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Abstract. Approaches are considered to estimate the back-
ground concentration level of a target species in the atmo-
sphere from an analysis of the measured data provided by
the National Physical Laboratory’s differential absorption li-
dar (DIAL) system. The estimation of the background con-
centration level is necessary for an accurate quantification of
the concentration level of the target species within a plume,
which is the quantity of interest. The focus of the paper is on
methodologies for estimating the background concentration
level and, in particular, contrasting the assumptions about the
functional and statistical models that underpin those method-
ologies. An approach is described to characterise the noise
in the recorded signals, which is necessary for a reliable esti-
mate of the background concentration level. Results for mea-
sured data provided by a field measurement are presented,
and ideas for future work are discussed.
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1 Introduction

Differential absorption lidar (DIAL), which is based on the
optical analogue of radar, provides the capability to mea-

sure remotely the concentration and spatial distribution of
compounds in the atmosphere (Measures, 1984). The abil-
ity to scan the optical measurement beam through the at-
mosphere enables pollutant concentrations to be mapped and
emission fluxes to be determined. The mobile ground-based
DIAL systems developed at the National Physical Labora-
tory (NPL) for pollution monitoring have been used world-
wide for over 20 years (Milton et al., 1992; Robinson et
al., 2011). They have been deployed for routine monitoring,
emission factor studies, research investigations, and targeted
monitoring campaigns. A key feature of the NPL system is
that it operates in both ultraviolet and infrared regions. The
infrared measurements at wavelengths of around 3 um target
a range of hydrocarbon gases, including methane that has a
significant background concentration level (of the order of
1.8 ppmv) (Butler and Montzka, 2016).

The lidar technique is based on transmitting a pulse of
laser radiation into the atmosphere and measuring the light
scattered by the atmosphere and returned to the system. The
DIAL system extends the basic lidar technique by operating
the laser alternately at two adjacent wavelengths (Measures,
1984). One of these wavelengths, termed the “on-resonant
wavelength”, is chosen to be a wavelength that is absorbed
by the target species, and the other, the “off-resonant wave-
length”, is a wavelength that is not absorbed significantly
by the target species. The two wavelengths are chosen to be
close so that parameters describing atmospheric variability,
such as differences in scattering media and interference com-
pounds, are the same for both wavelengths. Any measured
difference in the returned signals is therefore due to absorp-
tion by the target species.

A critical part of the analysis of the measured data pro-
vided by the DIAL system is to estimate, and subsequently
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correct for, the background concentration level of the target
species along the optical measurement path. This is neces-
sary for an accurate quantification of the concentration level
in the atmosphere of the target species, which may be a pol-
lutant or greenhouse gas emission, for the purpose of source
attribution and to support decisions made on the basis of that
quantification. This paper is concerned with approaches to
analysing the measured data provided by the DIAL system
to estimate the background concentration level of the target
species.

The paper is organised as follows. In Sect. 2 methodolo-
gies for estimating the background concentration level are
described and contrasted. One approach makes assumptions
about the nature of the functional and statistical models used
to represent the values of path-integrated concentration cal-
culated in terms of the measured data. A second approach
relies upon knowledge of the statistical model for the noise
in the measured data, and approaches to understand and char-
acterise the noise are considered in Sect. 3. Results for mea-
sured data provided by a field measurement are presented in
Sect. 4. Finally, concluding remarks and a discussion of fu-
ture work are given in Sect. 5.

2 Methodologies
2.1 Two-step linear least-squares (LLS) approach

For a given elevation angle 6, the path-integrated concentra-
tion C (r) of the target species at a distance r along the optical
measurement path is given by

)= L 1og S0t =)/ P

2y Son(r) = B)/ Pon”
where Sofr(r) and Sy, (1) are the returned signals correspond-
ing to the off-resonant and on-resonant wavelengths, respec-
tively; y is a known differential absorption coefficient; o and
B represent systematic offsets of the signals due to the instru-
mentation (Milton et al., 1987); and Py and Py, are known
normalisation constants used to correct for the different laser
powers at the two wavelengths. In the absence of a plume
containing the target species, C(r) can be modelled as

C(r)=A+ Br, )

ey

a straight-line function of distance r, with A representing
a constant systematic offset and B representing the back-
ground concentration level of the target species along the
measurement path. By equating the expressions (1) and (2),
and re-parameterising, it follows that

Soff(r) —a
og——

Son(r) — :3
involving unknown parameters a, b, «, and 8, and A and B
can be recovered using the expressions

