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Abstract 

When an hypothesized peer effect (also termed social influence or contagion) 
is believed to act between units (e.g., hospitals) above the level at which data 
is observed (e.g., patients), a network autocorrelation model may be embedded 
within a hierarchical data structure thereby formulating the peer effect as a depend-
ency between latent variables. In such a situation, a patient’s own hospital can be 
thought of as a mediator between the effects of peer hospitals and their outcome. 
However, as in mediation analyses, there may be interest in allowing the effects of peer 
units to directly impact patients of other units. To accommodate these possibilities, 
we develop two hierarchical network autocorrelation models that allow for direct 
and indirect peer effects between hospitals when modeling individual outcomes 
of the patients cared for at the hospitals. A Bayesian approach is used for model 
estimation while a simulation study assesses the performance of the models and sen-
sitivity of results to different prior distributions. We construct a United States New 
England region patient-sharing hospital network and apply newly developed Bayes-
ian hierarchical models to study the diffusion of robotic surgery and hospital peer 
effects in patient outcomes using a cohort of United States Medicare beneficiaries 
in 2016 and 2017. The comparative fit of models to the data is assessed using Deviance 
information criteria tailored to hierarchical models that include peer effects as latent 
variables.

Keywords:  Bayesian inference, Direct and indirect peer effects, Diffusion of robotic 
surgery, Hierarchical network autocorrelation model

Introduction
The network autocorrelation model (NAM) involves the study of relationships 
among social units and their interdependent behaviors (O’Malley and Marsden 
2008). For instance, as described in Doreian (1980) and Friedkin (1990), a classic lin-
ear NAM assuming that a peer effect acts on the outcomes themselves is specified as: 
Y = ρWY + Xβ + ε , ε ∼ N 0, σ 2I  , where Y is a vector of outcomes, W is a matrix 
whose elements represent social ties between actors, X is a matrix of covariates, ε is the 
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error term and ρ quantifies the direct peer effect between subjects. Doreian (1980) also 
describes an alternative model in which the error term rather than the outcome variable 
is interdependent: Y = Xβ + ε , with ε = ρW ε + ϑ . This model is also well known as a 
simultaneously autoregressive (SAR) model. Furthermore, Friedkin (1990) introduces a 
model including both interdependent exogenous and endogenous forms of social influ-
ence: Y = ρ1W1Y + ρ2W2Z + Xβ + ε , where Z is a column vector for an exogenous 
variable. However, in the current literature on social network analysis, none of these 
models examined the interdependence among the actors when they are at a higher level 
in a hierarchical data structure than the units on which observations are made. Such 
a scenario may arise in a study of peer effects among hospitals in which the goal is to 
determine whether patient outcomes are directly impacted by peer hospitals. Meet-
ing such a goal is important as knowing whether a hospital’s adoption of a technology 
impacts the outcomes of a greater population of patients than just their own patients 
is important for policy-makers to know in order to make decisions regarding the pri-
ority of different incentive programs aiming to improve the quality of patient care and 
outcomes.

In Chen and O’Malley (2024), we delved into the research conducted by Dong and 
Harris (2015) on hierarchical spatial autoregressive models (HSAR) that account for 
hierarchical spatial data structures involving geographic units. Compared to network 
data, spatial data typically has a simpler typology in which distances between points 
or areas are compliant with the triangle inequality. Additionally, in this framework, the 
peers of geographic units can only exert indirect influence on individuals in the focal 
geographic unit through spatial connections at the geographic unit level as opposed to 
directly impacting individuals in the focal geographic unit.

