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Abstract. Accurate information about uncertainties is re-
quired in nearly all data analyses, e.g., inter-comparisons,
data assimilation, combined use. Validation of precision esti-
mates (viz., the random component of estimated uncertainty)
is important for remote sensing measurements, which pro-
vide the information about atmospheric parameters by solv-
ing an inverse problem. For the Global Ozone Monitoring
by Occultation of Stars (GOMOS) instrument, this is a real
challenge, due to the dependence of the signal-to-noise ra-
tio (and thus precision estimates) on stellar properties, small
number of self-collocated measurements, and growing noise
as a function of time due to instrument aging. The estimated
ozone uncertainties are small in the stratosphere for bright
star occultations, which complicates validation of precision
values, given the natural ozone variability.

In this paper, we discuss different methods for geophys-
ical validation of precision estimates and their applicability
to GOMOS data. We propose a simple method for valida-
tion of GOMOS precision estimates for ozone in the strato-
sphere. This method is based on comparisons of differences
in sample variance with differences in uncertainty estimates
for measurements from different stars selected in a region of
small natural variability.

For GOMOS, the difference in sample variances for differ-
ent stars at tangent altitudes 25–45 km is well explained by
the difference in squared precisions, if the stars are not dim.
Since this is observed for several stars, and since normalized
χ2 is close to 1 for these occultations in the stratosphere, we
conclude that the GOMOS precision estimates are realistic in
occultations of sufficiently bright stars. For dim stars, errors

are overestimated due to improper accounting of the dark
charge correction uncertainty in the error budget. The pro-
posed method can also be applied to stratospheric ozone data
from other instruments, including multi-instrument analyses.

1 Introduction

Nearly all data analyses, e.g., data comparisons, data assim-
ilation, and combined use, require information about data
uncertainty. Validation of precision estimates (viz., the ran-
dom component of the estimated uncertainty) is needed when
the measurement uncertainty cannot be fully characterized
or is based on assumptions. This is especially important for
remote-sensing measurements, which use retrievals of atmo-
spheric parameters by solving inverse problems. Precision of
the remote sensing measurements is usually estimated via
propagation of instrumental noise through the inversion al-
gorithm. These precision estimates can be imperfect due to
incomplete forward models or retrieval approximations.

This paper is dedicated to validation of stratospheric ozone
precision estimates for the Global Ozone Monitoring by Oc-
cultation of Stars (GOMOS) instrument. GOMOS is a stellar
occultation instrument on board the Envisat satellite (Bertaux
et al., 2010; Kyrölä et al., 2010), which operated in 2002–
2012. Vertical profiles of ozone, NO2, NO3 and aerosol ex-
tinction are retrieved from ultraviolet and visible (UV–VIS)
stellar spectra measured as a star sets behind the Earth’s limb,
with a sampling frequency of 2 Hz. The spectra observed
through the atmosphere are normalized by the reference
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stellar spectrum observed above the atmosphere thus giv-
ing self-calibrated transmission spectra (transmittances), the
basis for retrievals of trace gases from GOMOS measure-
ments (Bertaux et al., 2010; Kyrölä et al., 2010). The GO-
MOS inversion of chemical composition is performed in two
steps (Kyrölä et al., 2010). First, atmospheric transmission
data from every tangent height are inverted to horizontal col-
umn densities (along the line of sight) for gases and optical
thickness for aerosols (spectral inversion). Then, for every
constituent, the collection of the horizontal column densi-
ties at successive tangent heights is inverted to vertical den-
sity profiles (vertical inversion). Although the measurements
are performed during night and day, only nighttime measure-
ments have been used in scientific studies so far, as the scat-
tered solar light significantly degrades the quality and alti-
tude coverage of daytime occultations. In this paper, only
nighttime measurements (with solar zenith angles larger than
107◦ at the tangent points) are discussed. GOMOS has per-
formed about 150–200 nighttime occultations per day with
global coverage. Typical examples of GOMOS data cover-
age and distribution over the globe are shown, for exam-
ple, in Bertaux et al. (2010), Kyrölä et al. (2010), Sofieva et
al. (2013), and Tamminen et al. (2010). The vertical resolu-
tion (including the smoothing properties of the inversion) of
GOMOS ozone profiles is 2 km below 30 km and 3 km above
40 km; it is the same for all occultations.

In this paper, we discuss challenges in the validation of
GOMOS ozone precision estimates and propose a simple
method that allows for such validation in the stratosphere.
The paper is organized as follows. Section 2 outlines the
principles of the GOMOS precision derivation. In Sect. 3,
we review the existing methods for validation of precision
estimates and discuss their applicability to GOMOS mea-
surements. In Sect. 4, we describe the proposed differential
method for validation of precision estimates, present its ap-
plication to GOMOS ozone profiles in the stratosphere and
discuss its extension for other instruments. The summary
concludes the paper.

