



## Supplement of

## **Development and characterization of an ice-selecting pumped counterflow virtual impactor (IS-PCVI) to study ice crystal residuals**

Naruki Hiranuma et al.

Correspondence to: Naruki Hiranuma (seong.moon@kit.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

## **Supplementary information**

Aerosol types and associated particle generators used in this work are summarized in Table S1. Detailed characteristics of IS-PCVI properties are summarized in Table S2. During INUIT05, the output flow was fixed at 2 lpm. Contrarily, the output flow was varied from 2.5 to 6 lpm in the FIN01 measurements listed in the table, depending on the flow requirements of the

5 instruments deployed downstream of IS-PCVI. Note that varying the output flow only influences a concentration enhancement factor (Sect. 3.3) and does not affect the cut-size (Sect. 4.4). Other information regarding particle properties (i.e., concentration and size distribution of aerosol, droplet and/or ice) before and during individual AIDA expansion experiments are available upon request (contact: Naruki Hiranuma, seong.moon@kit.edu). Temporal profiles of the AIDA cloud simulation experiments (as illustrated in Fig. 6) can also be provided.

10

|  | Table S1. List of aerosol | types and particle | generation techniques |
|--|---------------------------|--------------------|-----------------------|
|--|---------------------------|--------------------|-----------------------|

| Aerosol type                                                        | Generator                                               | Exp. ID                                 | Reference                                     |
|---------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|-----------------------------------------------|
| Ammonium sulfate                                                    | Custom-made atomizer                                    | INUIT05_29-37                           | -                                             |
| Sodium chloride                                                     | Custom-made atomizer                                    | INUIT05_51, 55-58, 60-64                | -                                             |
| Snomax                                                              | Custom-made atomizer                                    | INUIT05_22                              | Wex et al., 2015                              |
| PF CGina bacteria                                                   | Custom-made atomizer                                    | FIN01_38                                | -                                             |
| H <sub>2</sub> O                                                    | Home-built nozzle spray                                 | INUIT05_59                              | -                                             |
| Ethiopia volcanic soil<br>(VSE01)*                                  | Rotating brush (Palas,<br>RGB1000)                      | FIN01_18                                | -                                             |
| Illite NX                                                           | Rotating brush (Palas,<br>RGB1000)                      | FIN01_4-8, 28-29                        | Hiranuma et al., 2015                         |
| Argentinian soil dust                                               | Rotating brush (Palas,<br>RGB1000)                      | FIN01_49                                | Steinke. 2013                                 |
| K-rich Feldspar (FS01: microcline 76%, albite 24%)                  | Rotating brush (Palas,<br>RGB1000)                      | FIN01_11-15, 29, 31, 33                 | Peckhouse et al., 2016                        |
| K-rich Feldspar (FS04:<br>microcline 80%, albite 18%,<br>quartz 2%) | Rotating brush (Palas,<br>RGB1000)                      | FIN01_46, 50-51, 53, 55                 | -                                             |
| $H_2SO_4$                                                           | In situ $^{\dagger}$                                    | FIN01_27, 31, 33                        | -                                             |
| SOA                                                                 | In situ <sup>‡</sup>                                    | FIN01_46, 51, 53, 55                    | Saathoff et al. 2009                          |
| Hematite                                                            | Small-Scale Powder Disperser<br>(SSPD; TSI, Model 3433) | INUIT05_1-13                            | Hiranuma et al., 2014                         |
| Soot (organic carbon content ~10%)                                  | Graphite Spark Generator (GfG-<br>1000)                 | FIN01_21, 38, 41;<br>INUIT05_37, 63, 64 | Möhler et al., 2005b; Helsper<br>et al., 1993 |
| Soot (organic carbon content<br>between 16 and 40%)                 | CAST (Combustion Aerosol<br>Standard) burner            | FIN01_27                                | Möhler et al., 2005a                          |

<sup>§</sup>Contact: Institute for Biological Interfaces, KIT, Kersten Rabe

\*63  $\mu$ m sieved. XRD data is available upon request.