In this paper, we first develop the basic hierarchical network autocorrelation model 
by adapting the HSAR in Dong and Harris (2015) to social network data assuming the 
peer effects of actors (e.g., hospitals) higher in the hierarchical structure than the level at 
which observations are made (e.g., patients). Second, we develop a novel extended hier-
archical network autocorrelation model that includes an extra parameter to allow direct 
inter-level influence of hospitals on patients of other hospitals. This extended model 
relaxes the “no direct effect” restriction of the basic HSAR model in which peer hospitals 
may indirectly impact the patients from the focal hospital through their impact on the 
focal hospital (i.e., an indirect effect of peer hospitals) but does not allow peer hospitals 
to directly impact patients of the focal hospital. The basic HSAR model can be consid-
ered a special case of the extended model in which direct impact is not allowed. We 
study the mean and variance of the observation-level outcomes as a function of these 
two network autocorrelation parameters to gain insights into the mechanisms that they 
represent. The adaptation of HSAR to social network data has not been studied in the 
literature to date while the extension of the model to allow for direct (across-level spillo-
ver) effects is an entirely new topic.

Due to the complexity of the hierarchical network structure, we complete a Bayesian 
specification of the model and use Bayesian computational methods to fit each of our 
hierarchical network autocorrelation models. We perform a series of simulation stud-
ies to quantify the properties and demonstrate the performance of Bayesian posterior 
median estimators of the model parameters including the autocorrelation parameters 
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under different prior distributions; the sensitivity of posterior inferences to the prior dis-
tribution assumed for the focal peer effect parameter ρ is of particular interest. To alle-
viate concerns with commonly-used uniform priors for ρ , we develop a new prior that 
imposes uniformity on a natural transformation of ρ.

Our study has three main methodological contributions. First, we develop two hierar-
chical network autocorrelation models assuming the peer effects of actors operate at a 
higher level of the model than the observation level. Further, we allow for direct and indi-
rect across-level peer effects of actors. Third, to explore and interpret the peer effects, 
we assess the functional dependence of the marginal mean and variance of the outcomes 
on the network parameters, density and covariates, compare the two models in terms 
of model fit and results for the robotic surgery application, develop novel priors for the 
model parameters, including for a transformed uniform prior distribution for ρ designed 
to be both a non-informative prior but also to aid model estimation, and explore the 
sensitivity of posterior inferences to the prior distribution for ρ . This paper extends our 
paper (Chen and O’Malley 2024) published in the Proceedings of the Complex Networks 
2023 Conference. We further explore the impact of higher level covariates of both the 
focal actor and the peer actors on observation level outcomes in section "Notation and 
models", thereby extending our models to inter-level spillover effect models; demon-
strate our Bayesian estimation approach in greater detail with the development and deri-
vation of prior distributions for the model parameters and the corresponding posterior 
distributions in section "Bayesian hierarchical network autocorrelation model and esti-
mation"; assess the performance of our Bayesian estimation approach using a weighted 
network whose distribution of edge weights is matched to that in our empirical robotic 
surgery example using simulations and compare the ensuing findings to those under the 
binary-valued network in section "Simulation study"; and describe the construction of 
the patient-sharing hospital network used in the robotic surgery example in section "The 
impact on patient quality of hospitals’ adoption of robotic surgery".

Our motivating example is an observational study in which the objective is to under-
stand the full impact of the adoption of robotic surgery on the time to discharge from 
hospital of patients undergoing prostatectomy surgery. Robotic surgery, as a robotically-
assisted and minimally-invasive procedure, is commonly used in prostatectomy for pros-
tate cancer and also assists in the treatment of lung cancer, kidney cancer and colorectal 
cancer (Lee 2009; Chandra et al. 2015; Mirnezami et al. 2010; Novellis et al. 2017). Sev-
eral advantages of robotic surgery such as shorter hospital stays, less pain, and lower risk 
of infection have previously been discussed (Barbash and Glied 2010). Using the 2016 
United States (US) fee-for-service Medicare claims data, we construct a US New Eng-
land region hospital network for patients with prostate, lung, kidney and colorectal can-
cer. We estimate the peer effects among hospitals on prostatectomy time to discharge 
post-surgery of US Medicare patients in 2017 to allow a lagged peer effect of network 
interdependency and to partially protect inferences against reverse causality.

