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Abstract. The lack of high-quality in situ surface precipita-

tion data over the global ocean so far limits the capability to

validate satellite precipitation retrievals. The first systematic

ship-based surface precipitation data set OceanRAIN (Ocean

Rainfall And Ice-phase precipitation measurement Network)

aims at providing a comprehensive statistical basis of in

situ precipitation reference data from optical disdrometers at

1 min resolution deployed on various research vessels (RVs).

Deriving the precipitation rate for rain and snow requires a

priori knowledge of the precipitation phase (PP). Therefore,

we present an automatic PP distinction algorithm using avail-

able data based on more than 4 years of atmospheric mea-

surements onboard RV Polarstern that covers all climatic

regions of the Atlantic Ocean. A time-consuming manual

PP distinction within the OceanRAIN post-processing serves

as reference, mainly based on 3-hourly present weather in-

formation from a human observer. For automation, we find

that the combination of air temperature, relative humidity,

and 99th percentile of the particle diameter predicts best the

PP with respect to the manually determined PP. Excluding

mixed phase, this variable combination reaches an accuracy

of 91 % when compared to the manually determined PP for

149 635 min of precipitation from RV Polarstern. Including

mixed phase (165 632 min), an accuracy of 81.2 % is reached

for two independent PP distributions with a slight snow over-

prediction bias of 0.93. Using two independent PP distribu-

tions represents a new method that outperforms the conven-

tional method of using only one PP distribution to statisti-

cally derive the PP. The new statistical automatic PP distinc-

tion method considerably speeds up the data post-processing

within OceanRAIN while introducing an objective PP prob-

ability for each PP at 1 min resolution.

1 Introduction

Rare and often low-quality gauge-based surface reference

data sets challenge the in situ validation of oceanic precip-

itation as observed by passive and active microwave satellite

sensors (Taylor, 2000; Adler et al., 2012). Over land, radar

and gauge-based precipitation monitoring networks cover a

large fraction of the land surface for more than 2 decades,

which qualifies them to validate precipitation satellite esti-

mates (Schneider et al., 2014). However, the ocean surface

lacks dense long-term in situ precipitation monitoring net-

works. Furthermore, existing coastal and island-based pre-

cipitation measurements may not fully represent oceanic

precipitation because the measured particle size distribu-

tions (PSDs), precipitation rates, and accumulations may dif-

fer from those measured over the open ocean (Kidd and Lev-

izzani, 2011). However, Bumke and Seltmann (2012) found

no difference between PSDs over coastal areas and ocean.

Most existing in situ oceanic precipitation data sets sam-

ple measurements from low-quality rain gauges on volun-

tary observing ships (VOSs; Kent et al., 2010) or buoy ar-

rays (Weller et al., 2008). Many of these in situ ocean data

sets include present weather observations but lack quantita-

tive estimates of precipitation. The high-latitude ocean com-

pletely lacks precipitation measurements that sample solid

and mixed-phase precipitation. However, recent and future

precipitation satellite estimates demand high-quality in situ

quantitative precipitation estimates including snowfall over

the global ocean.

The large uncertainty in precipitation gauge measurements

arises from the rough open-ocean conditions that complicate

precipitation monitoring. Under high wind speed, standard
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rain gauges with horizontal catchment surfaces face a large

undercatch (Yuter and Parker, 2001; Michelson, 2004). In the

extratropics, mixed-phase and solid precipitation cause fur-

ther difficulties strongly adding to the undercatch (Goodison,

1978) of horizontally oriented measuring surfaces. In con-

trast, optical instruments with a vertically oriented measur-

ing surface such as disdrometers perform better at capturing

precipitation under high wind speeds, though varying wind

directions are challenging. Optical disdrometers are thus de-

noted as the reference in situ instrument to measure precipi-

tation (Taylor, 2000).

To provide systematic high-quality in situ precipitation

data over the ocean, the long-term Ocean Rainfall And

Ice-phase precipitation measurement Network (OceanRAIN;

Klepp, 2015) applies automatic optical disdrometers of type

ODM470 that are deployed onboard sea-going research ves-

sels (RVs) for operation in all climatic regions. The ODM470

was developed to measure under high wind speed and fre-

quently varying wind directions. Its cylindrical measuring

volume ensures being independent from the wind-driven in-

cidence angle of the falling hydrometeors while a wind vane

keeps the measuring volume perpendicular to the instanta-

neous wind direction. The ODM470 accuracy lies within

a range of 3 % rain accumulation limited to rainfall at

various wind conditions with respect to an improved ship

rain gauge including side collectors on RV Alkor on the

Baltic Sea (Bumke and Seltmann, 2012). Compared to an

ANS410 WMO-reference rain gauge over land (Lanza and

Vuerich, 2009), the ODM470 deviates by 2 % under low

wind speed (Klepp, 2015). For snow, a predecessor of the

current ODM470 agreed with the observer’s log during the

Lofoten Cyclones campaign (LOFZY; Klepp et al., 2010) in

detecting snowfall events. More recent results for measuring

snow and mixed-phase precipitation are expected soon from

the WMO Solid Precipitation InterComparison Experiment

(SPICE) at Marshall field site in Boulder (CO, USA), where

the ODM470 was compared against a multitude of in situ

solid precipitation instruments for more than 2 years. The

ODM470 suits well to measure various types of precipitation

under open-ocean conditions onboard sea-going RVs.

The deployment of the ODM470 on several RVs allows

to sample OceanRAIN precipitation data from all climate

zones including the cold-season high latitudes. This requires

a precipitation-phase (PP) distinction between rain, snow,

and mixed phase in order to provide correct precipitation

rates for disdrometer-measured PSDs. The PP information

usually originates from human observers’ reports saved in

the WMO present weather code ww (WMO, 2015). Efforts

to automatize present weather observations impose high re-

quirements on instruments such as present weather sensors.

Automated present weather sensors encounter problems at

temperatures around 0 ◦C as well as for light precipitation

and small particle sizes (Merenti-Välimäki et al., 2001). High

wind speed also complicates the PP determination because

the wind speed strongly interferes with the particle fall speed

that solely carries the PP information. Thus, most studies to

distinguish PPs limit the wind conditions to low wind speed

or calm conditions (Löffler-Mang and Joss, 2000; Yuter et al.,

2006; Ishizaka et al., 2013). Only few studies apply more so-

phisticated instruments that use articulating particle size ve-

locity (PARSIVEL) disdrometers to account for wind effects

and thus directly derive the PP from the particle fall speed

(Friedrich et al., 2013). More simply constructed instruments

such as the ODM470 require ancillary data to determine the

PP.

In OceanRAIN, we aim to replace the so far manual

PP distinction method by an automatic algorithm for three

main reasons. First, the manual method consumes a con-

siderable amount of time and workforce because the 1 min

precipitation data requires visual inspection of air tempera-

ture, present weather observations, and theoretical rain and

snow rate. Second, the human-based PP decision based on

visual data inspection lacks objectivity while the decision

itself remains non-transparent to the user. Third, temporal

gaps exist between the 3-hourly present weather observa-

tional timesteps, especially during nighttime adding to the

uncertainty. Currently, no measures of this PP uncertainty

are provided in the manual method. For these reasons, we

present a new automatic PP distinction algorithm including a

PP probability for OceanRAIN precipitation data that is also

applicable to all other instruments sampling PSDs of precip-

itation.

The new PP distinction algorithm follows a statistical ap-

proach guided by many other studies that relate atmospheric

predictors to the PP (Koistinen and Saltikoff, 1998; Fuchs

et al., 2001; Dai, 2008; Froidurot et al., 2014). Most pre-

vious work focuses on PP distinction over land only, while

we introduce a new PP distinction algorithm over the ocean.

Dai (2008) compares ocean and land areas using a relatively

coarse time step of few to several hours depending on avail-

ability of observations. In contrast, OceanRAIN offers at-

mospheric measurements at 1 min resolution while present

weather observations are limited to 3-hourly timesteps dur-

ing daytime only. These high-resolution ancillary data from

the RV combined with PSD data from the optical disdrometer

enable a more accurate and reliable PP distinction.