 $^{+}H_2SO_4$  was produced through in situ formation from  $SO_2$  + OH reaction (nucleation and condensation growth). Ozone concentration was typically 900 ppb. Continuous addition of trimethylolethane created OH radical concentrations in the range 10<sup>6</sup>-10<sup>7</sup> cm<sup>-3</sup>, which then oxidized  $SO_2$  to  $H_2SO_4$ .

a-pinene SOA was produced via in situ formation from ozonolysis of a-pinene (nucleation and condensation growth). Ozone concentration was in the range of 150-250 ppb.

|               |                      |                                                 |                    | PCVI properties |             |                   |                                               |           |
|---------------|----------------------|-------------------------------------------------|--------------------|-----------------|-------------|-------------------|-----------------------------------------------|-----------|
| Experiment ID | Reference time (CET) | Aerosol type                                    | Activation<br>type | IF<br>(lpm)     | CF<br>(lpm) | CF-to-IF<br>ratio | Critical cut-<br>size, D <sub>c</sub><br>(µm) | Std. dev. |
| INUIT05_22_c  | 5/21/2013 15:02:07   | Snomax                                          | Droplet            | 100.0           | 9.0         | 0.09              | 10.86                                         | 0.80      |
| INUIT05_22_d  | 5/21/2013 15:03:13   | Snomax                                          | Droplet            | 100.0           | 12.0        | 0.12              | 12.60                                         | 0.65      |
| INUIT05_22_f  | 5/21/2013 15:05:45   | Snomax                                          | Droplet            | 100.0           | 12.0        | 0.12              | 13.38                                         | 1.13      |
| INUIT05_29    | 5/22/2013 15:13:00   | $(NH_4)_2SO_4$                                  | Droplet            | 70.0            | 7.0         | 0.10              | 15.32                                         | 1.85      |
| INUIT05_30    | 5/22/2013 16:06:00   | $(NH_4)_2SO_4$                                  | Droplet            | 70.0            | 9.0         | 0.13              | 17.40                                         | 2.81      |
| INUIT05_31    | 5/22/2013 16:56:01   | $(NH_4)_2SO_4$                                  | Droplet            | 70.0            | 6.0         | 0.09              | 13.08                                         | 1.68      |
| INUIT05_32    | 5/23/2013 10:12:00   | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | Droplet            | 70.0            | 9.0         | 0.13              | 19.86                                         | 3.15      |
| INUIT05_33    | 5/23/2013 11:19:00   | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | Droplet            | 70.0            | 9.0         | 0.13              | 20.13                                         | 3.30      |
| INUIT05_34    | 5/23/2013 12:28:00   | $(NH_4)_2SO_4$                                  | Droplet            | 69.0            | 9.0         | 0.13              | 21.50                                         | 3.91      |
| INUIT05_35    | 5/23/2013 13:28:00   | $(NH_4)_2SO_4$                                  | Droplet            | 70.0            | 9.0         | 0.13              | 17.57                                         | 2.66      |
| INUIT05_36    | 5/23/2013 14:20:00   | $(NH_4)_2SO_4$                                  | Droplet            | 70.0            | 9.0         | 0.13              | 17.46                                         | 2.65      |
| INUIT05_37    | 5/23/2013 15:51:00   | $(NH_4)_2SO_4 + GSG \text{ soot}$               | Droplet            | 70.0            | 9.0         | 0.13              | 16.84                                         | 2.17      |
| INUIT05_60_b  | 6/10/2013 9:45:29    | NaCl                                            | Droplet            | 100.0           | 9.0         | 0.09              | 10.78                                         | 0.77      |
| INUIT05_61_b  | 6/10/2013 11:13:00   | NaCl                                            | Droplet            | 50.0            | 9.0         | 0.18              | 24.72                                         | 2.16      |
| INUIT05_61_c  | 6/10/2013 11:15:00   | NaCl                                            | Droplet            | 50.0            | 7.0         | 0.14              | 21.99                                         | 1.20      |