Although the development of two models for analyzing peer effects when the data are 
hierarchically-structured is the methodological focus and primary contribution of this 
paper, the findings from applying our models to the robotic surgery network and hospi-
tal attribute data will potentially assist policy-makers wanting to provide incentives to 
hospitals to adopt new medical technologies that are beneficial to patients. In particular, 
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the novel extended hierarchical network autocorrelation model will provide insights into 
whether a hospital’s adoption of technologies generally benefits patients in a local area (e.g., 
by improving general standards of surgical quality including strengthening infection control 
measures in emergency rooms) such that patients who receive surgeries at other hospitals 
also benefit.

Notation and models
Throughout this paper, the term “ego” refers to the focal actor being studied while the term 
“alter” refers to the actors connected to the ego in a network, also referred to as “peers”.

Hierarchical network autocorrelation model

In our adaptation of the HSAR in Dong and Harris (2015), we first assume that peer-effects 
only act on individual subjects generating observations through their impact on the cluster-
effects of the units (network actors) in which the individuals are grouped, such as in the 
following model:

where ε ∼ N
(

0, σ 2IN
)

 , τ ∼ N
(

0,ω2Ig
)

 , Y is a vector of length N containing the values 
of a response variable for N observations, Z is a N × k matrix for k observation level 
covariates whose first column is a vector of 1s corresponding to the intercept parameter, 
X is a g × l matrix for l cluster level covariates, δ is a vector of length g representing the 
random effect of g network actors and B is a N × g matrix linking the random effect δ 
back to Y. In addition, ε and τ represent the errors at the observational and cluster levels 
and W is a g × g matrix quantifying the relationships between the actors in the associ-
ated network. The ij th entry of W, Wij , represents the relationship of actor i to actor j.

The matrix W is constrained to be a non-negative row-normalized matrix, reflecting the 
non-existence of negative influences and that relative exposures are the conduit through 
which social influence transmits. The diagonal of W consists of zeros as self-ties are not 
permitted in the network. The focal parameter ρ is the peer effect corresponding to the 
indirect effect of alters on the outcomes of individuals in the role of the ego.

Letting A = Ig − ρW  , to ensure A is non-singular and its determinant, |A| �= 0 , the 
range of ρ needs to be restricted. Following Anselin (1988) and LeSage (2000), we restrict 
the parameter space of ρ to (1/�min, 1/�max) , where �max and �min are the maximum and 
minimum eigenvalues of the row-normalized W. For a row-normalized W, 1/�max = 1 
and 1/�min ≤ −1 (Stewart 2009) with the value of 1/�min becoming more negative with 
increasing network density. Network density equals M/(g(g − 1)) for directed networks 
and 2M/(g(g − 1)) for undirected networks, where M is the observed number of ties and 
g(g − 1) is the number of possible directed ties.

We compute the marginal mean and variance of Y to explore and interpret the peer effect. 
If A is non-singular, the marginal mean and variance satisfy:

(1)
Y = Zθ + Bδ + ε

δ = ρW δ + Xβ + τ

E(Y ) = Zθ + BA−1Xβ

var(Y ) = BA−1ω2IgA
−1T BT + σ 2IN
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Applying the Neumann series, when the norm |ρW | < 1 it follows that:

The above demonstrates that both the marginal mean and variance of the model depend 
on ρ and that A−1 is an infinite-order polynomial function of ρ and W.

Extended hierarchical network autocorrelation model

A restriction on the model in (1) is that conditional on δi and δj there is no direct depend-
ence between the vector of observations Yi = (Y1i, . . . ,Ymi)

T and Yj = (Y1j , . . . ,Ynj)
T , 

where n and m denote the number of patients within hospital i and j respectively, for any 
i  = j . However, in practice, hospitals may directly influence the patients of other hos-
pitals. For example, if the patients of peer hospitals benefit from improved quality of 
care at their hospitals, they may incentivise better health behaviors and thus outcomes 
in the patients of the ego hospital. In general, a peer-hospital may impact patients indi-
rectly via hospital-to-hospital transmission of peer influence that filters down to patients 
or through a second mechanism that acts directly from a peer hospital through their 
own patients to the ego hospital’s patients. To allow for the possibility of a direct peer-
hospital to ego-hospital-patient effect, we introduce an extended hierarchical network 
autocorrelation model with an extra parameter quantifying direct across-level influence 
of hospitals on patients of other hospitals:

where ε ∼ N
(

0, σ 2IN
)

