	141.127	C_xH_yO	1.84×10 ⁻²	1.05×10 ⁻⁵	7.61×10 ⁻⁴	2.17×10 ⁻³	1.52×10 ⁻¹	6.24×10 ⁻³
$C_6H_6O_4H^+$	143.034	$C_xH_yO_4$	2.81×10 ⁻¹	2.57×10 ⁻¹	9.81×10 ⁻¹	9.91×10 ⁻¹	1.00	9.96×10 ⁻¹
$C_7H_{10}O_3H^+$	143.070	$C_xH_yO_3$	8.03×10 ⁻²	8.84×10 ⁻³	4.92×10 ⁻¹	7.10×10 ⁻¹	9.96×10 ⁻¹	8.64×10 ⁻¹
$C_8H_{14}O_2H^+$	143.107	$C_xH_yO_2$	1.76×10 ⁻²	2.68×10 ⁻⁴	2.34×10 ⁻²	6.11×10 ⁻²	8.64×10 ⁻¹	1.52×10 ⁻¹
$C_6H_8O_4H^+$	145.050	$C_xH_yO_4$	2.86×10 ⁻¹	2.57×10 ⁻¹	9.81×10 ⁻¹	9.91×10 ⁻¹	1.00	9.96×10 ⁻¹
$C_9H_6O_2H^+$	147.044	$C_xH_yO_2$	8.89×10 ⁻²	7.59×10 ⁻⁴	6.11×10 ⁻²	1.52×10 ⁻¹	9.44×10 ⁻¹	3.33×10 ⁻¹
$C_6H_{10}O_4H^+$	147.065	$C_xH_yO_4$	7.55×10 ⁻²	2.57×10 ⁻¹	9.81×10 ⁻¹	9.91×10 ⁻¹	1.00	9.96×10 ⁻¹
$C_8H_4O_3H^+$	149.023	$C_xH_yO_3$	8.18×10 ⁻²	2.30×10 ⁻²	7.10×10 ⁻¹	8.64×10 ⁻¹	9.99×10 ⁻¹	9.44×10 ⁻¹
$C_9H_8O_2H^+$	149.060	$C_xH_yO_2$	5.26×10 ⁻²	7.59×10 ⁻⁴	6.11×10 ⁻²	1.52×10 ⁻¹	9.44×10 ⁻¹	3.33×10 ⁻¹
$C_{10}H_{12}OH^+ \\$	149.096	C_xH_yO	3.10×10 ⁻²	3.11×10 ⁻⁵	2.17×10 ⁻³	6.24×10 ⁻³	3.33×10 ⁻¹	1.79×10 ⁻²
$C_{11}H_{16}H^{\scriptscriptstyle +}$	149.132	C_xH_y	7.56×10 ⁻³	1.63×10 ⁻⁶	9.19×10 ⁻⁵	2.72×10 ⁻⁴	1.79×10 ⁻²	8.05×10 ⁻⁴
$C_8H_6O_3H^+$	151.039	$C_xH_yO_3$	1.03×10 ⁻¹	2.30×10 ⁻²	7.10×10 ⁻¹	8.64×10 ⁻¹	9.99×10 ⁻¹	9.44×10 ⁻¹
$C_9H_{10}O_2H^+$	151.075	$C_xH_yO_2$	8.29×10 ⁻²	7.59×10 ⁻⁴	6.11×10 ⁻²	1.52×10 ⁻¹	9.44×10 ⁻¹	3.33×10 ⁻¹
$C_{10}H_{14}OH^+$	151.112	C _x H _y O	1.65×10 ⁻²	3.11×10 ⁻⁵	2.17×10 ⁻³	6.24×10 ⁻³	3.33×10 ⁻¹	1.79×10 ⁻²
$C_{11}H_{18}H^{\scriptscriptstyle +}$	151.148	C_xH_y	2.68×10 ⁻²	1.63×10 ⁻⁶	9.19×10 ⁻⁵	2.72×10 ⁻⁴	1.79×10 ⁻²	8.05×10 ⁻⁴
$C_8H_8O_3H^+$	153.055	$C_xH_yO_3$	7.72×10 ⁻²	2.30×10 ⁻²	7.10×10 ⁻¹	8.64×10 ⁻¹	9.99×10 ⁻¹	9.44×10 ⁻¹
$C_9H_{12}O_2H^+$	153.091	$C_xH_yO_2$	6.97×10 ⁻²	7.59×10 ⁻⁴	6.11×10 ⁻²	1.52×10 ⁻¹	9.44×10 ⁻¹	3.33×10 ⁻¹