1 Py b
A=—\a+log—), B=—. 4)
2y Po 2y

=a+br, 3)
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Given measured values sofr,; and son,; Of the signals Sog(r)
and Son(r), respectively, at distances r; (i =1, ..., m), an
approach often applied to determining estimates of the un-
known parameters in model (3) involves the following two
steps:

i. evaluate an estimate oo of « as the average of measured
values Soff i (i = Mfar, ..., m), and similarly evaluate an
estimate Bo of B as the average of measured values sop,;
(i =mear, ..., m);

ii. evaluate estimates (ag, bg) of (a,b) as the solution to
the LLS problem

Mhgh
. 2 Soff,i — O
min i —(a+0br)|", yi=log———. (5)
(@b) Ly I & Son,i — Bo

L=M]ow
The index mg,, in step (i) is chosen empirically to define a
part of the two signals for which the values of the backscat-
tered lidar signals can be considered to have essentially fallen
to zero and correspond to measurements made in the far field.
The indices miow and mpgh in step (ii) are chosen empiri-
cally to define that part of the signals that encompasses the
backscattered lidar measurement range that is free from the
effects of obstructions and for which the signal-to-noise ra-
tio for the values y; (i =miow, ..., Mngn) is not too small
such that those values provide useful information about the
background level.

Figures 1 and 2 illustrate the application of this two-step
approach to the data obtained from a field measurement. Fig-
ure 1 shows the measured values for the two signals and indi-
cates the positions of the windows of data used in each anal-
ysis step. The signals each comprise m = 999 values, and the
windows are defined by setting mow = 30, mpgnh = 300, and
mear = 500. Since the sampling rate of the lidar data acquisi-
tion system is 40 MHz, each index step represents a distance
of 3.75m for the DIAL measurements, and therefore the
length of the path is (approximately) 3.75 km, the far field in
step (i) corresponds to distances greater than 1875 m, and the
data analysed in step (ii) corresponds to distances between
112.5 m and 1125 m. Figure 2 shows the path-integrated con-
centration data

1 (Soff,i — )/ Poft 1 Pon
Ci=—log————=— |y +log ;
2y (Son,i — Bo)/ Pon 2y Post
[ = Miow, - - -» Mhgh, (6)

calculated in terms of the measured signal values and the es-
timates «g and B, and the straight-line model

C(r) = Ao+ Bor, )

with Ag and By calculated in terms of the estimates ag and by
using the expressions (4). The measured signal values corre-
sponding to indices i < mjoy, represent behaviour that is in-
consistent with the remainder of the signals as they are due
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Figure 1. Measured signals (at off-resonant wavelength in blue and
on-resonant wavelength in red), and the positions defined by indices
Miows Mhgh, and myey, (vertical dashed lines, left to right) of the
endpoints of the windows of data used in each step of the two-step
LLS approach.

to near-field scatter rather than the backscattered lidar return
signals. For indices i > mngph, the measured signal values are
such that either the path-integrated concentration values cal-
culated in terms of them and the estimates «g and Bg are un-
defined or they are dominated by noise and provide little use-
ful information about the background concentration level.

The two-step LLS approach is based on two main assump-
tions. Firstly, an assumption is made about the consistency of
a straight-line model with the data y; (i = miow, ..., Mngn). In
practice, a plume containing the target species (whose posi-
tion and concentration are unknown but are to be determined)
may be present, and, consequently, the model may be inad-
equate for the data. Indeed, deviations of the data from the
model may provide information about the position and path-
integrated concentration level of the plume. Secondly, an as-
sumption is made about the statistical model for the data y;
(i =miow, ..., Mngn), viz. that the errors in the data are real-
isations of random variables that are independent and iden-
tically distributed (Mardia et al., 1979). It is apparent from
Fig. 2 that the deviations between the path-integrated con-
centration data and the model are far from random, and con-
sequently there is strong evidence that such an assumption
about the statistical model is invalid. It follows that there can
be doubt about the reliability of the estimate of the back-
ground concentration level provided by the two-step LLS ap-
proach.

2.2 One-step generalised least-squares (GLS) approach

Some information about the location of the plume — in terms
of values of indices m¢ and m., where mg < m., that define a
window known to contain the plume — is often available be-
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Figure 2. Path-integrated concentration data and straight-line model
calculated using the two-step LLS approach.

cause there can be knowledge about the location of the source
of the plume relative to the location of the DIAL system.
However, the reliability of this information will vary with
the quality of the knowledge of the emission source location
and the meteorological conditions at the time of the measure-
ment. Given this additional information, the model (2) can be
replaced by one of the form

Ay + Br,
A1+ Ay + Br,

rfrmss
rzrmcv

Cir) = [ ®)

with B representing (as before) the background concentra-
tion level and A, the path-integrated concentration level of
the target species within the plume. (The condition A, =0
would indicate the absence of a plume.) Use of the model (8)
is a simple way to address the deficiency of the model (2)
by representing the overall (macro) affect of the plume on
the path-integrated concentration level without attempting to
model the detail (at a micro level) of how the concentration
level varies within the plume.