 , τ ∼ N
(

0,ω2Ig
)

 , and α is an unrestricted parameter that quan-
tifies the direct network effect of alters on the outcome of individuals from the ego. 
Intuitively, the parameters ρ and α have an analogy to indirect and direct effects in a 
mediation analysis, although they are not necessarily on the same scale. Under (2), ρ 
is the indirect effect of peer hospital on the outcomes of patients of the ego hospital 
through their impact on that hospital’s performance while α is the direct effect that acts 
independently of the ego hospital (see Fig. 1).

The matrices W1 and W2 in (2) could represent different types of relationships between 
actors; e.g., W1 could be built on geographic distances between hospitals while W2 could 
be built on patient-sharing information between hospitals. With only a single source of 
network relationship information, in our study we set W1 = W2 = W  . Model (1) is the 
special case of model (2) in which α = 0.

A−1 = Ig + (ρW )+ (ρW )2 + · · · + (ρW )N + · · · =
∞
∑

h=0

(ρW )h

(2)
Y = Zθ + B[δ + αW1δ]+ ε

δ = ρW2δ + Xβ + τ

Fig. 1  Directed acyclic graph for direct and indirect peer effect
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Letting G = B
[

Ig + αW
]

 , we compute the marginal mean and variance of Y under (2):

To help interpret α and ρ and differentiate the behavior and properties of the model in 
(2) from those of the model in (1), as now described in section "Illustration of marginal 
mean and variance of extended model with simulated data" we numerically evaluated 
these expressions across a range of values of α and ρ and visualized the results.

Illustration of marginal mean and variance of extended model with simulated data

To gain insight into the effects captured by ρ and α under the model in (2), we simu-
lated 100 datasets under this model assuming a network containing 50 hospitals and 30 
individuals per hospital (model (1) is a special case of model (2) where α = 0 making it 
sufficient to only consider model (2) in the simulation). To determine how the marginal 
mean and variance of the model change with increasing ρ , we plot the average of the 
mean of the elements of E(Y) and the average of the diagonal elements of var(Y ) over 
100 drawn values on the vertical-axis against ρ on the horizontal-axis (Fig. 2a and b, not-
ing that values of ρ > 0.7 are unlikely in practice). Similarly, we evaluate the relationship 
between α and the marginal mean and variance of the model (Fig. 2c and d). Finally, we 
investigate the association between the network density d and the marginal mean and 
variance of the model (Fig. 2e and f ).

Figure  2a and b shows that the magnitude of the marginal average mean and vari-
ance of Y increases when the value of ρ increases and accelerates exponentially upwards 

E(Y ) = Zθ + GA−1Xβ

var(Y ) = GA−1ω2IgA
−1T GT + σ 2IN
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Fig. 2  The marginal mean and variance of the model along with the change of ρ , α and network density. 
Note: The vertical dashed line at ρ = 0.7 denotes an upper bound peer-effects are unlikely to exceed in 
practice
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when ρ approaches its upper bound of 1. When ρ approaches 1, the determinant of A 
approaches zero and the entries of A−1 become increasingly large leading to extreme 
exponential behavior. Similar results are found for negative values of ρ . Figure 2c reveals 
a linear decreasing association between the marginal average mean of Y and α while 
Fig. 2d shows that the corresponding marginal variance increases with α . From Fig. 2e 
and f, we find that the marginal mean and variance display volatile behavior when the 
network density is smaller than 0.1. When the network density is small, e.g., d < 0.1 , 
the simulated network often contains isolated nodes. To overcome computational issues 
in matrix row-normalization that occur with isolated nodes, our specification of W 
assumes that isolates are equally influenced by all other actors. Accordingly, the volatile 
behavior of the marginal mean and variance of Y as density approaches 0 is due to the 
rapid escalation in the prevalence of isolates.