$C_{10}H_{16}OH^{+}$	153.127	C _x H _y O	7.90×10 ⁻³	3.11×10 ⁻⁵	2.17×10 ⁻³	6.24×10 ⁻³	3.33×10 ⁻¹	1.79×10 ⁻²
$C_7H_6O_4H^+$	155.034	$\mathrm{C}_{\mathrm{x}}\mathrm{H}_{\mathrm{y}}\mathrm{O}_{\mathrm{4}}$	1.79×10 ⁻¹	4.38×10 ⁻¹	9.91×10 ⁻¹	9.96×10 ⁻¹	1.00	9.99×10 ⁻¹
$C_8H_{10}O_3H^+ \\$	155.070	$C_xH_yO_3$	1.36×10 ⁻¹	2.30×10 ⁻²	7.10×10 ⁻¹	8.64×10 ⁻¹	9.99×10 ⁻¹	9.44×10 ⁻¹
$C_9H_{14}O_2H^+$	155.107	$C_xH_yO_2$	3.82×10 ⁻²	7.59×10 ⁻⁴	6.11×10 ⁻²	1.52×10 ⁻¹	9.44×10 ⁻¹	3.33×10 ⁻¹
$C_7H_8O_4H^+$	157.050	$C_xH_yO_4$	2.20×10 ⁻¹	4.38×10 ⁻¹	9.91×10 ⁻¹	9.96×10 ⁻¹	1.00	9.99×10 ⁻¹
$C_8H_{12}O_3H^+\\$	157.086	$C_xH_yO_3$	6.79×10 ⁻²	2.30×10 ⁻²	7.10×10 ⁻¹	8.64×10 ⁻¹	9.99×10 ⁻¹	9.44×10 ⁻¹
$C_9H_{16}O_2H^+$	157.122	$C_xH_yO_2$	2.49×10 ⁻²	7.59×10 ⁻⁴	6.11×10 ⁻²	1.52×10 ⁻¹	9.44×10 ⁻¹	3.33×10 ⁻¹
$C_7H_{10}O_4H^+$	159.065	$C_xH_yO_4$	1.31×10 ⁻¹	4.38×10 ⁻¹	9.91×10 ⁻¹	9.96×10 ⁻¹	1.00	9.99×10 ⁻¹
			7.07,10-2	2 17×10 ⁻³	1.52×10 ⁻¹	3.33×10 ⁻¹	0 78×10 ⁻¹	5 85×10 ⁻¹
$C_{10}H_8O_2H$	161.060	$C_xH_yO_2$	/.0/×10-	2.17 10			9.76~10	0.00 10
$C_{10}H_8O_2H$ $C_9H_6O_3H^+$	161.060 163.039	$C_xH_yO_2$ $C_xH_yO_3$	6.36×10 ⁻²	5.90×10 ⁻²	8.64×10 ⁻¹	9.44×10 ⁻¹	9.99×10 ⁻¹	9.78×10 ⁻¹
$C_{10}H_8O_2H$ $C_9H_6O_3H^+$ $C_{10}H_{10}O_2H^+$	161.060 163.039 163.075	$C_xH_yO_2$ $C_xH_yO_3$ $C_xH_yO_2$	7.07×10 ⁻² 6.36×10 ⁻² 7.99×10 ⁻²	5.90×10 ⁻² 2.17×10 ⁻³	8.64×10 ⁻¹ 1.52×10 ⁻¹	9.44×10 ⁻¹ 3.33×10 ⁻¹	9.99×10 ⁻¹ 9.78×10 ⁻¹	9.78×10 ⁻¹ 5.85×10 ⁻¹
$C_{10}H_8O_2H$ $C_9H_6O_3H^+$ $C_{10}H_{10}O_2H^+$ $C_{12}H_{18}H^+$	161.060 163.039 163.075 163.148	$C_xH_yO_2$ $C_xH_yO_3$ $C_xH_yO_2$ C_xH_y	6.36×10 ⁻² 7.99×10 ⁻² 1.61×10 ⁻²	5.90×10 ⁻² 2.17×10 ⁻³ 4.87×10 ⁻⁶	8.64×10 ⁻¹ 1.52×10 ⁻¹ 2.72×10 ⁻⁴	9.44×10 ⁻¹ 3.33×10 ⁻¹ 8.05×10 ⁻⁴	9.99×10 ⁻¹ 9.78×10 ⁻¹ 5.02×10 ⁻²	9.78×10 ⁻¹ 5.85×10 ⁻¹ 2.38×10 ⁻³