2 Outlines of GOMOS precision derivation and
characterization of retrieval quality

For GOMOS, the random component dominates in the total
error budget. For nighttime occultations, instrumental noise
consists of three components: photon noise, the dark charge
of the charge-coupled devices (CCD), and readout noise
(Bertaux et al., 2010; Kyrölä et al., 2010). Statistics of pho-
tocounts obey a Poisson distribution, which can be approxi-
mated to good accuracy by a normal distribution due to large
values of photocounts. In the GOMOS processing, the mean
dark charge is estimated and subtracted from the recorded
signal as an offset signal, but its variance is taken into ac-
count in the noise term. The dark charge increases with time
due to instrument aging (Tamminen et al., 2010). Its relative

contribution to the noise budget is larger for dim stars and at
lower altitudes due to the attenuation of stellar flux caused
by the atmosphere. Note that, at the stellar spectra level, dark
charge and readout noise are additive – they do not depend
on the mean stellar signal. However, at the transmission spec-
tra level (after dividing by the reference spectrum), all noise
components become non-additive: they depend strongly on
the stellar signal (the noise is small for bright stars and larger
for dimmer stars).

In the stratosphere, the main source of the modeling er-
ror is the incomplete scintillation correction, which is of a
random nature. The residual scintillation error (i.e., the un-
certainty due to incomplete scintillation correction) has been
characterized in depth (Sofieva et al., 2009) and has been in-
cluded in the inversion algorithm (Sofieva et al., 2010). The
residual scintillation error depends on the obliquity of occul-
tation; it vanishes for vertical (in-orbital-plane) occultations.
Both the instrumental noise and the residual scintillation er-
ror are then propagated through the inversion (for details, see
Kyrölä et al., 2010; Sofieva et al., 2010; Tamminen et al.,
2010), and the uncertainties of the retrieved profiles are given
by the corresponding covariance matrices. The square roots
of their diagonal elements are often referred to (also in this
paper) as precision estimates.

The normalizedχ2 statistics,χ2
norm, is commonly used

for validating the adequacy of the theoretical description of
measurements (forward model) and as an indication of the
correctness of error estimates. For GOMOS,χ2

norm after the
spectral inversion is

χ2
norm =

1

N − p
(T − T mod)

T C−1 (T − T mod) , (1)

whereT is the vector of observed transmittances,T mod is
the vector of modeled (theoretical) transmittances,C is the
covariance matrix of measurement errors,N is the num-
ber of measurements andp is the number of retrieved pa-
rameters. If the theoretical model describes the experimen-
tal data well and the measurement errors are properly de-
fined,χ2

norm ≈ 1. For GOMOS v.6 data,χ2
norm is very close

to unity in the stratosphere (Fig. 1) thus indicating realistic
uncertainty characterization in this altitude range. Some in-
crease ofχ2

norm at lower altitudes is quite expected and is
related mainly to uncertainties in aerosol modeling. For dim
and medium-brightness stars,χ2

norm can be even smaller than
1 in the mesosphere. This indicates overestimated instrumen-
tal noise and can result in overestimated uncertainty of the
retrieved profiles. Overestimation of ozone uncertainties for
dim stars is confirmed also by our validation analysis of pre-
cision estimates, as presented below in the paper.

3 Methods for validation of precision estimates

In this section, we review existing validation methods and
discuss their applicability to GOMOS measurements.
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Figure 1.χ2
norm for stars of different magnitudes. Dots: individual values, solid lines: median profiles, dashed lines: 16th and 84th percentiles.

Number of occultations is specified in the figure. The 2008 data in the Northern Hemisphere are used.

3.1 Approaches to validation of precision estimates for
atmospheric measurements

In the laboratory, the experimental precision estimates can be
obtained using repeated measurements under the same con-
ditions: the sample variances2

= var(x) approaches the vari-
ance of random error distributionσ 2 (i.e., squared precision)
when the size of sampleN tends to infinity. The sample vari-
ance has aχ2 distribution withN − 1 degrees of freedom. It
can be approximated for largeN by a Gaussian distribution
with variance:

var(s2) ≈ σ 4 2

N
, (2)

giving the uncertainty of the experimentally estimated preci-
sion.

Contrary to laboratory experiments, geophysical observa-
tion conditions cannot be kept exactly constant for atmo-
spheric measurements. Therefore, the sample variance con-
tains a contribution due to the natural variabilityσ 2

nat : s
2
=

σ 2
+σ 2

nat. For validation of uncertainty estimates,σ 2
nat should

be minimized by selecting collocated measurements or it
should be known from independent sources.