Section 2 introduces the optical disdrometer, the manual

PP distinction method, and the OceanRAIN data set in de-

tail. Section 3 presents different atmospheric variable com-

binations and methods to predict the PP. In Sect. 3.1, one PP

distribution distinguishes between two PPs, while in Sect. 3.2

one PP distribution distinguishes between three PPs. Sec-

tion 3.3 introduces a newly developed method to predict three

PPs using two PP distributions. Section 4 discusses the re-

sults by comparing with similar studies. Section 5 completes

our investigations with a summary and concluding remarks.
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2 Data and methods

Since 2010, OceanRAIN collects atmospheric data includ-

ing precipitation rates on several RVs. Current permanent

deployments include the German ships RV Polarstern (since

June 2010), RV Meteor (since March 2014), RV Sonne (since

November 2014), and the Russian ship Akademik Ioffe (since

September 2010). The backbone of OceanRAIN is the op-

tical disdrometer ODM470, which is explained in detail in

Sect. 2.1. Section 2.2 introduces the manual method that

has been used so far to retrieve the PP in OceanRAIN.

These manually determined PPs function as a benchmark-

ing reference for the new automatic PP distinction algorithm.

For the algorithm development, we exclusively use RV Po-

larstern data (Sect. 2.3) that contains a high fraction of high-

latitude solid and mixed-phase precipitation being a prereq-

uisite to develop a robust PP distinction algorithm. While

Klepp (2015) describes the OceanRAIN data post-processing

and quality checking before PP distinction we focus on pre-

senting a new automatic PP estimation method that provides

uncertainty information.

2.1 The ODM470

The ODM470 is an optical disdrometer to measure pre-

cipitation, manufactured by the German company Eigen-

brodt GmbH & Co KG near Hamburg (Germany). The in-

strument consists of an infrared (IR) light-emitting diode

(LED) at 880 nm and a photo diode receiver (Lempio et al.,

2007). The IR-LED of the ODM470 is only activated once

at least 8 particles per minute pass the active sensing area

of the precipitation detector IRSS88 (Fig. 1, right) in order

to increase IR-LED lifetime and exclude measurement arti-

facts caused by birds or other non-precipitation objects. The

IRSS88 switches off the ODM470 after 1 min without any

particle passing the IRSS88 active sensing area. The entire

ODM470 system was developed in a way to minimize unde-

sired influences by changing wind directions and high wind

speed. The ODM470 sensitive optical volume has a cylin-

drical shape of 120 mm length and 22 mm in diameter. The

cylindrical shape guarantees an independence from the inci-

dence angle of the falling hydrometeors, which becomes cru-

cial under high wind speeds and superstructure-induced local

turbulence. Mounted on a pivotable axis, a wind vane ensures

the optical volume to adjust perpendicular to the instanta-

neous local wind direction. The ODM470 mounting height

typically ranges between 30 and 45 m height, depending on

the RV’s specifications (Fig. 1). This elevated deployment re-

duces influences on the measured precipitation by splashing

wave water.

During precipitation events, the falling hydrometeors at-

tenuate the emitted IR radiation, which decreases the voltage

signal measured. The duration of the voltage drop determines

the particle transit time, that is, the total time it takes a par-

ticle to pass through the optical volume of the disdrometer.

Figure 1. The image displays the automatic ODM470 measure-

ment system including a cup anemometer, the optical disdrometer

ODM470, and the precipitation detector IRSS88, deployed in the

highest main mast at about 43 m height onboard RV Polarstern.

From the amplitude of the detector voltage drop the cross-

sectional area can be deduced, which determines the particle

diameter. The measured particle diameters are split into 128

logarithmically distributed size bins, of which the smallest

is less than 0.02 mm and the largest corresponds to the op-

tical volume diameter of 22 mm. However, wind- or wave-

induced ship vibrations passed on to the instrument might

cause artificial signals that are not distinguishable from real

precipitation, which is why particles below bin 14 (0.43 mm

diameter) are not considered in OceanRAIN. This exclusion

of small particles also removes sea spray particles from the

PSD spectra. The remaining particles are accumulated and

binned over 1 min. From the resulting PSD, the precipitation

rate PR (mm h−1) or liquid water equivalent (kg m−2 h−1)

after Großklaus (1996) can be calculated using

PR= 3600 ·

128∑
bin=1

n(bin) · v(bin) ·m(bin), (1)

where v(bin) (m s−1) denotes the particle terminal fall speed

and m(bin) (kg) the particle mass; both are parameterized.

n(bin) (m−3) denotes the PSD density per bin class that is

calculated following Clemens (2002) by considering the ge-

ometrical features, diameter d (m) and length l (m), the sam-

pling time t (s) of the ODM470 as well as the sum of local

wind speed Urel (m s−1) relative to the ship movement mea-

sured by a cup anemometer, and the empirical terminal fall

speed v(bin) (m s−1) as

n(bin)=
N (bin)

l · d · t ·

√
U2

rel+
[
v(bin)

]2 . (2)

N (bin) is the number of measured particles per bin class, de-

noted as PSD. As explained, in Eq. (1) empirical relation-

ships utilize the particle diameter D that strongly depends
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on the type of precipitation. Henceforth, we refer to precip-

itation phase (PP), which means either liquid precipitation

(rain), solid precipitation (e.g., snow or graupel), or mixed-

phase precipitation. For rain the drop mass ml (kg), or liquid

water content, and the particle terminal fall speed vl (m s−1)

are well known and calculated using Eqs. (3) and (4) from

Atlas and Ulbrich (1974), respectively.

ml = 1000 ·
4

3
π · (0.5D)3 (3)

vl = 9.65− 10.3 · e−600D (4)

For snow, the measured cross-sectional area differs from the

required maximum dimension of the particle due to the non-

spherical shape of snowflakes. This difference requires ap-

plying a transfer function. However, Lempio et al. (2007)

found that the product of particle terminal fall speed and par-

ticle mass (liquid water equivalent) as a function of cross-

sectional area is in the same order of magnitude for var-

ious frozen precipitation particle types. Hence, no transfer

function between cross-sectional area and maximum diame-

ter is required when using a spherical lump graupel assump-

tion. The lump graupel assumption works well for frozen

precipitation particles between 0.4 and 9 mm in diameter,

whereas particles exceeding 9 mm in diameter rarely occur.

Nevertheless, events with large particles introduce larger er-

rors to the estimate in the same way as the retrieval qual-

ity may largely differ for individual snowfall events. Over-

all, no unique snowfall retrieval can be derived using optical

disdrometers without recording the individual particle shape.

Compared to a Geonor gauge, the optical disdrometer agreed

well in most cases and overestimated a few light snowfall

cases during the 1999/2000 winter period at Uppsala (Lem-

pio et al., 2007). Following the lump graupel approximation

by Hogan (1994), particle mass ms (Eq. 5) and particle ter-

minal fall speed vs (Eq. 6) are calculated empirically as

ms = 1.07 · 10−5
· (100D)3.1, (5)

vs = 7.33 · (100D)0.78. (6)

Klepp et al. (2010) observed lump graupel being the most

frequently occurring precipitation type over the cold-season

Norwegian Sea during the LOFZY campaign. Battaglia et al.

(2010) discuss several sources of error for a snow-measuring

PARSIVEL whereof those for particle shape and orienta-

tion, margin effects, and coinciding particles also apply to

the ODM470. However, the PARSIVEL is more sensitive to

influences by wind speed and wind direction on the falling

precipitation particles because the PARSIVEL has a fixed

non-pivotable horizontal optical sensing area.

For mixed-phase precipitation, we generally use the snow

retrieval (Eqs. 5 and 6) to calculate the precipitation rate

within OceanRAIN because the absolute error of treating

rain drops like snow particles, and thus underestimating the

precipitation rate, results in a smaller error than vice versa.

In more than 90 % of the precipitating cases from RV Po-

larstern in OceanRAIN the precipitation rate calculated with

Eqs. (3) and (4) (theoretical rain rate) exceeds precipitation

rate calculated with Eqs. (5) and (6) (theoretical snow rate)

by a factor of 50 to 200. Accordingly, this large difference

might cause large biases in the precipitation rate for mis-

classified PP. Correctly classified mixed-phase precipitation

events might still strongly underestimate the precipitation

rate if the instantaneous rain fraction sharply exceeds 0.5.