$C_9H_8O_3H^+$	165.055	$C_xH_yO_3$	1.31×10 ⁻¹	5.90×10 ⁻²	8.64×10 ⁻¹	9.44×10 ⁻¹	9.99×10 ⁻¹	9.78×10 ⁻¹
$C_{10}H_{12}O_2H^+ \\$	165.091	$C_xH_yO_2$	7.85×10 ⁻²	2.17×10-3	1.52×10 ⁻¹	3.33×10 ⁻¹	9.78×10 ⁻¹	5.85×10 ⁻¹
$C_{11}H_{16}OH^{\scriptscriptstyle +}$	165.127	C_xH_yO	5.81×10 ⁻²	9.18×10 ⁻⁵	6.24×10 ⁻³	1.79×10 ⁻²	5.85×10 ⁻¹	5.02×10 ⁻²
$C_{12}H_{20}H^{+}$	165.164	C_xH_y	2.77×10 ⁻²	4.87×10 ⁻⁶	2.72×10 ⁻⁴	8.05×10 ⁻⁴	5.02×10 ⁻²	2.38×10 ⁻³
$C_8H_6O_4H^+$	167.034	$\mathrm{C}_{x}\mathrm{H}_{y}\mathrm{O}_{4}$	2.50×10 ⁻¹	6.43×10 ⁻¹	9.96×10 ⁻¹	9.99×10 ⁻¹	1.00	9.99×10 ⁻¹
$C_9H_{10}O_3H^+$	167.070	$C_xH_yO_3$	2.14×10 ⁻¹	5.90×10 ⁻²	8.64×10 ⁻¹	9.44×10 ⁻¹	9.99×10 ⁻¹	9.78×10 ⁻¹
$C_{10}H_{14}O_2H^+ \\$	167.107	$C_xH_yO_2$	5.21×10 ⁻²	2.17×10-3	1.52×10 ⁻¹	3.33×10 ⁻¹	9.78×10 ⁻¹	5.85×10 ⁻¹
$C_{11}H_{18}OH^{\scriptscriptstyle +}$	167.143	C_xH_yO	4.79×10 ⁻²	9.18×10 ⁻⁵	6.24×10 ⁻³	1.79×10 ⁻²	5.85×10 ⁻¹	5.02×10 ⁻²
$C_8H_8O_4H^{\scriptscriptstyle +}$	169.050	$\mathrm{C}_{x}\mathrm{H}_{y}\mathrm{O}_{4}$	2.43×10 ⁻¹	6.43×10 ⁻¹	9.96×10 ⁻¹	9.99×10 ⁻¹	1.00	9.99×10 ⁻¹
$C_9H_{12}O_3H^+$	169.086	$C_xH_yO_3$	1.14×10 ⁻¹	5.90×10 ⁻²	8.64×10 ⁻¹	9.44×10 ⁻¹	9.99×10 ⁻¹	9.78×10 ⁻¹
$C_{10}H_{16}O_2H^{\scriptscriptstyle +}$	169.122	$C_xH_yO_2$	2.64×10 ⁻²	2.17×10-3	1.52×10 ⁻¹	3.33×10 ⁻¹	9.78×10 ⁻¹	5.85×10 ⁻¹
$C_8H_{10}O_4H^+ \\$	171.065	$\mathrm{C}_{x}\mathrm{H}_{y}\mathrm{O}_{4}$	2.32×10 ⁻¹	6.43×10 ⁻¹	9.96×10 ⁻¹	9.99×10 ⁻¹	1.00	9.99×10 ⁻¹
$C_9H_{14}O_3H^+$	171.102	$C_xH_yO_3$	7.56×10 ⁻²	5.90×10 ⁻²	8.64×10 ⁻¹	9.44×10 ⁻¹	9.99×10 ⁻¹	9.78×10 ⁻¹
$C_8H_{12}O_4H^+$	173.081	$\mathrm{C}_{x}\mathrm{H}_{y}\mathrm{O}_{4}$	1.49×10 ⁻¹	6.43×10 ⁻¹	9.96×10 ⁻¹	9.99×10 ⁻¹	1.00	9.99×10 ⁻¹
$C_9H_{16}O_3H^+$	173.117	$C_xH_yO_3$	1.16×10 ⁻¹	5.90×10 ⁻²	8.64×10 ⁻¹	9.44×10 ⁻¹	9.99×10 ⁻¹	9.78×10 ⁻¹
$C_{10}H_8O_3H^+ \\$	177.055	$C_xH_yO_3$	1.08×10 ⁻¹	1.42×10 ⁻¹	9.44×10 ⁻¹	9.78×10 ⁻¹	1.00	9.92×10 ⁻¹