Approaches to validation of error estimates usually rely
on the variance of the differences2

12 in a set of collocated
measurementsx1 andx2:

s2
12 =

〈
(x1 − x2)

2
〉
− 〈x1 − x2〉

2
= σ 2

0,nat+ σ 2
1 + σ 2

2 . (3)

In Eq. (3),σ 2
0,nat stands for the natural variability within a

space–time collocation window (note thatσ 2
0,nat is different

from σ 2
nat), and the angular brackets denote the mean. Three

methods for precision validation have been developed and
applied.

Method 1

For perfectly collocated measurements (σ 2
0,nat ≈ 0) from the

same instrument with the same precisionsσ1 = σ2 = σ ,
Eq. (3) is reduced tos2

12 ≈ 2σ 2, thus allowing validation of
the uncertainty estimateσ . This method was realized, for ex-
ample, for closely collocated MIPAS and OSIRIS measure-
ments (Bourassa et al., 2012; Piccolo and Dudhia, 2007).
The uncertainty of this experimental precision estimateσ̂ 2

=

s2
12/2 is defined by the uncertainty of sample variances2

12.

Method 2

Fioletov et al. (2006) have proposed estimating simultane-
ously the measurement precision and natural variability from
sample variances of two perfectly collocated data sets and
the variance of their difference (see Fioletov et al., 2006,
and Appendix A for details). Since the precision estimates by
the Fioletov method are linear combinations of three sample
variances, they can have large uncertainty if one of the sam-
ple variances is large and/or the number of collocated mea-
surements is limited (Appendix A; Fioletov et al., 2006). It is
nearly impossible to select measurements exactly at the same
location and time (perfectly collocated). In practice, satellite
measurements separated by a few hundreds of kilometers and
a few hours are considered collocated. The natural variabil-
ity within the space–time collocation window is small but not
zero. This results in additional difficulties in the application
of this method, as observed by Bourassa et al. (2012). The
small-scale natural variability also disturbs application of the
Method 1.

Method 3

Provided many collocated measurements from the same in-
strument are available (self-collocations), the precision of
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the data set can be estimated also by computing a two-
dimensional structure function, or the rms difference as a
function of increasing separation in time and in space. Then
the limit at zero spatiotemporal mismatch will define the
measurement precision. This method has been applied to val-
idation of radio-occultation measurements by Constellation
Observing System for Meteorology, Ionosphere, and Climate
(COSMIC) (Staten and Reichler, 2009), which consists of
identical instruments on board of six microsatellites.

For a single instrument, self-collocated data can be suc-
cessive measurements from the same orbit, or measurements
from different (successive) orbits. An analogous method
(evaluation of the 1-D structure function) has been applied
for validation of precision estimates of the MIPAS (Michel-
son Interferometer for Passive Atmospheric Sounding) in-
strument on board the Envisat satellite (Laeng et al., 2014).

3.2 Specifics of GOMOS measurements and
challenges for precision validation

The stellar flux recorded by GOMOS – and thus signal-to-
noise ratio and precision of retrieved profiles – depends on
the magnitude and spectral class of the observed star, which
means that the measurement precision varies substantially
over the data set. Precision of retrieved profiles depends
slightly on obliquity of occultation due to the influence of
scintillations (Sofieva et al., 2009). The GOMOS error esti-
mates also slightly depend on ozone concentration, but this
dependence is much weaker than the dependence on stel-
lar magnitude and the spectral class. In addition, GOMOS
uncertainty estimates grow with instrument age (Tamminen
et al., 2010). These features present some challenges for the
validation of the GOMOS precision.

The number of self-collocated GOMOS measurements
which are separated by less than 300 km in space and by less
than 3 h in time is very limited. A sufficient amount (∼ 200
per year) of collocated occultations of the same star, which
would potentially allow a statistically significant validation
of precision estimates by methods 1 or 3, are available only
for one star, namely star number 30 in the GOMOS cata-
logue (S30, we will use similar notations for stars in the GO-
MOS catalogue hereafter). However, S30 collocations occur
during winter close to the North Pole where the natural vari-
ability of ozone is large. In addition, the measurements in
limb-viewing geometry are not local but horizontally inte-
grated with effective horizontal extent∼ 300 km; therefore,
GOMOS measurements with the same tangent point but at
different azimuth angles are not expected to be exactly the
same. We applied a variant of Method 3 to these GOMOS
ozone profiles (the details of the analysis are presented in Ap-
pendix B) and, as expected, found that a significant excess
of natural variability over the GOMOS precision estimates
for S30 combined with the absence of very close colloca-
tions do not allow us to make definitive conclusions about
the quality of GOMOS precision estimates (Appendix B).

Other GOMOS self-collocations (less than 30 per year) are
for different stars in successive orbits (Guirlet et al., 2006) in
years 2002–2004.