The deficiency in the statistical model for the data y; can
be addressed by characterising the statistical properties (or
probability distributions) for the errors in that data. How-
ever, such a characterisation is not straightforward because
(a) those errors are obtained as a non-linear transformation
(involving a quotient and a logarithm) of the errors in the
measured values of the individual returned signals and (b)
they depend on the errors in the estimates («g, Bo) of («, 8),
which, in turn, depend on the measured values for (parts of)
the returned signals. However, it might be expected that the
errors in the measured values of the individual returned sig-
nals themselves would be simpler to characterise and treat.

An alternative analysis approach is then based on solv-
ing a GLS problem as follows (Forbes, 1993; Forbes et al.,
2002; Milton et al., 2006). Let I} = {mrow, ..., ms} and
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I, = {me, ..., mpgnu} identify those parts of the measured
data before and after the window containing the plume; e is
the vector containing eoff,; = Soff,i — Soff,i» i € I, and eon,; =
Son,i — Son,i» i €I, where I =11 UI; and V is the covari-
ance matrix for the complete set of data sofr i, i € I, and sop ;,
i € I. The index my ow will usually be chosen equal to mjoy,
but mygH can exceed mngn because the approach uses the
measured data sofr,; and sopn,; directly and does not require
the calculation of the data y;. Estimates of unknown parame-
ters ar; az; by o; B Sofr,i. i € I;and Sop ;, © € I, are obtained
as the solution to the GLS problem

mine' Ve, )
subject to the constraints

Soff,i = & + (Son,i — B)exp(ar +bri), i € I, (10)
and

Soff,i = & + (Son,i — B)exp(ar +az +bri), i € I (11)

The parameters A1, Az, and B in the model (8) are recovered
from those appearing in the above formulation using

1 ( Pon) ap b
Al =—\a;+log , Ao=—, B=— (12)
2y Poit 2y 2y
(cf. expression 4). By using the equality constraints (10)
and (11) to eliminate the parameters Sof,;, i € I, the prob-
lem takes the form of an unconstrained non-linear least-
squares problem with unknown parameters ap; az; b; o; B;
and Son,i, i € I, and can be solved using standard numeri-
cal algorithms (Paige, 1979; Gill et al., 1981; Bjorck, 1996).
The problem provides (simultaneously) estimates of the un-
known parameters together with the covariance matrix asso-
ciated with those estimates. In terms of those estimates and
uncertainties, it provides estimates and uncertainties for A,
(the path-integrated concentration level of the target species
within the plume), B (the background concentration level of
the target species), and the values of the returned signals at
distances r;, i € I.

The above formulation of the GLS problem makes no as-
sumption about the functional form of the returned signals. In
an alternative formulation, the returned signal corresponding
to the on-resonant wavelength is modelled as

Son(r) =D ¢jj(r), (13)
j=1

in terms of basis functions ¢;(r) (j =1, ..., n), and the GLS
problem is formulated as follows: determine estimates of un-
known parameters ay, a2, b, a, B, and ¢; (j =1,...,n) that
solve the minimisation (9) subject to the constraints

Soff, i =06+(ch¢j(ri) —ﬁ)exp(fh +br;), iel, (14)

Jj=1

and
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Soff,i = o + (z cjpj(ri) — ﬁ)exp(al +a +bry),

j=1
i€l (15)

For example, the signal Sy, (7) (or each part of the signal be-
fore and after the window containing the plume) might be de-
scribed by a cubic polynomial spline function with the basis
functions ¢;(r) taking the form of B-spline basis functions
of order four specified in terms of “knots”, which are the po-
sitions where the cubic polynomial pieces of the spline curve
are joined (de Boor, 1978; Cox, 1972, 1993). The reason to
use a parametric representation of the signal is to impose a
degree of smoothness on the values of the returned signals.

A number of variants of the above formulations of the GLS
problem are also considered:

1. Only the data after the window containing the plume
are treated, i.e. 1 is taken to be the empty set, and the
GLS problem is solved for estimates of the parameters
a=ai+ayb,a, B,andc; (j=1,...,n).