| INUIT05_61_d  | 6/10/2013 11:17:01   | NaCl                                            | Droplet            | 50.0            | 6.0         | 0.12              | 22.10                                         | 0.80      |
| INUIT05_61_g  | 6/10/2013 11:23:02   | NaCl                                            | Droplet            | 50.0            | 7.0         | 0.14              | 20.81                                         | 1.82      |
| INUIT05_62_b  | 6/10/2013 12:30:30   | NaCl                                            | Droplet            | 70.0            | 10.5        | 0.15              | 24.28                                         | 1.31      |
| INUIT05_62_e  | 6/10/2013 12:36:00   | NaCl                                            | Droplet            | 70.0            | 12.0        | 0.17              | 27.29                                         | 3.76      |
| INUIT05_63    | 6/10/2013 14:54:00   | NaCl + GSG<br>soot                              | Droplet            | 70.0            | 9.0         | 0.13              | 17.67                                         | 2.70      |
| INUIT05_64_a  | 6/10/2013 16:17:00   | NaCl + GSG<br>soot<br>NaCl + GSG                | Droplet            | 100.0           | 10.0        | 0.10              | 12.59                                         | N/A       |
| INUIT05_64_c  | 6/10/2013 16:23:00   | soot                                            | Droplet            | 100.0           | 12.0        | 0.12              | 16.19                                         | 1.45      |
| FIN01_4       | 11/6/2014 15:30:00   | Illite NX                                       | Immersion          | 70.0            | 9.5         | 0.14              | 23.77                                         | 2.99      |
| FIN01_5       | 11/6/2014 17:44:00   | Illite NX                                       | Immersion          | 70.0            | 11.0        | 0.16              | 22.96                                         | 6.56      |
| FIN01_6       | 11/6/2014 18:54:00   | Illite NX                                       | Immersion          | 70.0            | 11.5        | 0.16              | 27.02                                         | 3.74      |
| FIN01_7       | 11/7/2014 12:23:00   | Illite NX                                       | Immersion          | 70.0            | 11.5        | 0.16              | 29.80                                         | 6.82      |
| FIN01_8       | 11/7/2014 16:05:00   | Illite NX                                       | Immersion          | 71.2            | 12.7        | 0.18              | 30.38                                         | 5.22      |
| FIN01_10      | 11/8/2014 12:08:00   | K-rich<br>feldspar<br>(FS01)                    | Immersion          | 70.0            | 11.0        | 0.16              | 29.72                                         | 2.60      |
| FIN01_11      | 11/8/2014 13:50:00   | FS01                                            | Immersion          | 70.0            | 9.0         | 0.13              | 23.21                                         | 1.66      |
| FIN01_12_a    | 11/8/2014 15:58:00   | FS01                                            | Immersion          | 85.0            | 9.0         | 0.11              | 22.22                                         | 2.61      |
| FIN01_12_d    | 11/8/2014 16:03:00   | FS01                                            | Immersion          | 85.0            | 8.0         | 0.09              | 20.10                                         | 0.91      |
| FIN01_12_e    | 11/8/2014 16:04:00   | FS01                                            | Immersion          | 85.0            | 9.0         | 0.11              | 22.27                                         | 1.71      |
| FIN01_13_a    | 11/8/2014 17:49:00   | FS01                                            | Immersion          | 50.0            | 6.5         | 0.13              | 24.93                                         | 1.84      |
| FIN01_13_b    | 11/8/2014 17:53:00   | FS01                                            | Immersion          | 50.0            | 5.5         | 0.11              | 21.95                                         | 1.63      |
| FIN01_13_c    | 11/8/2014 17:54:00   | FS01                                            | Immersion          | 50.0            | 5.0         | 0.10              | 21.58                                         | 3.24      |