The estimated retrieval uncertainty for GOMOS ozone is
small in the stratosphere; for very bright stars it is∼ 0.5–2 %
(Sofieva et al., 2009; Tamminen et al., 2010). For an exper-
imental estimation of precision in such occultations by the
Fioletov method, a very large number of collocations with
measurements from another instrument is needed, even in re-
gions of low natural variability (Appendix B). For example,
in equatorial regions with natural ozone variability∼ 5 %, in
order to estimate/validate the GOMOS precision∼ 1 % with
uncertainty of 50 %, more than 2500 collocated and accurate
measurements would be needed. Such a number of colloca-
tions for each GOMOS star (or similar stars) is not available,
even for satellite instruments with dense sampling like the
Michelson Interferometer for Passive Atmospheric Sounding
(MIPAS) on board Envisat or the Microwave Limb Sounder
(MLS) on board EOS-Aura. For example, at latitudes 20◦ S–
20◦ N, there are only∼ 500 collocations per year for MIPAS
measurements using the 10 brightest GOMOS stars. Conse-
quently, the method of Fioletov et al. (2006) cannot be ap-
plied to validation of GOMOS precision estimates either.

A simple method that allows for the validation of GOMOS
ozone precision estimates is presented below.

4 A differential method for validation of GOMOS ozone
precision estimates

4.1 Description of the method

If the measurements are selected in a region of small and
slowly changing natural variability, then the sample vari-
ances corresponding to different data setsi (for GOMOS,
corresponding to different stars) can be written as

s2
i = σ 2

nat+ σ 2
i . (4)

If the precision estimates are correct, then the difference in
sample variance will be equal to the difference in precision
estimates,s2

i − s2
j = σ 2

i − σ 2
j . The termσ 2

nat cancels out be-
cause it is assumed to be the same for both samples.

At the same time,s2
i provides the upper limit for exper-

imental estimates of measurement precision, ass2
i > σ 2

i . If
σi → 0, thens2

i → σ 2
nat.

Important conditions for successful application of this
method (which we call “differential method” hereafter) in-
clude the following:

a. Natural variability should be the same for the samplesi

andj .

b. Natural variability should not be large compared to the
precision estimates, otherwise the sample variance es-
timates will have large uncertainty. This condition of
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small natural variability is satisfied for ozone in the
tropical stratosphere and in the summer stratosphere at
other latitudes.

c. Measurements in each sample should be of the same
precision.

4.2 Data and results

For an initial analysis, we selected tropical occultations
(20◦ S–20◦ N) in the year 2008. The restriction to 1 year was
made in order to avoid multi-year variability due to quasi-
biennial oscillation. Only stars for which more than 200 oc-
cultations were available are considered. The latitudes of
these occultations are shown in Fig. 2, and the information
about these occultations is presented in Table 1. A particular
star is available only for 2–3 months; its successive occul-
tations are at approximately the same latitude and the same
local time. The GOMOS measurement scheme provides nat-
urally homogeneous longitudinal (zonal) coverage. For other
years, the sampling pattern is very similar. The outliers and
suspicious data were removed by the screening procedure
presented in Appendix C.

The comparison of sample variances and precision esti-
mates is presented in Fig. 3 for very bright stars S4 and S10
(left), and star S4 and the dim star S134 (right). As seen in
Fig. 3 (left), the sample variances for the two bright stars S4
and S10 are very close to each other and show specific vari-
ations with height. The sample variance in S4 occultations is
slightly larger than for S10 occultations, and this difference
is fully accounted for by the difference in squared precisions
(although S4 is brighter than S10, uncertainty estimates are
larger for S4 because these stars have different effective tem-
peratures). The uncertainty (rms) of sample variance shown
by the error bars in Fig. 3 has been estimated according to
Eq. (2). Very small error bars on squared precision curves
(dashed lines) show the standard deviation of the precision
distribution, which is very small for ozone in the tropics. The
analogous comparison for the bright star S4 and the dim star
S134 shows very similar features: the sample variance for
S134 occultations is larger than that for S4 by an amount
approximately equal to the difference in the corresponding
squared precision estimates.

Figure 4 compares the difference in the sample variance
s2
2 −s2

1 with the difference in squared precisionsσ 2
2 −σ 2

1 , for
different pairs of stars. In this comparison, time intervals are
restricted in such a way that the spatiotemporal coverage by
the selected stars is as close as possible. In particular, the time
interval from 10 September to 20 October is taken for stars 2
and 161, and the interval from 15 August to 28 October for
stars 9 and 143, etc. The difference in sample variance is in
good agreement with the difference in precision estimates for
not dim stars. This can serve as an indicator of correctness of
these GOMOS precision estimates, in combination with the
upper limit of uncertainty given by the sample variances and

Table 1. Information about the GOMOS occultations used for the
analyses (years 2003, 2007, 2008). The obliquity angles are practi-
cally the same for different years. The occultations with large obliq-
uity angles (> 60◦) were performed in 2003.