2. The parameters o and S are fixed, for example, to be
the values «p and Bp determined in terms of the data
Soff,; and Son,; for i = miyy, ..., m, as in the two-step LLS
approach.

3. The values ¢« and By are considered to be estimates of
the parameters o and 8, and the minimisation (9) takes
the form

mine ' Ve + Ay (@ — a)? + 258 — B0)2. (16)

where A, and Ag reflect the “quality” of the estimates
ap and Bo.

The reasons for considering these variants of the basic prob-
lem, e.g. in which the additional terms in the minimisation
(16) provide a regularisation of the minimisation (9), are dis-
cussed in Sect. 3.

To apply the analysis approach, it is necessary to know the
covariance matrix V based on a characterisation of the noise
in the (raw) returned signals. Obtaining such knowledge is
the subject of Sect. 3. In contrast to the two-step LLS ap-
proach, it is expected that the alternative analysis approach
will provide reliable estimates of the required quantities sup-
ported by an assessment of their associated uncertainties.

3 Noise characterisation
3.1 Auto-regressive model for the noise

A characterisation of the noise in the two returned signals
is undertaken in terms of estimates of the errors in the mea-
sured data for those signals. Let index mg > m. be such that

www.atmos-meas-tech.net/9/4879/2016/
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it can be stated a priori with confidence that the indices mg,
..., mygH define a part of the signals that does not include a
plume. The data sofr,; and son,; Within that part of the signals
are smoothed (or filtered), and the residual deviations asso-
ciated with the smoothed data are used as estimates of the
errors in the measured data. Figure 3 illustrates the residual
deviations defined by least-squares cubic polynomial spline
fits to the measured data for the signals shown in Fig. 1
with mg = 100 and mygu = 500. A cubic polynomial spline
function is chosen as a flexible and empirical model to de-
scribe the underlying signals for 7, <7 < 7yq,- An alter-
native approach to filtering the data is to use a wavelet de-
composition, but the results obtained and described in Sect. 4
are not substantially different.

Figure 4 shows the auto- and cross-correlation functions
associated with the estimates of the measurement errors for
the two signals. The graphs in these figures suggest that
the errors are correlated, both within each signal and be-
tween the two signals. Another method for studying long-
term correlations (or “memory”) in signals is detrended
fluctuation analysis (DFA) (Peng et al., 1994), which has
been applied successfully to a wide range of applications in
physics, medicine, climatology, and other areas. When the
auto-correlation function takes the form

C(s) ~s~%, (17

the corresponding detrended fluctuation function takes the
form

F(s)~s", (18)

where 1 and ¢ are related by n = 1—¢ /2 (Kantelhardt, 2001).
Whilst Gaussian noise is usually assumed to be “white”, i.e.
its auto-correlation function decays exponentially and the
DFA scaling exponent is n = 0.5, in real-world systems the
stochastic variables are often described by co-called “red”
noise with n > 0.5, which means that values have memory of
previous ones. The DFA scaling exponent is estimated from
the linear fit to the data in a log—log plot of the fluctuation
function F (s). Values of n between 0.5 and 1 denote station-
ary noise, whereas values bigger than 1 denote non-stationary
long-term correlated noise, with random walk noise having
n =1.5. When applied to the estimates of the measurement
errors for the two signals shown in Fig. 3, the values of the
DFA scaling exponents are just less than 1.5 for small lags s,
indicating that the signals have appreciable short-term mem-
ory.

A (multi-output) auto-regressive (AR) model is used to
characterise the noise in the signals. Let dofr; and don,; de-
note the residual deviations as displayed in Fig. 3. Then, the
AR model takes the form

q q
doir,i + D K1 kdofti—k + > T1 kdon,i—k = Woft.i 19)
k=1 k=1

and
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q q
don,i + Z 72 kdon,i—k + sz,kdoff,i—k = Won, » (20)
k=1 k=1

where ¢ is the order of the AR model, (wofr,;, Won,;) are ran-
dom draws from the bivariate Gaussian distribution N (0, X),
and (woff,i, Won,;) is assumed to be uncorrelated with (woft, ;,
Won, j) for i # j. (In a general form of the AR model defined
above, the number of terms in each summation can be cho-
sen to be different.) For a given choice of order ¢, fitting the
AR model to the residual deviations provides estimates g
and T (U =1, 2, k=1, ..., q) for the parameters «; x and
T¢ k, With an associated covariance matrix, together with an
estimate X of X.
Let