$C_{11}H_{12}O_2H^{\scriptscriptstyle +}$	177.091	$C_xH_yO_2$	8.45×10 ⁻²	6.21×10-3	3.33×10 ⁻¹	5.85×10 ⁻¹	9.92×10 ⁻¹	8.00×10 ⁻¹
$C_{13}H_{20}H^{\scriptscriptstyle +}$	177.164	C_xH_y	2.07×10 ⁻²	1.45×10 ⁻⁵	8.05×10 ⁻⁴	2.38×10-3	1.34×10 ⁻¹	7.04×10 ⁻³
$C_{10}H_{10}O_{3}H^{+}$	179.070	$C_xH_yO_3$	1.35×10 ⁻¹	1.42×10 ⁻¹	9.44×10 ⁻¹	9.78×10 ⁻¹	1.00	9.92×10 ⁻¹
$C_{11}H_{14}O_2H^{\scriptscriptstyle +}$	179.107	$C_xH_yO_2$	8.47×10 ⁻²	6.21×10-3	3.33×10 ⁻¹	5.85×10 ⁻¹	9.92×10 ⁻¹	8.00×10 ⁻¹
$C_{12}H_{18}OH^{\scriptscriptstyle +}$	179.143	C_xH_yO	7.47×10 ⁻²	2.71×10 ⁻⁴	1.79×10 ⁻²	5.02×10 ⁻²	8.00×10 ⁻¹	1.34×10 ⁻¹
$C_{13}H_{22}H^{\scriptscriptstyle +}$	179.179	C_xH_y	2.40×10 ⁻²	1.45×10 ⁻⁵	8.05×10 ⁻⁴	2.38×10 ⁻³	1.34×10 ⁻¹	7.04×10 ⁻³
$C_{10}H_{12}O_3H^+ \\$	181.086	$C_xH_yO_3$	1.53×10 ⁻¹	1.42×10 ⁻¹	9.44×10 ⁻¹	9.78×10 ⁻¹	1.00	9.92×10 ⁻¹
$C_{11}H_{16}O_2H^+ \\$	181.122	$C_xH_yO_2\\$	8.12×10 ⁻²	6.21×10 ⁻³	3.33×10 ⁻¹	5.85×10 ⁻¹	9.92×10 ⁻¹	8.00×10 ⁻¹
$C_9H_{10}O_4H^+$	183.065	$\mathrm{C}_{x}\mathrm{H}_{y}\mathrm{O}_{4}$	1.73×10 ⁻¹	8.12×10 ⁻¹	9.99×10 ⁻¹	9.99×10 ⁻¹	1.00	1.00
$C_{10}H_{14}O_3H^+$	183.102	$C_xH_yO_3$	1.44×10 ⁻¹	1.42×10 ⁻¹	9.44×10 ⁻¹	9.78×10 ⁻¹	1.00	9.92×10 ⁻¹
$C_{11}H_{18}O_2H^+ \\$	183.138	$C_xH_yO_2$	6.64×10 ⁻²	6.21×10 ⁻³	3.33×10 ⁻¹	5.85×10 ⁻¹	9.92×10 ⁻¹	8.00×10 ⁻¹
$C_{10}H_{16}O_{3}H^{+}$	185.117	$C_xH_yO_3$	7.71×10 ⁻²	1.42×10 ⁻¹	9.44×10 ⁻¹	9.78×10 ⁻¹	1.00	9.92×10 ⁻¹
$C_{10}H_{10}O_4H^+$	195.065	$\mathrm{C}_{x}\mathrm{H}_{y}\mathrm{O}_{4}$	1.21×10 ⁻¹	9.15×10 ⁻¹	9.99×10 ⁻¹	1.00	1.00	1.00
$C_{12}H_{18}O_2H^+$	195.138	$C_x H_y O_2$	1.09×10 ⁻¹	1.76×10 ⁻²	5.85×10 ⁻¹	8.00×10 ⁻¹	9.97×10 ⁻¹	9.19×10 ⁻¹
$C_{12}H_{20}O_2H^+$	197.154	$C_x H_y O_2$	7.00×10 ⁻²	1.76×10 ⁻²	5.85×10 ⁻¹	8.00×10 ⁻¹	9.97×10 ⁻¹	9.19×10 ⁻¹
$C_{13}H_{20}O_{2}H^{+} \\$	209.154	$C_xH_yO_2$	9.76×10 ⁻²	4.88×10 ⁻²	8.00×10 ⁻¹	9.19×10 ⁻¹	9.99×10 ⁻¹	9.70×10 ⁻¹