Effective Mean
Visual temperature obliquity

Star_id magnitude (K) (deg)

2 −0.7 7000 49
4 0 5800 34
9 0.5 24 000 42
10 0.6 28 000 38
12 0.8 30 000 31
18 1.2 9700 70
29 1.6 10 200 7
31 1.7 15 200 55
38 1.8 11 000 68
41 1.9 4100 39
43 1.9 4250 17
45 1.9 26 000 42
63 2.1 2800 55
71 2.2 7000 39
84 2.4 4500 62
113 2.7 5000 53
124 2.8 30 000 25
134 2.8 6600 29
135 2.8 5800 1
141 2.8 4600 40
143 2.9 7200 35
148 2.9 4100 32
157 2.9 9300 62
159 2.9 7200 30
161 2.9 4500 49

proximity of χ2
norm to 1. In the comparisons with dim stars

(cases S9 & S143 and S4 & S134), the difference in squared
precision estimates is somewhat larger than the difference in
sample variances, which might indicate an overestimation of
error bars for dim stars (see also discussion below).

If the GOMOS ozone error estimates are correct, then the
estimates of natural variabilitŷσ 2

nat computed from occulta-
tions of each star

σ̂ 2
nat = s2

i − σ 2
i (5)

should be approximately the same (provided the real natu-
ral variability in the corresponding samples in the equatorial
stratosphere is the same). Figure 5 (top) shows estimates of
natural variability in the latitude zone 20◦ S–20◦ N at alti-
tudes 25–40 km inferred from the sample variance and pre-
cision estimates for different stars, which are plotted as a
function of precisionsσi , for the considered year 2008. For
this analysis, all measurements shown in Fig. 2 are used. The
dashed black line showŝσ 2

nat,0 estimated from the limits2
i as

σ 2
i → 0 and technically computed as a weighted mean ofσ̂nat

estimates using the seven brightest stars:
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σ̂ 2
nat,0 =

7∑
i=1

wi

(
s2
i − σ 2

i

)
, (6)

where the weightswi are inversely proportional to the un-
certainty of the parameter

(
s2
i − σ 2

i

)
estimated as described

above (this section and Eq. 2). This estimated natural vari-
ability is approximatelŷσ 2

nat,0 ≈ 32.5 (%)2, or σ̂nat,0 ≈ 5.7 %.
As seen in Fig. 5 (top), many estimates of natural variabil-
ity from individual stars agree within 2σ uncertainty inter-
vals withσ̂ 2

nat,0. This can serve as an indicator of the correct-
ness of GOMOS error estimates for these cases. However, for
three stars – S113, S135 and S143 – the estimates of natural
variability become negative. This indicates an overestimation
of error bars for these occultations. Another interesting fea-
ture is variations in natural variability, which can be related

to atmospheric processes or/and to non-uniform sampling by
the measurements.

We have performed analogous estimations of natural vari-
ability also for 2007 and 2003 (center and bottom panels in
Fig. 5). In 2007, the features are very similar to those ob-
served for 2008: very close estimates of natural variability of
a few percent for bright stars, and very low, even negative,
estimates of natural variability variance for dim stars (stars
S113, S134, S141, S143, S159 in 2007; stars S43, S134,
S135 in 2003). Note that in 2003 the collection of stars is
slightly different from that in 2007–2008, because the az-
imuth range for GOMOS measurements has been restricted
after 2005 due to instrumental problems. Furthermore, un-
certainty estimates are smaller for all stars in 2003 than in
2007 and 2008 (this aging effect is observed more clearly
for dim stars due to a larger relative contribution of the dark
charge uncertainty). It is interesting to note that the estimated
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Figure 4.Difference in sample variances2
2−s2

1 (solid lines) and the

difference in precision variancesσ2
2 − σ2

1 (dashed lines), for differ-
ent collocated pairs of stars specified in the legend.

natural variability (we consider here the estimates based on
observations of seven brightest stars) is very similar in 2003
and 2007: 4.2 and 4.3 %, respectively; but it is larger in 2008,
5.7 %.

4.3 Discussion

The proposed differential method allows for testing of the
precision estimates in complicated cases like GOMOS ozone
measurements, when collocated measurements are not avail-
able and the estimated precision is small. The requirement for
application of this method is that natural variability is small
and slowly varying.

Small additive errors (i.e., errors, which do not depend on
stellar properties) in precisions cannot be detected by this
method. Indeed, if precision estimates have an additive com-
ponentσ 2

∗ : σ 2
i = σ̃ 2

i + σ 2
∗ , σ 2

j = σ̃ 2
j + σ 2

∗ , then it is canceled

out in the differenceσ 2
i − σ 2

j . In this case, it is impossible

to say whetherσ 2
∗ is realistic or not, ifσ 2

∗ is small enough
so that the natural variability estimatess2

− σ 2
i are positive.