T =LL" @21

be the Cholesky decomposition of b (Golub et al., 1996),
and define

Lz; = w;, (22)
where
w; = (Woft.i» Woni) s Zi = (Zoft.i» Zoni) - (23)

For the residual deviations shown in Fig. 3 and the AR model
of order g =4 fitted to those residual deviations, Fig. 5 il-
lustrates the transformed residual deviations zfr,; and zZon;,
which are expected to be random draws from the bivariate
Gaussian distribution N (0,I), where I denotes the identity
matrix. Figure 6 shows the auto- and cross-correlation func-
tions associated with zofr,; and zon,;. The graphs in Figs. 5
and 6 suggest that the transformed residual deviations are
much less correlated compared with the estimates dogr; and
don,; of the measurement errors, and they resemble much
more closely a white (Gaussian) noise process. Furthermore,
the values of the DFA scaling exponents are approximately
0.5 for all lags s.

An approach to selecting the order g of the AR model used
to characterise the noise is to obtain model fits for increasing
orders and to select that value of ¢ for which the quality of
the fit is not substantially improved using higher orders. Fig-
ure 7 illustrates how the standard deviations and correlation
coefficient derived from the covariance matrix X for the pairs
(Woft,i, Won,;) of residual deviations associated with a fitted
AR model vary with the order ¢g. It is seen that these statistics
essentially saturate for ¢ > 4, which motivates the selection
of the model order made above. Furthermore, it is seen that
the standard deviations for the two signals saturate to values
that are quite similar, suggesting that the white-noise pro-
cesses underlying the noise in the two returned signals are
themselves comparable.
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Figure 3. Residual deviations for (parts of) the measured signals
shown in Fig. 1: (left) at off-resonant wavelength and (right) at on-
resonant wavelength.

Distance/km

Distance/km

ACF/1
IS

T

T

1

T

T

1

T

-1

-0.5

.
0

0.5

1

T

T

T

T

T

1 L L L L L
-1.5 -1 -0.5 0 0.5 1 15

1 T T T T T

P NAWA N A A A ~—

1 L L L L L
-1.5 -1 -0.5 0 0.5 1 15

Distance/km

ACF/1
o

CCF/1
[S)

Figure 4. Properties of the residual deviations shown in Fig. 3: (top)
auto-correlation function for the off-resonant wavelength residual
deviations, (middle) auto-correlation function for the on-resonant
wavelength residual deviations, and (bottom) cross-correlation
function for the two sets of residual deviations.

3.2 Formulation of GLS problem with auto-regressive
noise model

The estimated AR model determines the covariance matrix
V in the formulation (9) of the GLS problem. However, it is
unnecessary to explicitly construct the matrix V, which can
be a large matrix. Instead, the fitted AR model is used to
define

q q
fofti = eofti + D _RIkCoff.i—k + D Tl kCon.i—k 24
k=1 k=1

Atmos. Meas. Tech., 9, 4879-4890, 2016

Figure 5. Transformed residual deviations for (parts of) the mea-
sured signals shown in Fig. 1 obtained using a multi-output auto-
regressive model of order four for the residual deviations shown in
Fig. 3: (left) at off-resonant wavelength and (right) at on-resonant
wavelength.
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Figure 6. Properties of the transformed residual deviations shown in
Fig. 5: (top) auto-correlation function for the transformed residual
deviations at the off-resonant wavelength, (middle) auto-correlation
function for the transformed residual deviations at the on-resonant
wavelength, and (bottom) cross-correlation function for the two sets
of transformed residual deviations.

and

q q
fon,i = éeon,i + Z%\lkeon,i—k + Z?Z,keoff,i—k (25)
k=1 k=1

fori € Il ={miow +q. ..., m¢}and i € I, = {me +¢q, ...,
mugH}. Then, since (foft,i, fon,i),i € I’ = I{UI}, is uncorre-
lated with ( foff, j, fon,;) fori # j and has covariance matrix
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¥, the formulation (9) can be replaced by

min> fTE7 fro fi = oftis foni) | (26)

el

or equivalently by

. ~T~
mmei fi= zf;lff,i + fo2n,i’ (27)
el iel
where
Lfi=fi, fi=fottirfoni) ', (28)

and the minimisation is subject to the same constraints (10)
and (11) (or 14 and 15).