Y = aX+b	a	b	Averaged relative	Averaged relative error							
C_xH_y	-0.4708	11.755	34% (Alkanes)			34%					
$C_xH_yO_1$	-0.4712	10.104	22% (Aldehydes)	9% (Ketones)	16% (Alcohols)	16%					
$C_xH_yO_2$	-0.4572	8.0405	39% (Acids)	12% (Diols)		25%					
$C_xH_yO_4$	-0.4218	3.743	54% (DiAcids)			54%					

Table S6. Numerical values approximately extracted from the Figure in Donahue et al. (2011).

Figure S1. Location of the sampling site based on Huang et al. (2021). The base map was from © Google Maps.

Figure S2. Wind direction and speed at the site during the observation period.

Figure S3. (a) Schematic diagram of the inlet system for the CHARON–PTR-ToF-MS in this study. The open of 3-way valve (V2) means switching to direct the zero air into the drift tube. (b) Measurement cycle setting during the campaign. One color block represents 15 min for gasor particle- phase measurement.

Figure S4. (a) Relative mass discrimination $(\pm 1\sigma)$ of selected chemical standards by PTR-ToF-MS. Here the transmission efficiency of 1,3,5-Trimethylbenzene (m/z = 121) is used as the reference, i.e., 100%, as shown by the dash line. The grey shade represents $\pm 15\%$ deviation in the measurements. The grey solid line represents a sigmoidal fit to the measurements. (b) Corrected sensitivities as a function of kinetic rate constants for proton transfer reactions of H₃O⁺ with species. The dashed red line means the fitted line for blue points. (c) Comparison of the theoretical calculated and measured sensitivity ($\pm 1\sigma$) for different calibrants.

Figure S5. The concentration of 1 min limit of detection (LoD, ng m⁻³) of organic compounds detected in the gas and particle phase.

Figure S6. Comparison of month-long mass concentrations ($\mu g m^{-3}$) of gaseous organic compounds measured by PTR-ToF-MS (PTR) and GC-MS/FID (GC).

Figure S7. Comparison of aerosol mass concentrations (ng m^{-3}) of selected $C_xH_yO_4$ species measured by CHARON–PTR-ToF-MS (PTR) and a thermal desorption aerosol gas chromatograph (TAG).

Figure S8. Comparison of $C_8H_6O_4$ (ng m⁻³) and its fragment, $C_8H_4O_3$ in CHARON–PTR-ToF-MS (PTR), with phthalic acid (and iso/terephthalic acid) in TAG.

Figure S9. Scatter plot of organic aerosol masses measured by CHARON–PTR-ToF-MS vs. AMS. Black markers represent the total mass concentration of all nominal masses below 300 Th and red markers represent the total mass concentrations of the identified 152 species in the particle phase.