The minute-aggregated fraction of liquid and solid particles

cannot be identified by the ODM470 and would require an-

cillary data such as a video disdrometer. More details on the

instrumentation can be found in Lempio et al. (2007) while

algorithm features are explained in Klepp (2015).

2.2 The manual PP distinction

Though time-consuming, the manual PP distinction was so

far employed to determine the PP that is required to calcu-

late the precipitation rate. Because we apply this manual PP

distinction data as reference to the new automatic PP distinc-

tion algorithm, a detailed explanation follows. If available,

shipboard present weather observations stored in the WMO

standard meteorological present and past weather code ww

(WMO, 2015) are translated into the three PPs: rain, snow,

and mixed phase according to Petty (1995), displayed in Ta-

ble 1. However, the translation of ww codes into a PP partly

differs between OceanRAIN and Petty (1995). While Petty

(1995) assigns one single PP to each of the ww codes, Ocean-

RAIN allows multiple PPs for a single ambiguous ww code

(bold weather codes in Table 1). Instead, Petty (1995) lists

ambiguous ww codes in a category called “indeterminable”

(abbreviated “Indet.” in Table 1) that, however, includes no

PP information anymore. For that reason we deviate from

this procedure to retain as much PP information as possible.

Another difference concerns ww codes for all kinds of freez-

ing rain (i.e., rain at freezing temperatures) without snow that

Petty (1995) classifies as mixed phase. Classifying freezing

rain as mixed phase by applying the lump graupel assump-

tion (Eqs. 5 and 6) leads to an underestimated precipitation

rate. This underestimation arises because falling raindrops

freeze only after passing the disdrometer’s optical volume

when hitting any obstacle, which is why we consider freez-

ing rain cases in OceanRAIN as rain (ww = 56,57,66,67).

Likewise, we assign a snow flag to ice pellets (ww = 79) as

well as mostly to hail (ww = 89,90), graupel (ww = 87,88),

and combinations of both (ww = 93,94,96,99). The aim is

mainly to separate frozen (solid) from non-frozen (liquid)

precipitation particles to account for differences in density

and cross-sectional area that affect Eqs. (3) to (6) and hence

the precipitation rate. In contrast, the study by Froidurot

et al. (2014) concentrates exclusively on clear rain, snow,

and mixed-phase observations (Table 1) by neglecting driz-

zle, freezing rain, and ice pellets, among others. In general,

assigning the correct PP for a given ambiguous ww code re-
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Table 1. Translation of WMO present weather codes ww (WMO, 2015) into the three PPs from Petty (1995), Froidurot et al. (2014), and

OceanRAIN. ww codes printed in bold can be translated into multiple PPs in OceanRAIN depending on ancillary data. “Indet./hail” denotes

indeterminate precipitation or hail used for classification in Petty (1995).

Source Rain Snow Mixed phase Indet./hail

Petty (1995) 21, 25, 50–55,

58–65, 80–82,

91–92

22, 26, 70–78,

85-86

23–24, 56–57,

66–69, 79, 83–

84

20, 27–29, 87–

90, 93–99

OceanRAIN 20, 21, 25, 29,

50–67, 80–82,

91–92, 95, 97

20, 22, 26–27,

29, 70–79, 85–

86, 87–90, 93–

95, 96, 97, 99

23–24, 26–27,

29, 68–69, 83–

84, 87–90, 93–

95, 97

–

Froidurot et al. (2014) 58–65, 80–82,

91–92

70–79, 85–86 68–69, 83–84 –

quires visual inspection of PSDs and ancillary data collected

onboard the RV.

The ww code from shipboard observations on RV Po-

larstern is available 3 hourly during daytime only. Night-

time conditions and PP changes between two consecutive 3-

hourly observational time steps require ancillary data from

the RV to derive the PP. By ancillary data we refer to atmo-

spheric variables measured onboard the ship including the

ODM470, such as air temperature, humidity, and precipita-

tion rate. These ancillary data are available at a much higher

resolution of 1 min compared to the 3-hourly observations.

Initially, we assign the PP derived from the ww code directly

to every single minute of precipitation that follows a 3-hourly

observation as a first-guess information. If available, air tem-

perature as one of the ancillary data serves to possibly cor-

rect this first-guess PP. For near-freezing air temperatures,

the manual procedure calculates the precipitation rate after

Eq. (1) for rain (Eqs. 3 and 4) and snow (Eqs. 5 and 6) as-

sumption separately. Large differences between theoretical

rain and snow rate can help to identify a plausible PP. How-

ever, if both theoretical rain and snow rate differ by much less

than 2 orders of magnitude, their influence on the PP decision

becomes negligible, which makes the PP more arbitrary. Ac-

cordingly, the manual method might be biased by the worker

who decides for a PP and the observer on the RV. For these

reasons, we aim at developing an automatic PP distinction

algorithm at 1 min resolution that statistically derives a PP

from atmospheric measurements.

2.3 OceanRAIN data from RV Polarstern

The manual PP estimation has been applied to more than

4 years of OceanRAIN data from RV Polarstern (11 June

2010–8 October 2014). This period consists of several expe-

ditions to Arctic and Antarctic regions. In addition to the high

latitudes, RV Polarstern collected precipitation data from the

tropics and subtropics when crossing the equator in the At-

lantic Ocean six times (Fig. 2). The whole measuring pe-

riod amounts to more than 268 000 min of precipitation ex-

Figure 2. Map illustrates ship tracks from RV Polarstern ALL

data (11 June 2010–8 October 2014), whereby dots denote minutes

of occurring precipitation classified by the manual PP distinction

(cyan: rain; orange: mixed phase; purple: snow). Harbor times and

minutes without precipitation are not shown. Left side denotes the

fraction of each PP averaged per latitude.

cluding periods of maintenance in harbors and instrument

outages. Snow or mixed-phase precipitation occurred almost

exclusively poleward of 45◦ S and 70◦ N, which largely de-

pends on seasonality. During boreal warm season, RV Po-

larstern sailed over the northern hemispheric Atlantic Ocean

and in the entire Arctic area, whereas during austral warm-

www.atmos-meas-tech.net/9/1637/2016/ Atmos. Meas. Tech., 9, 1637–1652, 2016
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Table 2. OceanRAIN data sets from RV Polarstern divided into

sub-data sets that are used in the analysis. While RSM (rain, snow,

mixed phase) and ALL (all data) include the mixed phase, RS (rain,

snow) sub-data exclude mixed-phase precipitation. RSM and RS

include only those minutes with at least 20 particles of precipita-

tion falling at mid- or high latitudes at air temperatures around the

freezing point (see Sect. 2.3). The no-rain fraction (rain fraction

subtracted from 1) yields the fraction frozen precipitation meaning

snow cases for RS and snow and mixed phase for RSM and ALL.

Name Description Size (min) No rain (frac)

ALL Complete data sample 268 340 0.57

RSM Data sub-sample 165 632 0.61

(incl. mixed phase)

RS Data sub-sample 149 635 0.57

(excl. mixed phase)

season RV Polarstern cruised on the southern hemispheric

Atlantic Ocean and at the Antarctic. As an exception, RV

Polarstern spent the whole year 2013 including austral cold

season in the Southern Hemisphere, which explains the mul-

titude of mixed-phase and snow precipitation cases between

45 and 75◦ S that are not sampled at corresponding north-

ern hemispheric latitudes. For the sake of polar research, RV

Polarstern spends most research time in the polar regions,

which results in a high time fraction of snow or mixed-phase

precipitation of 0.57 (Table 2). Accordingly, precipitation oc-

curred most frequently at temperatures around 0 ◦C and at

high relative humidity (Fig. 3). The high time fraction of

snow or mixed-phase precipitation around 0 ◦C makes RV

Polarstern an extremely valuable data set for oceanic PP dis-

tinction analysis.