All dominating measurement uncertainty components (pho-
ton noise, dark charge) strongly depend on the stellar prop-
erties. The only exception is the residual scintillation error,
which depends on obliquity of occultation (and does not de-
pend on stellar properties); that is, it is additive. However,
the residual scintillation error is relatively small, and it has
an accurate parameterization in GOMOS retrievals (Sofieva
et al., 2010). Therefore, it should not disturb the application
of the differential method to GOMOS data (this is consistent
with the results presented above).

The analysis of GOMOS occultations in the tropical strato-
sphere has shown that the difference in sample variances for
different stars at altitudes 25–45 km is well explained by the

difference in precisions, if stars are not dim (visual magni-
tude less than 1.9). Since (i) this is observed for several stars
and (ii) χ2

norm ≈ 1 in these occultations in the stratosphere,
we can conclude that GOMOS precision estimates are close
to reality for such measurements.

For some dim (and cool) stars, the random error has been
significantly overestimated, which results in negative esti-
mates of natural variability variance using Eq. (5). This is
also confirmed byχ2

norm < 1 down to 30 km in occultations
of dim stars. Careful inspection of the inversion algorithm
has shown that, most likely, the reason for such behavior
is imperfect estimation (a moderate overestimation) of dark
charge variance. This overestimation of dark charge uncer-
tainty is present for all occultations, but for bright stars this
is insignificant, as the dark charge uncertainty has a small
contribution to the total error budget.

The condition of small natural variability is not satisfied in
the mesosphere and lower thermosphere (MLT). In addition,
GOMOS error estimates for ozone are significantly smaller
than the natural variability in the mesosphere; thus, estimat-
ing their difference from sample variances would become
uncertain. However, there are reasons to trust the GOMOS
precision estimates also at upper altitudes. First, the error es-
timates are based on the same method as in the stratosphere,
and we see no reason why they should fail at upper altitudes.
Second,χ2

norm ≈ 1 holds for the whole altitude range; thus,
one would expect correctness of these error estimates also at
upper altitudes.

The differential method for validation of precision esti-
mates cannot be applied in the upper troposphere and the
lower stratosphere either, because of large ozone variability
in this region caused by variations in the tropopause height.

Provided conditions a–c (Sect. 4.1) are satisfied, the
method described here can be also applied to other con-
stituents. However, these conditions are often not satisfied
for other constituents retrieved by GOMOS. Let us consider
NO2 as an example. Condition c is violated for NO2. Preci-
sion estimates for NO2 exhibit rather large scatter (not shown
here); therefore, small differences in variabilities are not de-
tectable by precision estimates: they are within uncertainty
intervals. For GOMOS, the differential method for precision
validation is applicable mainly for ozone in the stratosphere,
which was the primary scientific motivation for this instru-
ment.

4.4 Extension for other instruments

The extension of the differential method for precision val-
idation by including data from another instrument is quite
straightforward: it can be considered as one more sample
with corresponding precision estimates.

As an example, we compare the natural variability in the
tropics, as estimated by GOMOS data for the seven bright-
est stars and by the MIPAS instrument on board the En-
visat satellite. MIPAS is a Fourier transform spectrometer
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Figure 5. Estimates of natural variability varianceσ̂2
nat= s2

i
−σ2

i
at altitudes 25–40 km for different stars plotted as a function of precisions

σi . Star numbers in GOMOS catalogue are indicated. Colors indicate star magnitude: from red for bright stars (small magnitude, small star
number) to blue for dim stars (large magnitude, large star number). The error bars are 2σ uncertainty intervals. Dashed lines indicate the
mean natural variability estimates obtained using seven brightest stars. Magenta lines highlight zero.

operating in the infrared, which provides vertical profiles
of ozone and other trace gases. For our illustration, we
have used the data processed with KIT IMK/IAA version
V5R_O3_220/221 research processor (von Clarmann et al.,
2003, 2009). MIPAS provides ozone profiles in the altitude
range from 6 to 70 km with a vertical resolution of 2–5 km.
In the tropical stratosphere, estimated precision of MIPAS
ozone profiles is 1–3 %. Recent validation of MIPAS preci-
sion estimates using self-collocated measurements (methods
1 and 3 explained in Sect. 3.1) has shown that the MIPAS
precision estimates are close to reality (Laeng et al., 2014).

Figure 6 shows profiles of natural variability estimatesσ̂nat
obtained with Eq. (5) for latitudes 20◦ S–20◦ N using MI-
PAS nighttime data and GOMOS measurements of the seven
brightest stars in 2008. As observed in Fig. 6, estimates of
natural variability from GOMOS and from MIPAS are very

close to each other, and even the variations with altitude are
similar. The values of mean natural variability in the altitude
range 25–45 km are very close to each other:∼ 5.8 % for MI-
PAS and∼ 5.7 % for GOMOS. Such a good agreement can
be considered as an additional confirmation that both MIPAS
error bars and GOMOS error bars for bright stars are realis-
tic.