Figure S10 gives the comparison of the observed vs. modeled particle-phase fractions ($F_{p, obs}$ vs. $F_{p, mod}$) of all species investigated here. Uncertainties associated with the predictions of $F_{p, mod}$ were given as error bars. For species of high volatility (i.e., $C^*>10^4 \ \mu g \ m^{-3}$), the modeled particle-phase fraction ($F_{p, mod}$) is several orders of magnitude higher than the corresponding observations ($F_{p, obs}$), and the uncertainties associated with the modeling have a minimal impact on the discrepancies between measurements and model predictions. For $C_xH_yO_2$ and $C_xH_yO_3$ groups, such impact was still low, within 10%. For species with relatively low volatilities, the uncertainties in the model predictions could have appreciable impact (~ 62% on average) on the comparison between $F_{p, obs}$ and $F_{p, mod}$.

Figure S10. Discrepancy between modeled F_p ($F_{p,mod}$) and observed F_p ($F_{p,obs}$) as a function of the modeled C^{*}(µg m⁻³) of detected species.

S1. We did not include the higher mass here because we only considered masses below 200 amu from the field measurement for the study of gas–particle partitioning. One of previous studies (Wu et al., 2020) have used the gas standard of decamethylcyclopentasiloxane (D5, m/z 371) to calibrate the same type of PTR-ToF-MS instrument, and the obtained transmission efficiency agree well with the present study. While we tested a higher mass (e.g., sucrose, $M_w=342 \text{ g mol}^{-1}$) in the particle collection efficiency experiment, we aim to examine whether labile high-molecular-weight compounds can be evaporated effectively while maintaining an intact molecular structure under the evaporation temperature range used.

Figure S11. The relative transmission efficiency of various masses. Black markers were experimental data from this study, and red markers were taken from Wu et al. (2020). The relative transmission of decamethylcyclopentasiloxane (D5, m/z 371) was ~27% lower than the fitted curve (gray dashed line) used in this study.

S2. The most common fragmentation mechanism during the PTR ionization process includes the neutral losses of a carboxyl group (–CO₂), a carbonyl group (–CO), a hydroxyl group (– H₂O), or an alcohol group (–C₂H₆O), with predicted volatilities (C^{*}) of 1.58×10^7 , 2.51×10^9 , 3.76×10^9 and 1.06×10^9 (µg m⁻³), respectively. If a species C_xH_yO_z losses a H₂O group, for example, and becomes C_xH_yO_z-H₂O, then its saturation mass concentration (C^{*}) will increase by around 100 times accordingly. For example, for the species detected as C₆H₆O₃ in the PTR-MS mass spectra, it is unknown whether this species is a real compound present in the air or a fragment of its parent compound C₆H₆O₃+H₂O. If it is the latter, then the model predicted C^{*} based on the derived formula of C₆H₆O₃ would be 99 times higher than its actual C^{*}, and as a result, the model predicted particle-phase fraction ($F_{p,mod}$ of C₆H₆O₃ = 0.003) would be significantly lower than its actual particle-phase fraction ($F_{p,mod}$ of C₆H₈O₄ = 0.284).

Our calculations show that neutral losses of H₂O and CO₂ give the lower and upper limit, respectively, of the predicted fraction of all compounds investigated in this study. Specifically, for C₃₋₁₃H₄₋₂₂, C₂₋₁₂H₂₋₁₈O, C₂₋₁₁H₄₋₁₄O₂, C₂₋₁₀H₄₋₁₆O₃ and C₂₋₁₀H₂₋₁₀O₄, the predicted F_p values increase by around $5.85 \times 10^1 \sim 1.27 \times 10^4$, $8.33 \times 10^1 \sim 1.97 \times 10^4$, $9.57 \times 10^1 \sim 1.33 \times 10^4$, $61.2 \sim 774$ and $6.03 \sim 6.87$, respectively. It is no surprise that lower masses with higher volatilities are subject to significant changes in the particle-phase fraction as a result of neutral losses during the PTR ionization process.

Figure S12. Predicted F_p as a function of C^{*} of (a–e) different groups on a log scale assuming the identified species are fragments of corresponding parent compounds through neutral losses of H₂O, CO, CO₂, and C₂H₆O.