The whole RV Polarstern data set, denoted ALL (for all

data), consists of about 268 000 min of precipitation. The

ship’s positions cover large areas of distinctly high or low

temperatures where the PP assignment is trivial and does

not help in developing the PP algorithm. Therefore, we re-

duce the complete RV Polarstern data set ALL to minutes

of highest PP uncertainty (Table 2). Air temperatures below

−6 ◦C and above 8 ◦C are excluded as well as ship locations

between 45◦ S and 70◦ N latitude wherein virtually no solid

or mixed-phase precipitation was observed within the 4-year

period (Fig. 2). We exclude minutes with a total particle num-

ber of less than 20 particles because they cannot guarantee

a meaningful PP distinction. These limitations leave a sub-

set of data denoted RSM (for rain, snow, mixed phase) with

165 632 min of rain, snow, or mixed-phase precipitation. By

that, the no-rain time fraction including snow or mixed-phase

precipitation increases from 0.57 (ALL) to 0.61 (RSM). If

we further exclude mixed-phase precipitation the gained sub-

sample, denoted RS (for rain, snow), reduces to 149 635 min

while the no-rain fraction decreases to 0.57 (Table 2).

Figure 3. Two-dimensional histogram shows relative occurrence

(%) for each PP (top: snow; middle: mixed phase; bottom: rain)

after manual PP distinction from OceanRAIN RSM data set of RV

Polarstern. n denotes the number of minutes used per PP (165 632

in total).

Atmospheric variables measured onboard RV Polarstern

include temperature-related (T , Td, T2h) and humidity-

related variables (rH, Td), air pressure (P ), and, from the

ODM470, wind speed (not used for analysis) and particle di-

ameter (D). Instead of D, we use the 99th percentile of D,

D99, which is a measure for the maximum particle diameter

measured within 1 min but excluding erroneously large parti-

cles possibly caused by particle coincidences, drip-off drops,

or other artifacts. Table 3 lists all relevant variables from RV

Polarstern and the ODM470. Note that all variables are mea-

sured distinctly higher than 2 m above the surface at about

43 m in order to reduce interfering sea spray and splashing

wave water.

3 The automatic PP distinction

3.1 One PP distribution to predict two PPs (2P1D)

This study aims at predicting the PP automatically by using

available in situ atmospheric predictor variables (Table 3).

While we first focus on predicting two PPs using one PP dis-

tribution (Sect. 3.1; 2P1D), we later apply one PP distribu-

tion to predict three PPs (incl. mixed phase; Sect. 3.2; 3P1D).
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Table 3. List of available meteorological predictor variables in OceanRAIN used in the logistic regression model to predict the PP.

Variable Description Unit Source

T Air temperature ◦C Polarstern

Td Dew point temperature ◦C Polarstern

T2h Air temperature 2 h prior to observation ◦C Polarstern

rH Relative humidity % Polarstern

P Sea-level air pressure hPa Polarstern

RR Precipitation rate assuming rain mm h−1 ODM470

D99 99th percentile of particle diameter mm ODM470

Section 3.3 presents a novel approach that predicts three PPs

applying two PP distributions (3P2D).

For the PP prediction we adopt a statistical model us-

ing logistic regression to relate the available observed atmo-

spheric variables (predictor variables) to the PP as suggested

by Koistinen and Saltikoff (1998), henceforth KS98. The pre-

dictor variables are fitted against binary dependent variables

to calculate the PP probability p(PP). Taken from the manual

PP distinction data (Sect. 2.2), the binary dependent variables

attain a rain probability p(rain) [frac] of either 0 (snow) or 1

(rain). Once fitted, p(rain) can attain any value between 0 and

1 depending on the predictor variables. p(rain) is calculated

by

p(rain)=
1

1+ eα+β·V1+γ ·V2+...+ω·Vn
, (7)

whereby Vi represents the atmospheric predictor variables.

α, β, γ , . . ., ω denote the regression coefficients that are de-

termined by minimizing the sum of squared errors (nearest-

neighbor method) with respect to the PPs from the manual

PP distinction. Generally, we use the term PP probability,

p(PP), representing both rain (p(rain)) and snow probabil-

ity (p(snow)) if not stated differently. The snow probability

is calculated as 1−p(rain), excluding mixed phase for now

in this simple model.

We calibrate various combinations of atmospheric predic-

tor variables Vi (Table 3) for RS sub-data (Table 2) to find

the combination that predicts best the PP. KS98 state that

the combination of air temperature T and relative humidity

rH, called T _rH, is suited best to predict the PP. For T _rH,

Eq. (7) changes to

p(rain)=
1

1+ e(α+β·T+γ ·rH)
, (8)

where the number of regression coefficients reduces to three.

In lack of alternative reference data, we evaluate the calcu-

lated regression coefficients of RS sub-data using the same

manually determined PPs as used for the model calibration.

Nevertheless, we investigated the robustness of the regres-

sion coefficients using 100 realizations of only 50 % ran-

domly chosen minutes of precipitation from the RS data set.

The standard deviation of the 100 realizations rarely exceeds

10 % of the individual regression coefficients from the whole

RS data set, which confirms the robustness of the calcu-

lated regression coefficients. If in the manual PP reference

data set a minute of precipitation is assigned rain, the sta-

tistical model by definition “agrees” for p(rain)≥ 0.5 while

it “disagrees” for p(rain)< 0.5. For the rain/snow distinc-

tion four possible combinations exist – rain agreement, snow

agreement, rain disagreement, and snow disagreement. For

instance, rain disagreement means that the statistical model

predicts rain that disagrees with the manual PP reference data

indicating snow. Combined in a contingency table we choose

four scores to evaluate how well the atmospheric predictor

variable combinations serve to predict the PP in this statisti-

cal model.

First, the accuracy serves to evaluate the overall correct-

ness of the predictor variable combinations with respect to

the manual PP reference data set. The accuracy represents

the sum of cases in which model and manually determined

PP reference data of RS sub-data agree divided by the total

number of minutes in RS sub-data. Ideally, the accuracy is

close to 1.

Second, we consider the bias score defined as the ratio be-

tween the sum of disagreeing rain predictions and agreeing

rain predictions to the sum of disagreeing snow predictions

and agreeing rain predictions, all with respect to the manu-

ally determined PP reference data. Accordingly, a bias score

of b < 1 represents an overprediction of snow by the model,

whereas b > 1 represents an overprediction of rain by the

model. However, the bias should be interpreted with cau-

tion because the manual reference data set might be biased

itself. Thus, the bias rather carries the information in which

direction the predicted PP deviates from the manual refer-

ence data.

Third, we determine the percentage of cases misclas-

sified (PM). Misclassified means that predicted high-

probability cases (p > 0.95) disagree with the manual PP ref-

erence data. For PM, the number of these misclassified cases

is divided by the number of all RS cases. Ideally, PM is close

to 0.

Fourth, the percentage of uncertain cases (PU) estimates

how well the PPs are separated by the predictor variables

used. PU represents the number of cases with 0.05 < p <
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0.95 divided by all RS cases. Accordingly, PU measures the

fraction of cases that the model is unable to predict at a high

level of certainty. The definitions of PM and PU follow the

evaluation method in Froidurot et al. (2014).

The four performance scores are calculated for both 100

realizations of 50 % randomly chosen minutes of precipita-

tion (black boxes and whiskers in Fig. 4) and for all minutes

of RS sub-data (red stars). The percentiles (5th, 25th, 50th,

75th, and 95th) illustrate how strongly the RS data set scatters

and whether differences among predictor variable combina-

tions are significant (p = 0.95, n= 100).

The PPs calculated with the logistic regression model

reach an accuracy of more than 88 % for combinations of

atmospheric predictor variables that all include the air tem-

perature T (Fig. 4). T carries the most straightforward PP in-

formation in most cases. Combining T with up to two other

relevant predictor variables (connected by underscores) aids

to assess their value in determining the PP. Table 4 displays

the most important fitted regression coefficients for different

combinations of predictor variables using the OceanRAIN

sub-sample RS (2P1D) and the sub-sample RSM (3P1D and

3P2D).

Combining T with the air temperature 2 h prior to ob-

servation (T2h) does not increase the accuracy of T (both

88.5 %). Other time intervals led to similarly small perfor-

mance changes being in agreement with Froidurot et al.