**Table S2**. Characterization of IS-PCVI properties during the AIDA expansion experiments. The critical cut-size [± standard deviation (Std. dev.)] of droplets and ice crystals are reflected in Fig. 8 and Fig. 9, respectively.

| FIN01_14_a | 11/10/2014 10:24:00 | FS01                                            | Immersion  | 85.0  | 12.0 | 0.14 | 23.10 | 3.58  |
|------------|---------------------|-------------------------------------------------|------------|-------|------|------|-------|-------|
| FIN01_14_b | 11/10/2014 10:26:20 | FS01                                            | Immersion  | 85.0  | 8.0  | 0.09 | 17.67 | 0.78  |
| FIN01_14_c | 11/10/2014 10:29:25 | FS01                                            | Immersion  | 85.0  | 12.0 | 0.14 | 25.33 | 1.66  |
| FIN01_15_a | 11/10/2014 11:57:00 | FS01                                            | Immersion  | 85.0  | 12.0 | 0.14 | 25.95 | 2.73  |
| FIN01_15_b | 11/10/2014 12:01:00 | FS01                                            | Immersion  | 85.0  | 8.0  | 0.09 | 19.56 | 4.30  |
| FIN01_15_c | 11/10/2014 12:08:10 | FS01                                            | Immersion  | 85.0  | 12.0 | 0.14 | 24.36 | 10.54 |
| FIN01_18_a | 11/11/2014 11:11:11 | Ethiopia<br>volcanic soil<br>(VSE01)            | Immersion  | 75.0  | 11.5 | 0.15 | 27.22 | 3.96  |
| FIN01_18_b | 11/11/2014 11:16:10 | VSE01                                           | Immersion  | 75.0  | 9.0  | 0.12 | 26.26 | 4.03  |
| FIN01_19_b | 11/11/2014 12:38:15 | VSE01                                           | Immersion  | 75.0  | 9.0  | 0.12 | 26.72 | 3.80  |
| FIN01_21_a | 11/12/2014 10:31:00 | GSG soot                                        | Deposition | 75.0  | 11.5 | 0.15 | 27.70 | 5.98  |
| FIN01_21_b | 11/12/2014 10:36:00 | GSG soot                                        | Deposition | 75.0  | 9.0  | 0.12 | 21.21 | 3.71  |
| FIN01_25_b | 11/13/2014 12:31:45 | $H_2SO_4$                                       | Deposition | 75.0  | 9.0  | 0.12 | 24.61 | 3.97  |
| FIN01_27_b | 11/13/2014 18:22:10 | $H_2SO_4 + CAST soot$                           | Deposition | 85.0  | 8.5  | 0.10 | 23.12 | 4.45  |
| FIN01_28_b | 11/14/2014 11:04:20 | Illite NX                                       | Deposition | 85.0  | 8.0  | 0.09 | 16.13 | 1.11  |
| FIN01_28_d | 11/14/2014 11:16:30 | Illite NX                                       | Deposition | 85.0  | 8.0  | 0.09 | 19.17 | 4.93  |
| FIN01_29_a | 11/14/2014 16:19:00 | Illite NX +<br>FS01                             | Deposition | 85.0  | 9.0  | 0.11 | 20.74 | 6.81  |
| FIN01_29_b | 11/14/2014 16:21:30 | Illite NX +<br>FS01                             | Deposition | 85.0  | 7.5  | 0.09 | 17.42 | 2.78  |
| FIN01_29_e | 11/14/2014 16:27:10 | Illite NX +<br>FS01                             | Deposition | 105.0 | 9.0  | 0.09 | 14.14 | 1.46  |
| FIN01_31_b | 11/15/2014 17:30:50 | $FS01 + H_2SO_4 \\$                             | Deposition | 80.0  | 8.0  | 0.10 | 15.63 | 2.51  |
| FIN01_31_c | 11/15/2014 17:31:30 | $FS01 + H_2SO_4 \\$                             | Deposition | 90.0  | 8.0  | 0.09 | 14.59 | 7.44  |
| FIN01_31_d | 11/15/2014 17:33:20 | $FS01 + H_2SO_4 \\$                             | Deposition | 85.0  | 8.0  | 0.09 | 22.37 | 1.28  |
| FIN01_31_e | 11/15/2014 17:34:20 | $FS01 + H_2SO_4 \\$                             | Deposition | 85.0  | 7.5  | 0.09 | 16.35 | 4.81  |
| FIN01_33_b | 11/17/2014 17:27:30 | $FS01 + H_2SO_4 \\$                             | Immersion  | 90.0  | 16.0 | 0.18 | 25.03 | 2.77  |
| FIN01_33_c | 11/17/2014 17:28:45 | $FS01 + H_2SO_4 \\$                             | Immersion  | 90.0  | 12.0 | 0.13 | 20.10 | 2.03  |
| FIN01_33_d | 11/17/2014 17:29:37 | $FS01 + H_2SO_4 \\$                             | Immersion  | 90.0  | 10.0 | 0.11 | 15.64 | 4.94  |
| FIN01_33_f | 11/17/2014 17:31:45 | $FS01 + H_2SO_4$                                | Immersion  | 90.0  | 10.0 | 0.11 | 15.64 | 7.54  |
| FIN01_46   | 11/20/2014 17:13:00 | K-rich<br>Feldspar<br>(FS04) + α-<br>pinene SOA | Immersion  | 90.0  | 15.0 | 0.17 | 24.96 | 4.77  |
| FIN01_49   | 11/22/2014 13:54:00 | Argentinian soil dust                           | Immersion  | 90.0  | 14.0 | 0.16 | 23.11 | 6.55  |
| FIN01_50_c | 11/24/2014 11:07:30 | FS04                                            | Deposition | 80.0  | 8.0  | 0.10 | 16.03 | 2.05  |
| FIN01_50_d | 11/24/2014 11:08:30 | FS04                                            | Deposition | 80.0  | 10.0 | 0.13 | 22.37 | 3.87  |
| FIN01_51_b | 11/24/2014 15:52:00 | FS04 + α-<br>pinene SOA                         | Deposition | 80.0  | 8.0  | 0.10 | 21.34 | 5.98  |
| FIN01_53   | 11/25/2014 12:30:00 | FS04 + α-<br>pinene SOA                         | Deposition | 80.0  | 10.0 | 0.13 | 27.05 | 2.78  |
| FIN01_55_b | 11/25/2014 16:58:00 | FS04 + α-<br>pinene SOA                         | Deposition | 75.0  | 10.0 | 0.13 | 26.84 | 3.52  |