S3. Take the C₂H₄O (acetaldehyde) as an example, the PTR measured fraction in the particle phase was around 0.19, when its gas and particle phase concentrations were 979 and 234 ng m⁻³, respectively, at 4:00 pm local time on Oct 29th. The predicted F_p was only ~10⁻⁹ (C_{OA}=2.92 µg m⁻³). The fraction of C₂H₄O in the aerosol aqueous phase (F_{aq}) is estimated assuming equilibrium partitioning between the gas phase and the aerosol liquid water content. The modeled mass in aerosol aqueous phase C_p (µg m⁻³) is calculated by (Shen et al., 2018; Gkatzelis et al., 2021):

$$C_p = K_H M_w \frac{ALWC}{\rho_{water}} C_g$$

Where C_g (ppb) is the gas-phase concentration; K_H is the Henry's law coefficient (M atm⁻¹); M_w (g mol⁻¹) is the molecular weight; ρ_{water} (g cm⁻³) is the density of water; ALWC is the aerosol liquid water content, typically $9.3 \pm 8.3 \ \mu g m^{-3}$ in Shanghai (Cai et al., 2022). K_H of acetaldehyde was 3.76×10^1 M atm⁻¹, obtained from the Henry's Law Database tool (version 4.0, http://www.henrys-law.org) developed by Sander (2015). The estimated aqueous-phase concentration of acetaldehyde is 7.67×10^{-6} ng m⁻³ on average. The estimated F_{aq} is 1.54×10^{-8} , which is far below the measured F_p (0.19). Even if we used the field derived K_H value in Beijing by Gkatzelis et al. (2021), the estimated C_p was ~40.4 ng m⁻³ on average, still much lower than the measurements . Therefore, we think dissolution of water-soluble species in the aerosol water does not contribute significantly to their overall particle phase partitioning.

References

Cai, D., Wang, X., George, C., Cheng, T., Herrmann, H., Li, X., and Chen, J.: Formation of Secondary Nitroaromatic Compounds in Polluted Urban Environments, Journal of Geophysical Research: Atmospheres, 127, e2021JD036167, 10.1029/2021jd036167, 2022.

Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11, 3303–3318, 10.5194/acp-11-3303-2011, 2011.

Gkatzelis, G. I., Papanastasiou, D. K., Karydis, V. A., Hohaus, T., Liu, Y., Schmitt, S. H., Schlag, P., Fuchs, H., Novelli, A., Chen, Q., Cheng, X., Broch, S., Dong, H., Holland, F., Li, X., Liu, Y., Ma, X., Reimer, D., Rohrer, F., Shao, M., Tan, Z., Taraborrelli, D., Tillmann, R., Wang, H., Wang, Y., Wu, Y., Wu, Z., Zeng, L., Zheng, J., Hu, M., Lu, K., Hofzumahaus, A., Zhang, Y., Wahner, A., and Kiendler-Scharr, A.: Uptake of Water-soluble Gas-phase Oxidation Products Drives Organic Particulate Pollution in Beijing, Geophysical Research Letters, 48, e2020GL091351, 10.1029/2020gl091351, 2021.

Huang, D. D., Zhu, S., An, J., Wang, Q., Qiao, L., Zhou, M., He, X., Ma, Y., Sun, Y., Huang, C., Yu, J. Z., and Zhang, Q.: Comparative Assessment of Cooking Emission Contributions to Urban Organic Aerosol Using Online Molecular Tracers and Aerosol Mass Spectrometry Measurements, Environ. Sci. Technol., 55, 14526–14535, 10.1021/acs.est.1c03280, 2021.

Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, 10.5194/acp-15-4399-2015, 2015.

Shen, H. Q., Chen, Z. M., Li, H., Qian, X., Qin, X., and Shi, W. X.: Gas-Particle Partitioning of Carbonyl Compounds in the Ambient Atmosphere, Environ. Sci. Technol., 52, 10997–11006, 10.1021/acs.est.8b01882, 2018.

Wu, C., Wang, C., Wang, S., Wang, W., Yuan, B., Qi, J., Wang, B., Wang, H., Wang, C., Song, W., Wang, X., Hu, W., Lou, S., Ye, C., Peng, Y., Wang, Z., Huangfu, Y., Xie, Y., Zhu, M., Zheng, J., Wang, X., Jiang, B., Zhang, Z., and Shao, M.: Measurement report: Important contributions of oxygenated compounds to emissions and chemistry of volatile organic compounds in urban air, Atmos. Chem. Phys., 20, 14769–14785, 10.5194/acp-20-14769-2020, 2020.