A special case of our models is the spillover effects model in which an individual’s out-
come is influenced by their alters’ covariates. Therefore, to illustrate how the ego and 
alter covariates associate with the outcome, we compute and plot the change in the 
expected value of the mean of E

(

Y.j
)

 for subject j under (i) a 1 unit increase in a covariate 
Xj (i.e., the change Xj → Xj + 1 ) and (ii) a 1 unit increase in the mean of subject j’s alters 
covariates X−j (i.e., the change X−j → X−j + 1 ). The corresponding changes of the jth 
ego’s mean are E

(

Y.j | Xj + 1
)

− E
(

Y.j | Xj

)

 and E
(

Y.j | X−j + 1
)

− E
(

Y.j | X−j

)

 , respec-
tively. Analogous simulations under the two scenarios were conducted with respect to ρ 
and α (see Fig. 3a and b for ρ and α , respectively, when Xj → Xj + 1 and likewise Fig. 3c 
and d when X−j → X−j + 1 ). For illustration we consider the case when j = 1 , the indi-
viduals within hospital 1.

Figure 3a shows that the average value of E(Y.1) due to a 1 unit increase in the ego’s 
covariate (i.e., X1 → X1 + 1 ) increases with increasing values of ρ and resembles 
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Fig. 3  The change of the marginal mean of the model following a 1 unit increase of ego’s and alters’ 
covariates across a range of values of ρ and α . Note: The vertical dashed line at ρ = 0.7 denotes an upper 
bound peer-effects are unlikely to exceed in practice
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an exponential trend as ρ approaches its upper bound. Similarly, in Fig.  3c, the aver-
age values of the mean of E(Y.1) due to a 1 unit change in the weighted average of the 
alters’ covariates (i.e., X−1 → X−1 + 1 ) increases with increasing values of ρ and follows 
an exponential trend as ρ approaches its upper boundary. Although these two figures 
depict similar exponential behavior, the magnitude of the changes differ as evinced by 
the differing scales on the vertical axes. Exponential behavior occurs because the deter-
minant of A is close to zero and the elements of A−1 become increasingly large when ρ 
approaches its upper bound. Additionally, in Fig. 3b and d, we find that the change of 
average values of mean of E(Y.1) due to the ego’s own covariate values and that of their 
peers increases are linear with increasing α but differ in the scale of the changes.

Bayesian hierarchical network autocorrelation model and estimation
We adapt estimation approaches for linear NAMs to our hierarchical NAMs. A simula-
tion study of Dittrich et al. (2017) shows that Bayesian modeling and estimation outper-
forms maximum likelihood estimation with respect to bias and the level and width of 
interval estimators (termed credible intervals in Bayesian statistics). To account for the 
complexity of the hierarchical network structure, in our analysis we use a full Bayesian 
specification of the model and Bayesian computational methods.

A Bayesian analysis relies on specification of a prior distribution, a likelihood function, 
and the derivation of the posterior distribution. The prior distribution, p(ϕ) contains the 
prior information or beliefs for the model parameters ϕ . The likelihood function f (y | ϕ) 
summarizes the information in the data. By Bayes rule, the posterior distribution sat-
isfies: p(ϕ | y) ∝ p(y | ϕ) p(ϕ) . Bayesian point and interval estimates may be derived 
from the posterior distribution using direct Monte Carlo (or closed-form) probability 
evaluations.

Prior distributions for Bayesian modelling

Despite the importance of prior distributions in Bayesian analysis, there has been little 
study of the properties of different prior distributions for ρ within the hierarchical net-
work autocorrelation model framework.