5 Summary

In this paper, we have discussed validation of precision es-
timates for ozone profiles retrieved by the stellar occul-
tation instrument GOMOS/Envisat. The validation of GO-
MOS precision estimates is challenging because of the de-
pendence of instrumental noise (and thus uncertainty of
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retrieved profiles) on stellar properties, insufficient number
of GOMOS-GOMOS collocated measurements and small
ozone retrieval uncertainties in case of bright stars. We have
proposed a simple differential method for validation of GO-
MOS ozone precision estimates, which is based on compar-
isons of differences in sample variance with the difference in
squared precision estimates, for measurements from different
stars selected in a region of low natural variability.

The application of the proposed method to GOMOS ozone
profiles in the stratosphere has shown that GOMOS precision
estimates are realistic for non-dim stars (magnitude less than
∼ 1.9). For dim stars, the uncertainties of retrieved ozone
profiles are overestimated. The reason for this overestima-
tion is now understood: it is related to improper accounting
of the uncertainty associated with dark charge correction in
the GOMOS error budget. This issue will be corrected in
future GOMOS data processing (the correct error budget af-
fects precision estimates mainly, while the changes in ozone
values themselves are insignificant).

The application of the differential method to other altitude
ranges and to other constituents is not readily possible due to
violation of assumptions needed for the method to work. An
extension to use of other instruments is quite natural, as illus-
trated here with GOMOS and MIPAS measurements. Esti-
mates of ozone natural variability in the tropics from MIPAS
and GOMOS using the seven brightest stars are very close
to each other; thus, this provides additional confirmation of
the correctness of the corresponding precision estimates, for
both instruments.
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Figure 6. Profiles of natural variability at 20◦ S–20◦ N in 2008
(Eq. 5) using MIPAS nighttime data and GOMOS data from oc-
cultations of seven brightest stars. Vertical dashed lines indicate the
mean natural variability over the altitude range 25–45 km.
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Appendix A: Uncertainty of precision estimates by the
Fioletov method

Fioletov et al. (2006) have proposed a method that allows si-
multaneous estimates of measurement precision and natural
variability based on (perfectly) collocated data from two in-
struments. This method relies on sample variancess2

i of the
collocated data:

s2
i = σ 2

nat+ σ 2
i i = 1,2 (A1)

and the variance of their difference:

s2
12 =

〈
(x1 − x2)

2
〉
= σ 2

1 + σ 2
2 . (A2)

In Eqs. (A1) and (A2),σ 2
nat is natural variability andσ 2

i

are measurement precisions. Solving Eqs. (A1) and (A2) for
these parameters, we get their experimental estimates based
on sample variance:

σ̂ 2
nat = 0.5

(
s2
1 + s2

2 − s2
12

)
σ̂ 2

1 = 0.5
(
s2
1 − s2

2 + s2
12

)
σ̂ 2

2 = 0.5
(
s2
2 − s2

1 + s2
12.

)
(A3)

The uncertainty of the natural variability and precision es-
timates given by Eq. (A3) depend on uncertainty of sample
variances, which depend, in turn, on sample variances them-
selves and the number of measurements. The estimates are
thus only as accurate as the least accurate of these parame-
ters. In approximation of large samples (whenχ2 distribution
for the sample variance can be approximated by a normal
distribution with the variance given by Eq. 2), the variance
of the estimates Eq. (A3) can be expressed in terms of “true”
natural variability and precision variancesσ 2

nat, σ 2
1 andσ 2

2 as

var(σ̂ 2
1 ) = var(σ̂ 2

2 ) = var(σ̂ 2
nat) (A4)

=
1

2N

((
σ 2

nat+ σ 2
1

)2
+

(
σ 2

nat+ σ 2
2

)2
+

(
σ 2

1 + σ 2
2

)2
)

with the following simple estimates for upper and lower lim-
its:

1

N

(
σ 4

nat+ σ 4
1 + σ 4

2

)
< var(σ̂ 2

1,2,nat)

<
1

N

(
σ 2

nat+ σ 2
1 + σ 2

2

)2
. (A5)

The estimates can be very uncertain in cases where the
natural variability significantly exceeds the measurement
precision, or in case of poor accuracy of the collocated
data. For example, letσ2 � σ1 and σnat/σ1 = 5. Then

the relative uncertainty of precision estimate
std(σ̂2

1 )

σ2
1

≈√
1
N

(
1+

σ4
nat
σ4

1
+

σ2
nat
σ2

1

)
, which is ∼ 255 % for N = 100,

∼ 85 % forN = 900 and∼ 51 % forN = 2500.