(2014). Accordingly, weather fronts associated with T drops

do not seem to have an imprint on T _T2h or they are cur-

rently underrepresented in the OceanRAIN data set. The air

pressure P may have an impact on the PP at higher elevations

due to lower air density (Dai, 2008). This, however, cannot

explain the better accuracy of 89.2 % for T _P compared to

T . Over the ocean, the additional skill in the predictor P

might be caused by certain weather situations that favor ei-

ther rain or snow, and are sufficiently sampled in the Ocean-

RAIN data set. The relative humidity rH and the dew point

Td (not shown) reach about the same accuracy of 89.4 %.

The addition of P and rH to T leads to a statistically signifi-

cant (p = 0.95, n= 100) but only slight increase in accuracy

compared to T alone.

With the 99th percentile of the particle diameter D99 and

the calculated theoretical rain rate RR (Eqs. 3 and 4), phys-

ical properties of precipitation particles directly enter the

PP distinction. This direct physical relation explains the no-

tably higher accuracy of at least 90 % by T _RR, T _D99, and

other combinations containing RR and D99. The similarly

high performance of these three predictor combinations is

driven by the particle diameter that mainly influences RR.

Combinations of T , a humidity-related variable such as rH,

and a diameter-related variable such as D99 reach the high-

est accuracy of more than 91 %. Combinations of four or

five of the available atmospheric predictor variables such as

T _rH_RR_D99 brought no noticeable further increase in ac-

curacy (not shown). From the considered predictors, a com-

Figure 4. Box-and-whisker plot displays interquartile spread (black

box: 25th, 50th, and 75th percentile) and lower (whisker: 5th per-

centile) as well as upper (95th percentile) extremes, calculated from

100 realizations of each 50 % randomly chosen minutes of precip-

itation from RS sub-data. Red stars denote the values for 100 %

of RS sub-data. Accuracy (%), bias score (frac), percentage mis-

classified (PM: fraction of disagreeing cases with high certainty of

p > 0.95 in %), and percentage unclassified (PU: fraction of uncer-

tain cases of 0.05< p < 0.95 in %) serve as performance scores

using the calculated coefficients in Table 4 against the manually de-

termined PP reference data. Labels indicate variable combinations,

whereby all combinations include T .

bination of three out of the available predictor variables suits

best to accurately distinguish between rain and snow.

The bias provides the ratio of rain cases predicted by the

statistical model and observed rain cases from the manual

PP reference data. All predictor variable combinations range

between 0.89 and 0.94, which implies an underprediction

of rain and hence an overprediction of snow. Combinations

that contain RR andD99 reach the smallest overprediction of

snow, whereas T holds the strongest snow bias. The lower

snow bias combined with the higher accuracy of predictor

variables carrying particle diameter information highlights

the need to include physically related variables in a statistical

model to predict the PP.
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Table 4. List of regression coefficients calculated with Eq. (7) by

minimizing the sum of squared errors with respect to the manual

PP reference data for two PPs using one PP distribution (2P1D;

Sect. 3.1), three PPs using one PP distribution (3P1D; Sect. 3.2), and

three PPs using two PP distributions (3P2D; Sect. 3.3). For 3P2D,

the asterisk denotes the rain distribution that was derived setting the

mixed phase to snow. KS98 denotes the coefficients recommended

by Koistinen and Saltikoff (1998) derived over Finland.

Method Variables used Regression coefficients

(V1_V2_V3) α β γ δ

KS98 T _rH −22 2.7 0.2 –

2P1D T _rH −13.39 1.818 0.127 –

T _rH_D99 −10.83 1.780 0.118 −1.062

T _rH_RR −13.55 1.738 0.135 −0.325

3P1D T _rH −9.766 1.382 0.092 –

T _rH_D99 −8.364 1.364 0.090 −0.732

T _rH_RR −10.01 1.331 0.099 −0.204

3P2D T _rH −5.687 1.429 0.055 –

T _rH* −15.40 1.482 0.144 –

T _rH_D99 −4.794 1.467 0.056 −0.556

T _rH_D99* −13.94 1.431 0.145 −0.959

T _rH_RR −5.888 1.412 0.060 −0.059

T _rH_RR* −13.95 1.382 0.136 −0.316

Besides being accurate and unbiased, a small PP transition

region of low PP certainty (low PU) combined with a low

fraction of highly certain but misclassified PP cases (low PM)

characterize a useful predictor variable combination. The PU

decreases with increasing accuracy. Consequently, predictor

variable combinations including rH and either D99 or RR

reach the lowest PU of about 36 %. This low PU and thus

fairly narrow PP distribution causes a slight increase in PM

for T _rH_RR and T _rH_D99 (1.5 %) compared to T _D99,

T _RR, and T _RR_D99 (1.3 %). However, the positive effect

of using RR orD99 outweighs the slightly negative influence

of rH on PM. Consequently, the physical related predictor

variables confirm their good performance in predicting the

PP.

The T _rH coefficients that were calculated for Finland in

KS98 and confirmed in Froidurot et al. (2014) over Switzer-

land reach an accuracy of 88.6 %, which is slightly lower

than those coefficients optimized for OceanRAIN (89.4 %).

A two-tailed t test confirms the difference to be statistically

significant (p=0.99, n=100). The OceanRAIN-adapted coef-

ficients exhibit a shallower rain/snow transition that results

in a 0.8 ◦C lower temperature at p(rain)= 0.1 while both

distributions equal at p(rain)= 0.9 (Fig. 5). Compared to

OceanRAIN, the steeper rain/snow transition against T fit-

ted in KS98 holds a much lower PU of 24 % but to the ex-

pense of a much higher PM of 4 % and a snow bias of 0.8.

Consequently, the coefficients from KS98 better predict most

uncertain cases with T _rH but miss more extreme cases such

as freezing rain. For the OceanRAIN data set, the PP predic-

tion using the RS-fitted coefficients better reflects the Ocean-

 

Figure 5. Rain probability using regression coefficients from Ta-

ble 4 for OceanRAIN RS sub-data (2P1D) with the predictor vari-

ables T _rH (black), T _rH_D99 (blue) both fitted against Ocean-

RAIN, compared to KS98-recommended coefficients for T _rH

(red). Dashed lines (black, red) indicate a PP distribution where rH

is set to 80 % while for solid lines it is set to 99 %. For T _rH_D99

(blue lines), D99 is set to either 1 or 5 mm in addition to rH.

RAIN PP distribution compared to the KS98-fitted coeffi-

cients as indicated by the accuracy.

For T _rH_D99, the rain/snow transition shifts with T de-

pending on D99. While D99 = 1 mm shifts the rain/snow

transition to even lower temperatures by about 0.5 ◦C,D99 =

5 mm shifts it towards higher temperatures by about 2 ◦C,

both compared to T _rH derived from OceanRAIN RS sub-

data. The shallower rain/snow transition of the PP distribu-

tion fitted for OceanRAIN compared to that over Finland is

likely caused by more freezing rain cases sampled in Ocean-

RAIN, which the KS98-fitted coefficients for T _rH cannot

predict.

3.2 One PP distribution to predict three PPs (3P1D)

In a second step, we include mixed-phase precipitation into

the algorithm because mixed-phase precipitation marks the

transition from frozen to liquid particles and thus carries

the highest uncertainty. We calculate the regression coef-

ficients using the RSM sub-data including 165 632 min of

precipitation measured onboard RV Polarstern. The three-

phase distinction 3P1D fits p(rain) against three PPs from

the same manually determined PP reference data set as be-

fore. However, the calculated transition phase between snow

with p(rain)= 0 and rain with p(rain)= 1 is interpreted as

mixed phase, defined in the range of 0.3≤ p(rain)≤ 0.7 after

KS98. The approximated coefficients for predictor variable

combinations Vi differ considerably from those calculated

for the two-phase method 2P1D (see Table 4 in Sect. 3.1).