We have an interest in developing non-informative priors for ρ that enable stable 
computation of statistical inferences by pulling estimators away from boundary values 
while introducing minimal information into the analysis. As discussed in Chen and 
O’Malley (2024), we propose 3 prior distributions for ρ with different ranges and shapes 
to investigate the sensitivity of the posterior distribution to the prior for ρ . These pri-
ors include: (1) A uniform prior p(ρ) ∝ 1 over the range 1/�min < ρ < 1/�max (as previ-
ously discussed, 1/�max = 1 and 1/�min become much smaller than −1 when network 
density increases). (2) A uniform prior for ρ with support (−1, 1) , a symmetric and more 
restricted parameter space that matches that of correlation coefficients such as the Pear-
son and Spearman’s rank correlation coefficients. (3) As discussed in Chen and O’Malley 
(2024), an improper uniform prior on a parameter equal to the following transformation 
of ρ to the entire real line:

g(ρ) = log

(

1/�max − ρ

ρ − 1/�min

)

= log

(

1− ρ�max

ρ�min − 1

�min

�max

)
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The above expression corresponds to the generalized logit function. Therefore, the 
implied prior for ρ is given by:

having positive support for ρ ∈ (1/�min, 1/�max) . Our transformed uniform prior emu-
lates Jeffery’s prior applied to classic linear NAMs (Dittrich et al. 2017).

In addition, we consider several informative priors including the normal prior for 
ρ given by p(ρ) ∼ N

(

0.36, 0.72
)

 used in Dittrich et  al. (2017) in the context of lin-
ear NAMs, which we refer to as the normal informative prior. We evaluate the per-
formance of this normal prior in our simulation experiment along with other priors 
above. In addition, because positive values of ρ are more common than negative val-
ues of ρ in practice, we also analyze the performance of the positive uniform (0,  1) 
prior for ρ in our simulation study in section "Simulation study" when the true value 
of ρ is non-negative.

For further illustration and comparisons, we use the network constructed in our 
motivating robotic surgery example with 1/�max = 1 and 1/�min = −1.660 to plot the 
density function of our proposed three priors for ρ . As shown in Fig.  4, the trans-
formed uniform prior is “U-shaped” and has more prior mass near to its boundary 
values {1/�min, 1/�max} than under the two uniform priors of ρ.

To complete a Bayesian specification of the model, we assign improper flat priors 
on σ and ω ; i.e., 

(

σ 2,ω2
)

∝ 1/(σω) . Alternatively, a half Cauchy prior can be placed 
on ω to take advantage of its desirable properties for hierarchical models (Gelman 
2006). Because the development of a half Cauchy prior for ω in relation to NAMs 
has not been discussed in the literature, we present the derivation in the “Appendix”. 
The results using the half Cauchy prior are similar to those for the uniform prior on 
ω in our analysis (see simulation results in section "Simulation study"). We specify 
the flat prior p(θ ,β) ∝ 1 for (θ ,β) , although indistinguishable results are found from 
assigning normal priors centered at 0 with large variances (“non-informative normal 

p(ρ) ∝ 1

(1/�max − ρ)(ρ − 1/�min)
= �max�min

(1− ρ�max)(ρ�min − 1)

Fig. 4  Prior distributions of ρ . Note: Uniform prior 1 is p(ρ) ∝ 1 over the range 1/�min < ρ < 1/�max while 
uniform prior 2 is p(ρ) ∝ 1 over the range −1 < ρ < 1
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priors”) for θ and β . In addition, for the model in (2), we assign a flat prior p(α) ∝ 1 to 
α with no restriction on its range. Because α is structurally analogous to the regres-
sion coefficients β and θ , the same non-informative priors that are used for β and θ 
may also be used for α . For instance, one may also consider using a normal distribu-
tion with a large variance as a prior for α.

Bayesian modelling

Under model (1), the likelihood function is given by:

and the conditional prior distribution of δ as:

Due to the complexity of the model and the large number of parameters, the joint pos-
terior distribution is non-standard and direct sampling from it is intractable. Therefore, 
we use a hybrid Gibbs-sampling Metropolis-Hastings algorithm that sequentially draws 
from the conditional posterior distribution of each parameter given the data and current 
values of all other parameters (Geman and Geman 1984).