Appendix B: Validation of GOMOS precision estimates
using self-collocated data

Relatively many self-collocated GOMOS occultations exist
only for one star, S30 (magnitude 1.7, effective temperature
30 000 K), close to the North Pole in winter. In our analysis,
we selected the ozone profiles retrieved from S30 occulta-
tions with ground separationd0 less than 300 km and time
difference1t less than 3 h. For the majority of collocated
pairs, the time difference is∼ 100 min (one orbit). We have
used data from years 2007–2008, in which the number of
collocated profiles is maximal,∼ 200 profiles per year (a rel-
atively short time period of 2 years has been used in order to
avoid the effect of changes in error estimates with time due
to instrument aging).

Figure B1 shows profiles of the parameters12/
√

2, s12 be-
ing the sample standard deviation of the profile difference
(Eq. 3) as a function of the distanced. The parameters12/

√
2

approximates the experimental error estimates, which should
converge to predicted error estimates whend → 0 (if the lat-
ter ones are correct). It is analogous to the integral of struc-
ture function, which is widely used in the theory of ran-
dom functions (e.g., Yaglom, 1987). The distanced repre-
sent the separation of air parcels corresponding to collocated
measurements with the advection of air masses taken into
account. It is evaluated asd(z) = |d0(z) + v(z) · 1t |, where
d0(z) is the ground distance andv(z) are the profiles of wind
speed from ERA Interim data at locations of GOMOS occul-
tations.

As observed in Fig. B1, the experimental precision esti-
matess12/

√
2 decrease with decreasing separation of mea-

surements, as expected, but, because very small separations
are not covered with GOMOS data, they are larger than the
predicted error estimates. A similar analysis of collocated
MIPAS ozone data close to the North Pole in winter has
shown a very similar behavior of experimental and estimated
uncertainties (not shown here). However, when analyzing
collocated MIPAS data at the North Pole in summer, the ex-
perimental error estimates converge practically down to the
precision estimates, as shown in Laeng et al. (2014). This is
a clear indication that the ozone natural variability, even at
small scales (a few hundreds of kilometers), is not zero in
winter polar regions. The magnitude of this small-scale natu-

ral variability
√

s2
12/2− σ 2 is very similar in analyses of GO-

MOS and MIPAS data; it is∼ 3 % at 20–30 km increasing up
to 5–6 % at 40–50 km.

Absence of collocated GOMOS data in the regions of low
natural variability does not allow a full validation of preci-
sion estimates according to Method 3, whose application is
illustrated here. However, we observe a reasonable behavior
of GOMOS precision estimates: they are lower than the sam-
ple variances of ozone profile differences.
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Figure B1. Color lines: experimental precision estimatess12√
2

for

different separation distances; black line: mean error estimate. GO-
MOS self-collocations of star S30 occultations close to the North
Pole in 2007–2008 are used.

Appendix C: Screening of outliers in GOMOS data

The following three-step procedure has been applied for re-
moving invalid or suspicious GOMOS data.

1. The whole profile is ignored if

i. values of mixing ratio > 15 ppmv or <−0.5 ppmv
are reported at altitudes 25–45 km.

ii. number density >5·109 cm−3 is reported at ozone
minimum (77–80 km).

iii. value of mixing ratio > 100 ppmv is reported at any
altitude.

Any of i–iii conditions result in removing the whole pro-
file. This is the filtering of clear outlier profiles.

Table C1.Upper limit for allowed uncertainty and mixing ratio. All
values larger than these thresholds are removed.

Maximum Maximum mixing
Altitudes uncertainty ratio (modulus)

< 18 km 70 % 10 ppmv
18–65 km 30 % 50 ppmv
> 65 km 150 % 50 ppmv

2. A value at a certain altitude level is filtered if

i. the value is flagged (http://earth.eo.esa.int/pcs/
envisat/gomos/documentation/04_Vol10_Gomos_
3K_v7.pdf).

ii. error estimate or absolute value of mixing ratio ex-
ceed the threshold given in Table C1.

3. For stars with UV flux < 900 photons, all values above
42 km are removed.

UV flux at 275 nm was pre-computed for each star using
the Planck law. This operation removes the upper part of the
ozone profiles from occultations of dim and cool stars, which
are unreliable at high altitudes due to insufficient signal-to-
noise ratio in the ultraviolet (Kyrölä et al., 2006).

Finally, profiles having too few valid points (less than 10)
or a valid altitude range smaller than 20 km in the strato-
sphere were ignored.

Note that this screening procedure differs from the
more conservative one recommended in the GOMOS
readme documenthttp://earth.eo.esa.int/pcs/envisat/gomos/
documentation/RMF_0117_GOM_NL__2P_Disclaimers.
pdf.
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