We evaluate the calculated PP probability against PPs from

the manual PP reference data using RSM sub-data. Again,
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accuracy, bias, and PM serve as a measure of quality, while

PU is no longer suitable for evaluation because the transition

region of highest uncertainty between snow and rain rep-

resents mixed-phase precipitation. Overall, this three-phase

method 3P1D yields an accuracy between 74 and 78 %,

which corresponds to an absolute decrease of about 14 %

compared to 2P1D (Fig. 6). To that large decrease in accu-

racy two reasons mainly contribute: (1) the manual PP refer-

ence data, acting as reference data, holds large uncertainties

in the mixed phase, as well. The ww code represents snap-

shots of 3-hourly observations. Therefore, they hardly satisfy

the need for minute-based observations because the mixed-

phase rain/snow fraction can vary dramatically, both tempo-

rally and spatially. (2) KS98 assume the mixed-phase pre-

cipitation to occur in the transition region between rain and

snow, which is true in most cases. However, several cases

exist in which mixed-phase precipitation occurs at distinctly

high or low air temperature (Fig. 3) and thus 3P1D misclas-

sifies these cases.

Relative to each other, the individual variable combina-

tions perform similar compared to 2P1D. T , T _T2h, and

T _P have the lowest accuracy of below 75 % (Fig. 6)

and a bias below 0.92. The addition of rH significantly

increases the accuracy by about 1 %, whereas T _rH_T2h,

T _rH, and T _Td_T2h (not shown) do not differ much from

each other. The predictor variable combinations that include

the diameter-related predictors RR and D99 lead to the high-

est accuracy of 76 up to 78 %. The highest accuracy of 78 %

reached by T _rH_D99 represents a statistically significant

performance increase to the remaining variable combinations

in 3P1D, which contrasts to 2P1D where T _rH_RR does not

perform significantly better than T _rH_D99.

For the bias, predictor combinations including RR and/or

D99 reach the least pronounced snow bias of about 0.93,

whereas the remaining predictor combinations feature signif-

icantly lower biases, mostly below 0.92. In that respect, the

bias of 3P1D resembles that of 2P1D (see Fig. 4 in Sect. 3.1)

both in terms of magnitude and in the individual performance

of the predictor variable combinations.

While the ranking of predictor variable combinations with

respect to accuracy and bias looks very similar compared to

2P1D, PM tends to form three clusters. The first cluster com-

prises predictor variables without particle diameter informa-

tion, holding the lowest PM of 2.2 to 2.4 %. The second clus-

ter includes RR but notD99, holding the highest PM (3.4 %).

In the third cluster each predictor variable combination in-

cludes D99 but performs better than the second cluster with

PM of about 2.8 %. T _rH_D99 in the third cluster offers the

best compromise in maximizing the accuracy while minimiz-

ing the fraction of misclassified cases.

In contrast to 2P1D, for 3P1D PM tends to scale with

accuracy for many predictor variable combinations. While

T _rH_D99 exhibits an about 0.5 % larger PM than T , the

PM of T _rH_RR and T _RR are even 1.1 % larger. A high

PM indicates a clear disagreement between calculated PP

Figure 6. Performance of fit is shown for different combinations of

atmospheric variables as in Fig. 4 for RSM sub-data. All variable

combinations again include T .

and manually estimated PP. Note, however, that not in all of

these clearly disagreeing cases the manual PP reference data

necessarily contains the correct PP. Physically related pre-

dictor variables such as D99 can assist to unveil cases falsely

classified by the manual PP estimation. For example, D99 is

able to identify snow or mixed-phase cases, falsely classi-

fied as rain in the manual reference data. Except for the trop-

ics, rain drops rarely exceed drop diameters of 5 mm (Bent-

ley, 1904; Villermaux and Bossa, 2009). Larger drops mainly

break up or collide with neighboring drops.D99 excludes co-

incidences of drops as well as artificial drops dripping off the

instrument housing by discarding the uppermost percentile

of measured drop diameters per minute. Therefore, particles

classified as rain drops withD99>5 mm very likely represent

frozen particles, which means that they were falsely classi-

fied as rain (Fig. 7). Below 4 ◦C, 163 rain cases in RSM sub-

data (about 0.25 %) are likely falsely classified. This could

explain about half of the 0.5 % PM difference of T _rH_D99

to T in Fig. 6).

The T _rH coefficients calculated in KS98 reach an accu-

racy of 78.6 %, but PM amounts to 7.2 % misclassified cases

(not shown), which is more than a factor of 2.5 higher than

the PM of T _rH_D99. The shift towards higher air tempera-

tures and the steeper rain/snow transition in the PP distribu-

tion using the coefficients recommended in KS98 (see Fig. 5)

explain the large amount of misclassified cases. However, as

stated before, the coefficients in KS98 derived over Finland
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cannot represent the temperature distribution of PPs in the

OceanRAIN data set.

3.3 Two PP distributions to predict three PPs (3P2D)

The relatively low accuracy reached with the three-phase

method after KS98 using one PP distribution (3P1D) moti-

vates a novel investigation of how to further improve the PP

prediction for three PPs. Instead of applying one PP distribu-

tion to determine rain, mixed-phase, and snow precipitation,

we suggest to approximate two separate PP distributions for

rain and snow (3P2D). These two individual PP distributions

are derived analogous to the method for one PP distribution

by assigning the mixed-phase PP differently – first set it to

rain to calculate the snow PP distribution, then set it to snow

to calculate the rain PP distribution. Subtracting the sum of

both individually calculated PP distributions from 1 yields

the PP distribution for mixed phase. In contrast to 3P1D, the

separately calculated coefficients for rain and snow (Table 4)

lead to individual distributions only connected via the mixed

phase.

Analogous to 2P1D (Sect. 3.1), the accuracy represents

the percentage of cases with p(PP)> 0.5 that agree in their

respective PP with the manual PP reference data. The bias

represents the ratio between the sum of predicted rain cases

and the sum of rain cases in the manual PP reference data.

Please note that the bias definition remains unchanged for

3P2D that includes mixed phase compared to 2P1D. How-

ever, the additional PP distribution slightly modifies the cal-

culation of PM and PU, illustrated in Fig. 8. PM represents

the percentage of all certain cases (p(PP)> 0.95; hatched

area in Fig. 8) in which either one of the PPs disagrees with

the manual PP reference data. PU as the percentage of un-

certain cases (0.05< p(PP)< 0.95; shaded area) represents

only those cases where all PPs are uncertain after definition.

We introduce this limitation because if p(PP)< 0.05 holds

for at least one PP then we would not consider this PP uncer-

tain anymore. Note that for mathematical reasons we cannot

display PMmix > 0 and PU> 0 in the same figure, which is

why we set PMmix > 0.

This 3P2D method using two individual PP distributions

reaches on average a higher accuracy compared to 3P1D

(Fig. 9). Whereas T , T _T2h, and T _P hold less than 78 %

accuracy, T _rH_D99 reaches the highest accuracy of 81.2 %.

As for 3P1D, the improvement is mainly caused by adding

the predictorD99 that performs significantly better than when

adding the predictor RR. Also the overprediction of snow by

all predictor variable combinations with respect to the man-

ually determined PP reference data stays the same in 3P2D.

The physically related variables are least biased (about 0.93),

which consistently highlights the improvement of including

them in the predictor variable combination. However, for PM

stronger differences among these physically related predic-

tor variables arise. While T _RR holds the highest PM (about

2.3 %), T _rH_D99 reaches 1.9 % PM, which is on the or-

Figure 7. Two-dimensional histogram of temperature and the 99th

percentile of the particle diameter for cases classified as rain by the

manual PP estimation in RSM.

der of the predictor variable combinations without RR and

D99 (1.8 %). However, the physically related predictors reach

again lowest PUs of about 38 % while T holds a PU of

51 %. In combination with the other scores we recommend

T _rH_D99 followed by T _RR_D99 and T _D99 to most ac-

curately predict the PP using two independent PP distribu-

tions.

Compared to 3P1D after KS98, the PM decreases for

3P2D. This decrease in PM ranges between 0.5 and 1 % and

thus highlights the improved performance of using two PP

distributions instead of one to predict the PP. The lower PM

and higher accuracy approve that the novel method apply-

ing two independent PP distributions better represents the PP

distribution in OceanRAIN RSM.