For the signals shown in Fig. 1, and using an AR model
of order ¢ =4 to characterise the noise in those signals as
determined above, consider solving the GLS problem for
the data defined by indices I = I, = {me = 100, ...,mycy =
500} after the window containing the plume (variant 1 in
Sect. 2.2) and for various fixed values of the parameters o
and B (variant 2 in Sect. 2.2). Let

2 e'Vle

- ° (29)
211 p

here a function of « and S, be the mean square error eval-
uated at the solution, where |/| is the number of indices in
I and p =2 + n is the number of unknown parameters. Fig-
ure 8 shows how S2 depends on o when B8 = f and on B
when o = 9. The graphs in the figure also show as verti-
cal dashed lines the particular values og and fp. Although a
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minimum with respect to 8 is well defined and indeed corre-
sponds to the value By, the same is not the case for «, since
S§? is essentially constant for values of « less than g when
B = Po.

Figure 9 illustrates the solution to the GLS problem with
unknown parameters a, b, , B, and ¢; (j =1, ..., n). The
solution is displayed by showing the path-integrated concen-
tration data calculated in terms of the estimates of o and
and the straight-line model calculated in terms of the esti-
mates of A and B. For comparison, the path-integrated con-
centration data calculated in terms of the estimates of g and
Bo, and the linear least-squares straight-line fit to that data are
also shown: cf. Fig. 2. Figure 10 illustrates the transformed
residual deviations corresponding to the solution to the GLS
problem shown in Fig. 9. Figures 11 and 12 illustrate the
same information but for the solution to the GLS problem
with @ = g and B = By. It can be seen that the quality of the
two solutions, in terms both of the values of S? and of the
distributions of transformed residual deviations, are compa-
rable. However, the solutions themselves are quite different,
which is a reflection of the fact that the parameter estimates
are confounded with each other and are not well defined by
the data (as illustrated also in Fig. 8). It is for this reason
that consideration of regularised versions of the GLS prob-
lem (variants 2 and 3 in Sect. 2.2) are considered necessary.

Finally, Figs. 13 and 14 illustrate the solution to the GLS
problem with unknown parameters a, b, o, 8, and ¢; (j =1,
..., n) for the data defined by indices I = I, = {myow = 30,
..., mygH = 500} that includes data before and within the
window containing the plume but does not allow for the pres-
ence of the plume in the functional model. Here, particularly
for data to the left of the window, the transformed residual
deviations tend to be large and suggest a lack of fit of the
model, which is attributed to the effect of the plume. It is for
this reason that adjusting the functional model for the mea-
sured data, as well as characterising the statistical model for
the data, is an important part of the analysis.

4 Results

Results are presented for field measurements made for six el-
evation angles 6 spanning the interval 3.7 to 9.7°. Figures 1
to 14 relate to the measured data corresponding to the largest
elevation angle in that interval. Additionally, Figs. 15 and 16
illustrate the solution to the GLS problem with unknown pa-
rameters a, b, and ¢;, (j =1, ..., n) for the data defined
by indices I = I} U I with I} = {mow = 30, ..., mg = 50}
and I, = {m. =100, ..., mggg = 500}, i.e. allowing for the
presence of a plume. Note that in Fig. 16 a larger scale for
the vertical axis compared to previous graphs showing trans-
formed residual deviations is needed to show the behaviour
of the deviations corresponding to positions before the win-
dow set to contain the plume. Here, the transformed residual
deviations suggest that the noise characteristics may be dif-
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Figure 8. Values of the mean square error for (left) different values
of o with 8 = By, and (right) different values of g with o = «p,
corresponding to GLS fits to data with indices mg to mygy. The
vertical dashed lines in the two graphs correspond, respectively, to
the values o and .
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Figure 9. In red, the results of the two-step LLS approach applied
to the data with indices mjoy to mpgp: the path-integrated concen-
tration data calculated using «q and By, and the linear least-squares
straight-line fit to that data (cf. Fig. 2). In blue, the results of the
GLS approach applied to the data with indices me to mggy: the
data are calculated in terms of estimates of & and $, and the straight-
line model in terms of estimates of A and B.

ferent for the data before and after the window considered to
contain the plume. Although the transformed residual devia-
tions for the data before the plume appear essentially random,
their magnitude is larger than would be expected.