## References

Helsper, C., Molter, W., Löffler, F., Wadenpohl, C., and Kaufmann, S.: Investigation of a new aerosol generator for the production of carbon aggregate particles, Atmos. Environ., 27A, 1271–1275, doi:10.1016/0960-1686(93)90254-V, 1993.

- 5 Hiranuma, N., Hoffmann, N., Kiselev, A., Dreyer, A., Zhang, K., Kulkarni, G., Koop, T., and Möhler, O.: Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles, Atmos. Chem. Phys., 14, 2315– 2324, doi:10.5194/acp-14-2315-2014, 2014.
- Hiranuma, N., Augustin-Bauditz, S., Bingemer, H., Budke, C., Curtius, J., Danielczok, A., Diehl, K., Dreischmeier, K., Ebert,
  M., Frank, F., Hoffmann, N., Kandler, K., Kiselev, A., Koop, T., Leisner, T., Möhler, O., Nillius, B., Peckhaus, A., Rose, D.,
  Weinbruch, S., Wex, H., Boose, Y., DeMott, P. J., Hader, J. D., Hill, T. C. J., Kanji, Z. A., Kulkarni, G., Levin, E. J. T.,
  McCluskey, C. S., Murakami, M., Murray, B. J., Niedermeier, D., Petters, M. D., O'Sullivan, D., Saito, A., Schill, G. P.,
  Tajiri, T., Tolbert, M. A., Welti, A., Whale, T. F., Wright, T. P., and Yamashita, K.: A comprehensive laboratory study on
  the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques, Atmos.
  Chem. Phys., 15, 2489-2518, doi:10.5194/acp-15-2489-2015, 2015.

Möhler, O., Linke, C., Saathoff, H., Schnaiter, M., Wagner, R., Mangold, A., Kramer, M., and Schurath, U.: Ice nucleation on flame soot aerosol of different organic carbon content, Meteorol. Z., 14, 477–484, doi: 10.1127/0941-2948/2005/0055, 2005a.

20

30

Möhler, O., Büttner, S., Linke, C., Schnaiter, M., Saathoff, H., Stetzer, O., Wagner, R., Kramer, M., Mangold, A., Ebert, V., and Schurath, U.: Effect of sulphuric acid coating on heterogeneous ice nucleation by soot aerosol particles, J. Geophys. Res., 110, D11 210, doi:10.1029/2004JD005 169, 2005b.

25 Peckhaus, A., Kiselev, A., Hiron, T., Ebert, M., and Leisner, T.: A comparative study of K-rich and Na/Ca-rich feldspar ice nucleating particles in a nanoliter droplet freezing assay, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016–72, 2016.

Saathoff, H., Naumann, K.-H., Möhler, O., Jonsson, Å. M., Hallquist, M., Kiendler-Scharr, A., Mentel, Th. F., Tillmann, R., and Schurath, U.: Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α-pinene and limonene, Atmos. Chem. Phys., 9, 1551–1577, doi:10.5194/acp-9-1551-2009, 2009.

Steinke, I.: Ice nucleation properties of mineral dusts. PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 160 pp., 2013.

35 Wex, H., Augustin-Bauditz, S., Boose, Y., Budke, C., Curtius, J., Diehl, K., Dreyer, A., Frank, F., Hartmann, S., Hiranuma, N., Jantsch, E., Kanji, Z. A., Kiselev, A., Koop, T., Möhler, O., Niedermeier, D., Nillius, B., Rösch, M., Rose, D., Schmidt, C., Steinke, I., and Stratmann, F.: Intercomparing different devices for the investigation of ice nucleating particles using Snomax<sup>®</sup> as test substance, Atmos. Chem. Phys., 15, 1463–1485, doi:10.5194/acp-15-1463-2015, 2015.