To understand the better performance of 3P2D com-

pared to 3P1D after KS98, we consider how the PP frac-

tion is distributed with respect to T around the freezing

point (rain/snow transition) in the manual PP reference data

(Fig. 10). While the rain occurrence shows a relatively low

skewness, the mixed-phase/snow distribution is slightly left-

skewed. This higher skewness with a secondary maximum

in the mixed-phase distribution at −3 ◦C (minimum in snow

distribution) cannot be well represented by one PP distribu-

tion. One PP distribution is limited to match all three PP dis-

tributions at the same time that can only represent an average

skewness. In that respect, deriving two independent PP dis-

tributions driven by mixed-phase precipitation better reflects

the PP distribution of each PP individually with respect to the

manual PP reference data in OceanRAIN RSM.

The question arises whether the left-skewed distribution

of snow and mixed-phase precipitation in OceanRAIN sub-

data RSM represents a feature of the oceanic PP distribution

or if it simply reflects a currently insufficient length of the

OceanRAIN time series. Though the latter seems more likely,

addressing this question comprehensively, however, remains

beyond the scope of this study due to the limited available

OceanRAIN data sample. Future studies could clarify this

www.atmos-meas-tech.net/9/1637/2016/ Atmos. Meas. Tech., 9, 1637–1652, 2016



1648 J. Burdanowitz et al.: An automatic precipitation-phase distinction algorithm over the ocean

Figure 8. Graph illustrates the calculation of PU (framed) and

PM (hatched) including snow (dashed/purple), mixed phase (dot-

ted/orange), and rain (solid/cyan), analogous to Fig. 3 in Froidurot

et al. (2014). PU divides the sum of cases with 0.05< p(PP)< 0.95

for all PPs by the sum of all RSM cases. PM divides the sum of cases

with p(PP)> 0.95 for one of the PPs that disagrees with the manual

PP estimation by the sum of all RSM cases. We set PMmix > 0 be-

cause otherwise we could not display it in the same PP distribution

(rH kept constant) with PU> 0.

aspect by reanalyzing the constantly growing OceanRAIN

database.

Nevertheless, differences remain due to the chosen PP

distinction method. By discriminating three PPs, 3P1D and

3P2D enable a smoother rain/snow transition compared to

2P1D due to included mixed-phase precipitation (Fig. 11).

At lower temperatures, 2P1D approaches the snow distribu-

tion of 3P2D, while at higher temperatures it approaches the

rain distribution of 3P2D. In other words, the steeper rain

probability distribution for 2P1D clarifies the slightly smaller

unclassified range (0.3< p(PP)< 0.7) compared to 3P2D

as seen in the percentage unclassified (compare Fig. 4 and

Fig. 9).

D99 as additional variable in T _rH_D99 tends to shift the

snow and rain distributions to higher temperatures and apart

of each other, which also resolves more extreme cases. This

distribution shift with temperature follows a physical reason:

large snow particles better withstand melting at high air tem-

peratures than small snow particles. This physical informa-

tion lacks in T _rH, which notably decreases its accuracy (cf.

Fig. 9).

4 Discussion

After finding suitable methods for both the rain/snow distinc-

tion (Sect. 3.1) as well as for the rain/snow/mixed-phase dis-

tinction (Sect. 3.3) we compare the results to those of similar

studies. For the rain/snow distinction over Switzerland us-

ing T _rH derived over Finland by KS98, Schmid and Mathis

Figure 9. As Fig. 4 but for RSM including mixed phase, using two

independent PP distributions (3P2D). The calculation of PM and

PU differs from Fig. 4 as displayed and explained in Fig. 8.

(2004) find a higher accuracy of 92.4 % compared to our cal-

culated accuracy of 88.6 % when using the same KS98 re-

gression coefficients α = 22, β = 2.7, γ = 0.2. Schmid and

Mathis (2004) find an overprediction of snow cases (bias

0.82), very similar to the OceanRAIN RS snow overpredic-

tion (bias 0.8) using the same coefficients derived by KS98.

However, for fitting the regression coefficients to our data set

(Table 4) we still obtain a slightly lower accuracy of 89.4 %

calculated for T _rH and 91 % for T _rH_D99 while the low-

bias decreases to 0.92 and 0.93, respectively. These perfor-

mance improvements indicate, first, different conditions for

PP transition over the ocean compared to Finland of KS98

while, second, the OceanRAIN data set is in relatively close

agreement with the Swiss data.

With respect to two PPs, including the mixed phase de-

creases the accuracy to below 78 % while PM almost dou-

bles. To elaborate on reasons for that accuracy decrease we

consider a study of Gjertsen and Ødegaard (2005), who ap-

plied the same translation of ww codes into PPs for ww codes

between 50 and 86. Using 3P1D, they find an accuracy of

86 % compared to Norwegian synoptic stations (6 months

Atmos. Meas. Tech., 9, 1637–1652, 2016 www.atmos-meas-tech.net/9/1637/2016/
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Figure 10. Lines show PP fraction for rain (solid, cyan), mixed

phase (dotted, orange), and snow (purple, dashed) from Ocean-

RAIN RSM (165 632 min) determined with the manual PP estima-

tion against temperature. Gray bars represent the temperature fre-

quency of occurrence (in 103).

Figure 11. Air temperature versus predicted PP by the different

methods: two PPs (2P1D; solid blue), three one-PP distributions

(3P1D; dashed red), and three two-PP distributions (3P2D; dot-

ted black). 3P2D consists of two curves (left: snow distribution as

1−p(snow); right: rain distribution as p(rain)) for the calculated

coefficients of T _rH_D99 (left panel; rH= 85 %,D99 = 5 mm) and

T _rH (right panel; rH= 85 %).

winter period) and 85 % compared to independent climato-

logical stations over Norway (1 month). They obtain an over-

prediction of snow (bias of 0.92) and problems in predict-

ing the PP of supercooled rain during prevailing tempera-

ture inversions. In OceanRAIN we find a similar overpredic-

tion of snow (bias T _rH: 0.91; T _rH_D99: 0.93) with re-

spect to the manual PP reference data in OceanRAIN. This

overprediction of snow occurs predominantly around 0 ◦C

that is the temperature range sampled most frequently (cf.

Fig. 10). Hence, OceanRAIN is likely to face the same prob-

lems underpredicting rain when supercooled raindrops fall

Figure 12. PP probability shown using the new 3P2D method with

two individual PP distributions (T _rH_D99) as frequency of occur-

rence (%) in gray shades against air temperature according to PP

reference data that separates rain, snow, and mixed phase in Ocean-

RAIN ALL for more than 4 years of RV Polarstern data. Solid red

lines represent the mean PP fraction from observations in the Swiss

Alps (1991–2010) from Froidurot et al. (2014); dashed blue lines

show mean PP fraction for oceanic ship data (DS464.0; 1977–2007)

from Dai (2008).

under prevailing temperature inversions. Further work is re-

quired in order to clarify whether we need additional ancil-

lary data to reduce the bias or whether the logistic regression

model is unable to provide a less biased PP prediction.

Assuming that mixed-phase precipitation causes most of

the accuracy decrease between 2P1D and 3P1D as well

as 3P2D, we consider the individual probability of detec-

tion (POD) for rain, snow, and mixed phase. For rain, the

POD is calculated by dividing the number of agreeing rain

cases by the number of all observed rain cases. For the

POD of 3P1D using the KS98-fitted coefficients for T _rH

for rain, snow, and mixed phase we find 0.92, 0.78, and

0.21 (T _rH_D99: 0.92, 0.86, and 0.25). The respective PODs

from Gjertsen and Ødegaard (2005) for the same settings re-

veal slightly different PODs of 0.81, 0.97, and 0.25. Whereas

they obtain a notably higher POD for snow, the rain POD is

lower compared to OceanRAIN. Nevertheless, mixed-phase

precipitation confirms to carry the largest prediction uncer-

tainty of all three PPs.