The analysis described in Sects. 2 and 3 for the measured
data relating to the largest elevation angle is repeated for the
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Figure 10. Values of the transformed residual deviations for the
signals at (left) the off-resonant wavelength, and (right) the on-
resonant wavelength, for the results of the GLS approach shown
in Fig. 9.
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Figure 11. As Fig. 9 but with the values of o and S fixed to be o
and B in the GLS approach.

other elevation angles, and the results are presented in Fig. 17
and Tables 1 and 2. For all elevation angles the same window
of data containing the plume and the same order for the AR
model used to characterise the noise in the returned signals
are considered. Figure 17 compares the estimates of the pa-
rameters k¢ x and 7 (with 1,0 and 12,0 set to be unity),
and Table 1 compares the estimates of the elements of the
covariance matrix X that jointly define the AR model used
to characterise the noise in the returned signals for each el-
evation angle. There is generally good agreement between
the estimates of « x and 12 x, which suggests that the “auto-
correlation” terms in the statistical model defined by those

www.atmos-meas-tech.net/9/4879/2016/
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Figure 12. As Fig. 10 but for the results of the GLS approach shown
in Fig. 11.
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Figure 13. As Fig. 9 but for the GLS approach applied to the data
with indices my ow to mygy-

parameters are reproducible across the different elevation an-
gles. The estimates of k7 x and t; x are less in agreement, and
in particular the estimates of k3 x for the smallest elevation
angle appear somewhat different from those for the other el-
evation angles (lower-right graph of Fig. 17), which suggests
the “cross-correlation” terms are not so reproducible. A tech-
nical explanation for that property of the statistical model
is currently not available but will be investigated in further
work.

Table 2 gives the estimates of the background concentra-
tion level B obtained in various ways and compares them for
different elevation angles. In all cases, the offset parameters
o and B are set to the values g and By calculated in terms
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Figure 14. As Fig. 10 but for the results of the GLS approach shown
in Fig. 13.

of the signal values measured in the far field. Estimates of
B are obtained using the LLS approach; the GLS approach
using data with indices I, = {m. = 100, ..., mygu = 500}
considered to be beyond the plume; and the GLS approach
using data with indices I1 U I and I} = {mpow =30, ...,
mg = 50}, i.e. allowing for the presence of a plume. In the last
case, an estimate is also provided for the parameter A; rep-
resenting the path-integrated concentration level of the target
species within the interval defined by the indices ms = 50 to
me = 100. For all but the smallest elevation angle, the esti-
mate of A, is positive, which may be taken to indicate the
presence of a plume somewhere within the chosen window.
It may be expected that the results provided by the GLS
approach using the data with indices I, are the most reliable
because, firstly, data that are possibly influenced by the pres-
ence of a plume are excluded and, secondly, the same data
are used for the purpose of noise characterisation. Indeed,
the estimates show the least variability with elevation angle
compared with the other approaches to determine estimates
of the background concentration level, and particularly com-
pared with the estimates provided by the two-step LLS ap-
proach. The results provided by the GLS approach using the
data with indices I = I} U I, are, for some elevation angles,
influenced appreciably by the additional data measured close
to the DIAL system and before the plume. That data con-
stitute only a small part of the data set (about 5 %), and, as
noted above, there is evidence of an inconsistency between
those data and the functional and/or statistical models used
in the analysis. In particular, the nature of the transformed
residual deviations suggests that the statistical model deter-
mined using the data after the plume may not apply for the
data before the plume. Ideally, the noise in the data before the
plume would be characterised either separately or in combi-
nation with the data after the plume, but that is made difficult

Atmos. Meas. Tech., 9, 4879-4890, 2016
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Figure 15. As Fig. 9 but for the GLS approach applied to the data
with indices mp gw to mygy and assuming a plume is contained in
a window defined by indices mg and m.. The vertical lines show the
endpoints of the window that is assumed to contain the plume.

0r 1 107F

Transformed residual deviation/1
o

-10 1 -10 1

0 0.5 1 15 0 0.5 1 15
Distance/km Distance/km

Figure 16. As Fig. 10 but for the results of the GLS approach shown
in Fig. 15.

because the amount of data is small and there is a gap be-
tween the two parts of the data. Further analysis using data
sets for which there is no plume may help to give a better
understanding of this aspect.

5 Concluding remarks and future work

This paper has been concerned with approaches to analysing
the recorded measured data obtained using NPL’s DIAL sys-
tem to estimate the background concentration level of a target
species in the atmosphere. The estimation of the background
concentration level is necessary for an accurate quantifica-
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Figure 17. For each elevation angle 6, estimates of the parameters
K1, (top left), 71 (top right), 72 x (bottom left), and k7  (bottom
right) defining the AR model in a characterisation of the noise in
the two returned signals for different elevation angles.

Table 1. For each elevation angle 6, estimates of the elements of X
defining the AR model in a characterisation of the noise in the two
returned signals.

0/° £11/1073mVZ  T5/1073mV2 $5,/1073 mV?