The variable combination T _rH_D99 distinguishes best

rain, snow, and mixed-phase precipitation in OceanRAIN

data. In comparison with PP fractions allocated into temper-

ature bins from 30 years of Swiss Alps data Froidurot et al.
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(2014), in most cases the PP transition in OceanRAIN oc-

curs at lower temperatures (Fig. 12). However, the analysis

by Froidurot et al. (2014), among other conditions, neglects

all kinds of freezing rain (ww = 56,57,66,67) that we as-

sign to rain. Without these “cold rain” cases, the rain/snow

transition shifts towards higher temperature that may in parts

explain the temperature difference in Fig. 12. Additionally,

the PP probability distribution in the OceanRAIN RV Po-

larstern data sample is biased by the high number of temper-

atures around 0 ◦C that occur by a factor of 3 to 4 more often

than temperatures between −4 and 4 ◦C (cf. Fig. 10), and

relative humidity close to 100 %. These frequently sampled

conditions put their mark on the average rain/snow transi-

tion by reducing the rain/snow transition temperature com-

pared to the Swiss Alps where T and rH were sampled

more homogeneously (Fig. 9 in Froidurot et al., 2014). De-

spite the high number of available minutes with precipita-

tion in OceanRAIN, the rather short time series on climato-

logical timescales and the spatial distribution of along-track

data limit the representativeness. However, a different land–

ocean rain/snow transition might be observable. Dai (2008)

found a systematic land–ocean difference in the rain/snow

transition between land and ocean in 30 years of NCEP

ADP Operational Global Surface Observations (DS464.0;

1977–2007). Whereas over land, rain transitions into snow

relatively quickly (−2< T < 4 ◦C), over ocean the transi-

tion zone is wider (−3< T < 6 ◦C). Although the rain/snow

transition zone within OceanRAIN appears wider compared

to regression coefficients recommended by Koistinen and

Saltikoff (1998) as seen in Fig. 5, the rain/snow transi-

tion in OceanRAIN compares better to the Swiss Alps data

(Froidurot et al., 2014) than to the NCEP DS464.0 ocean

data (Dai, 2008) that reveal a wider transition zone. In spe-

cific, OceanRAIN relatively closely agrees with the NCEP

DS464.0 ocean data for T < 0 ◦C, whereas larger differences

of> 1 ◦C occur in the range of 2< T < 5 ◦C. Two main rea-

sons can explain the different rain/snow transitions between

OceanRAIN and NCEP DS464.0 ocean data by Dai (2008).

(1) ww codes used in the NCEP ocean data are subject to

larger uncertainty compared to OceanRAIN. In contrast to

the RV Polarstern onboard weather observatory by the Ger-

man Meteorological Service, many VOSs such as cargo ships

in NCEP DS464.0 ocean data have inadequately trained ob-

servers that might use certain ww codes preferentially, ships

possibly avoid bad weather, or measurement quality may suf-

fer from instrument biases (Petty, 1995). For these reasons,

the wider rain/snow transition zone likely reflects a higher

uncertainty of the NCEP DS464.0 ocean data compared to

the OceanRAIN data from RV Polarstern or the Swiss Alps

data. (2) RV Polarstern mainly sampled warm-season pre-

cipitation in the Atlantic Arctic and Antarctic regions with

the exception of the austral cold season in 2013. In addi-

tion to that, the heterogeneous regional and seasonal sam-

pling by RV Polarstern might have favored conditions under

which inversions prevail that allow rain at fairly low temper-

atures but inhibit snow under relatively high temperatures.

While the sampling imbalance of RV Polarstern may indi-

cate a restricted representativeness of PPs in OceanRAIN,

the T _rH_D99 predictor variable combination recommended

as the new automatic PP distinction method for OceanRAIN

well represents the observed PPs within OceanRAIN. The

continuously growing time series of RV Polarstern among

other RVs in OceanRAIN allows to recalibrate or refine the

algorithm geographically for a longer time series with com-

prehensive statistical sampling in the future.

5 Summary and concluding remarks

We developed a novel automatic algorithm to distinguish

the PP within OceanRAIN in situ precipitation data to in-

troduce a statistical PP probability and to increase the data

post-processing efficiency. The analysis focused on identify-

ing the most suitable combination of available atmospheric

predictor variables to determine the PP. For that purpose,

we applied a simple logistic regression model suggested by

Koistinen and Saltikoff (1998) that was shown to perform

well over land. Previous studies mainly rely on air temper-

ature T , relative humidity rH, air pressure P , and others to

predict the PP. We investigated several of these atmospheric

predictor variable combinations to obtain a PP probability. In

particular, we tested the performance of the logistic regres-

sion model after Koistinen and Saltikoff (1998) for Ocean-

RAIN using two (excl. mixed phase) and three PPs (incl.

mixed phase) against the manually estimated observation-

based PP in OceanRAIN. Besides increasing the efficiency in

predicting the PP with an automatic method, we developed a

novel three-phase method that uses two individual and inde-

pendent PP distributions to predict the PP more accurately.

The study led to the following main results.

a. In OceanRAIN, the combination of air temperature T ,

relative humidity rH, and the 99th percentile of the par-

ticle diameter D99 (called T _rH_D99) predicts best the

PP for all investigated methods.

b. Applying more than three of the chosen atmospheric

predictor variables negligibly increases the accuracy in

predicting the PP.

c. The two-phase method (2P1D) using the predictor vari-

able combination T _rH_D99 and regression coefficients

fitted to OceanRAIN reaches an accuracy above 91 %

with a slight overestimation of snow cases for the mid-

and high latitudes between −6 and 8 ◦C in the Ocean-

RAIN data set with respect to the manual PP reference

data including shipboard present weather observations.

d. A novel three-phase method using two individual PP

distributions (3P2D) for rain and snow performs bet-

ter than a three-phase method that relies exclusively on

one PP distribution (3P1D after Koistinen and Saltikoff,
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1998). As a reason, two individual PP distributions are

capable of better representing unequally distributed or

skewed PP distributions of atmospheric predictor vari-

ables as well as certain weather situations that might

currently be over- or undersampled. Accordingly, this

performance difference might decrease once the inves-

tigated 4-year OceanRAIN time series grows further

while sampling biases vanish.

e. The OceanRAIN data using 3P2D reveal a wider

rain/snow transition zone compared to data derived over

Finland (Koistinen and Saltikoff, 1998). The rain/snow

transition in OceanRAIN occurs at slightly lower tem-

peratures compared to the data from Finland as well as

NCEP DS464.0 global ocean ship data (Dai, 2008). The

difference in the rain/snow transition zone likely origi-

nates from heterogeneous spatial and seasonal sampling

in OceanRAIN that is likely to decrease with an increas-

ing OceanRAIN time series. In contrast, a higher quality

of the derived ww codes in OceanRAIN compared to the

average VOS suggests a higher certainty of the derived

PPs. The Swiss Alps data (Froidurot et al., 2014) shows

a similar rain/snow transition at slightly higher tempera-

tures, likely caused by neglected cases of freezing rain,

among others. Due to these differences we obtain the

highest accuracy and lowest bias when applying regres-

sion coefficients fitted to the OceanRAIN data set in-

stead of using recommended coefficients from the liter-

ature such as those from Koistinen and Saltikoff (1998).

f. The new PP distinction algorithm 3P2D including D99

as essential physical information identified several cases

that were erroneously classified as rain within the man-

ual PP estimation. Large particle diameters indicate that

the PP should be classified as snow or at least mixed-

phase precipitation instead of rain.

g. Mixed-phase precipitation carries the largest uncer-

tainty of the three PPs and is most challenging to detect

for the new algorithm with a probability of detection

of up to 0.25 using the predictor variable combination

T _rH_D99 and 3P2D.

Even though the newly developed automatic PP distinction

algorithm strongly depends on the currently still limited

OceanRAIN data set, remarkable improvements are made.

First, a PP probability is provided on a minute basis that lim-

its the number of highly uncertain cases requiring visual in-

spection of atmospheric variables. The PP probability further

allows error characterizing other precipitation data sets such

as satellite data using OceanRAIN precipitation rates to un-

veil systematic errors with respect to PP. Second, the PPs of

a few critical cases could be corrected that were falsely clas-

sified by the manual method. Third, we give evidence that

the particle diameter of the falling precipitation particles con-

tributes valuable information to the PP separation and by that

in a physical way significantly improves the algorithm accu-

racy. Fourth, the new PP distinction algorithm considerably

speeds up the data processing within OceanRAIN, which is

an important step towards a fast-growing global surface pre-

cipitation data set for validating and evaluating other oceanic

precipitation data sets.

Data availability

The OceanRAIN data set is publicly available upon request

free of charge. A registration with a digital object identi-

fier is planned. Further information are available on http:

//oceanrain.org.
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