3.7 0.711 0.109 0.642
4.7 0.712 0.190 0.737
5.7 0.782 0.134 0.733
6.7 0.716 0.156 0.673
7.7 0.622 0.084 0.722
9.7 0.825 0.150 0.749

tion of the concentration level of the target species within a
plume, which is the quantity of interest. The paper has fo-
cussed on methodologies for estimating the background con-
centration level and, in particular, contrasting the assump-
tions about the functional and statistical models that are part
of those methodologies.

An approach to estimating the background concentration
level has been described. It uses a functional model for the
path-integrated concentration level that allows for the pres-
ence of a plume. It also uses a statistical model in the form of
an auto-regressive function to describe the noise in the mea-
sured data for the signals corresponding to the off-resonant
and on-resonant wavelengths. The functional and statisti-
cal models are then used to formulate a generalised least-
squares problem whose solution provides estimates of the
background concentration level and other model parameters,
including the path-integrated concentration level of the target
species in the plume. Results have been presented for field
measurements made for six elevation angles using a variant
of the generalised least-squares approach in which the off-
set parameters « and B in the functional model are set to
fixed values. From an analysis of the measured data recorded
beyond the plume the results show reasonable consistency
between the statistical models for the noise and between the
estimates of the background concentration level correspond-
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Table 2. For each elevation angle 6 (column 1), estimates (&g, By, bg) provided by the two-step LLS approach (LLS, columns 2—4), estimate
bof b provided’\by the GLS approach with « = «q and 8 = B for data with indices Ip = {me = 100, ..., mggyg = 500} (GLS{, column 5),
and estimates (b, ap) of (b, ap) provided by the GLS approach with « = oy and B = B for data with indices Iy U I with Iy = {mow = 30,

..., mg =50} (GLS3, columns 6-7).

LLS GLS; GLS;
0° ag/mV  Bo/mV  by/ppmv E/ppmv E/ppmv ap/ppmv km
3.7 7716  7.645 1.822 2.020 2.440 —0.0002
4.7 7.710  7.698 2.070 2.194 1.870 0.1460
5.7 7.036  6.987 2.117 2.043 1.866 0.1328
6.7 7.190  7.163 2.596 2.118 1.742 0.1824
7.7 7.317 7.198 1.546 1.911 2222 0.0384
9.7 7.529 7.238 1.818 2.028 2.188 0.0273

ing to the different elevation angles. However, the estimates
of the background concentration level are influenced by the
inclusion of measured data before the plume.

The paper describes on-going work on the analysis of the
measured data provided by NPL’s DIAL system. In future
publications, issues associated with the results presented in
this paper will be addressed, and further aspects of the anal-
ysis will be described, including the following:

1. The approach relies on the availability of knowledge
about the location of the plume, which is then used as
the basis for excluding data that can be expected to be
inconsistent with the functional and statistical models
used in the analysis. There is benefit in trying to re-
fine and improve that knowledge to obtain a short win-
dow containing the plume and to increase the amount
of data available to estimate the background concentra-
tion level. Similar developments could also be used to
identify the presence of an unexpected plume.

2. The presented results have not included an assessment
of the quality of the estimate of the background con-
centration level in the form of a statement of uncer-
tainty, which is a necessary part of the quantification
of the background concentration level. The assessment
will need to consider not only the influence of noise in
the recorded signals, which has been characterised using
a particular statistical model, but also the uncertainty
associated with that model, which has been estimated
from an analysis of the measured data.

3. The presented results suggest that the statistical model
obtained to characterise the noise in the recorded signals
after the plume may provide only a partial description of
the noise before the plume, in the sense that it captures
the correlation structure of the noise but not its magni-
tude. A complete description of the noise is necessary if
the part of the signals before the plume are to be used to
obtain a reliable estimate of the background concentra-
tion level supported by an associated uncertainty.

www.atmos-meas-tech.net/9/4879/2016/

4. The analysis has been applied separately and indepen-
dently for each elevation angle 6. Making an assump-
tion about the dependence of the background concen-
tration level on 6 — for example, that it is a constant or
slowly varying function of 8 — would allow the mea-
sured data for the different elevation angles to be aggre-
gated and analysed together.

5. Additional experimental data — for example, direct mea-
surement of the background concentration level un-
dertaken independently, such as in situations where a
plume is known not to exist — would assist in the valida-
tion of the results of the analysis.

6 Data availability

The measured data used in this work are not publically avail-
able. The data are part of a field measurement undertaken us-
ing NPL’s DIAL system to quantify the concentration level
of methane in a plume produced by a methane source, and as
such they are commercially sensitive. The data are used here
to demonstrate and compare the described methods for the
estimation of the background concentration level of methane
in the proximity of the source.
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