As seen in the probability distributions functions presented below, due to conjugacy 
the conditional posterior distributions for each of σ 2,ω2,β , θ and δ have well-known 
closed-forms:

making sampling from them straightforward. In contrast, the conditional posterior of ρ:

does not have a form conducive for direct sampling. Therefore, we approximate (3) and 
use a Metropolis Hastings algorithm with an independent candidate generating function 
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(
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that functions like accept-reject sampling and when feasible allows more efficient explo-
ration of the posterior distribution than a random-walk candidate generating distri-
bution (Dittrich et al. 2017). As demonstrated in the derivation in the “Appendix”, the 
resulting candidate generating distribution of ρ when p(ρ) ∝ 1 , 1/�min < ρ < 1/�max , is 
the truncated normal distribution (TN):

where �i for i = 1, . . . , g are the eigenvalues of W. Under p(ρ) ∝ 1 , −1 < ρ < 1 , the 
implied candidate generating distribution of ρ is TN (µ∗,V ∗) with support −1 < ρ < 1 . 
For the transformed uniform prior of ρ , we use the same candidate generating distribu-
tion in Eq. (4) to sample ρ.

We use the same prior distributions and MCMC sampling procedure as for the model 
in (1) to fully specify and fit the model in (2). The conditional posterior of α is then:

where K = Y − Zθ − Bδ . The derivation of the conditional posteriors of all other 
parameters of the model in (2) are presented in the “Appendix”.

Simulation study
As discussed in Chen and O’Malley (2024), we conducted a simulation study involving 
1,500 hypothetical patients receiving care from 50 hospitals (30 patients per hospital) in 
a hospital network to evaluate the performance of the models in (1) and (2) under dif-
ferent priors for ρ . Specifically, we generated undirected binary-valued network matri-
ces representing whether peer hospitals share patients or not with network density (d) 
= 0.2, 0.4, 0.6, 0.8 using the R package “sna”. In each case, the resulting adjacency matrix 
was row-normalized to form the matrix W. We considered the following values of 
ρ = −0.5,−0.2, 0, 0.2, 0.5 and α = −2, 2 . For each model, three patient-level covariates 
plus an intercept and three hospital-level covariates were included with the elements of 
the matrices Z and X consisting of random draws from the standard normal distribu-
tion. The true values of σ 2 and ω2 were set to 1. For each scenario, we generated 500 
simulated datasets and for each simulation dataset drew 20,000–50,000 samples from 
the joint posterior distribution. We used the posterior median as the Bayesian point esti-
mator because the conditional posterior distributions of ρ tends to be skewed, in which 
case the posterior median is often a better measure of the center of the distribution than 
the posterior mean (Dittrich et al. 2017). In our study, the posterior distributions of ρ 
and α are close to symmetric resulting in the posterior mean, median and mode estima-
tors of ρ and α yielding similar results. The bias of the posterior median estimator of 
ρ was computed by evaluating biasρ = 1

500

∑500
s=1

(

ρ̂s − ρtrue
)

 , where s is the simulation 

(4)

p
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counter, ρ̂s is the posterior median of ρ in simulated dataset s, and ρtrue is the value of ρ 
used in generating each of the 500 simulated datasets. We similarly calculated the fre-
quentist mean squared error (MSE) of ρ̂s as MSEρ = 1

500

∑500
s=1

(

ρ̂s − ρtrue
)2 . Finally, we 

computed the coverage rate of the 95% equal-tailed credible interval for ρ by evaluating 
coverageρ = 1

500

∑500
s=1 I

(

ρtrue ∈ CIρs
)

 , where I(e) is the indicator function equal to 1 if 
the event e is true and 0 otherwise, and CIρs = (qρ,s,0.025, qρ,s,0.975) is the equal-tailed 95% 
credible interval of ρ in simulated dataset s in which qρ,s,1−κ is the 1− κ quantile of the 
posterior distribution for ρ in simulated dataset s. We estimate CIρs non-parametrically 
by extracting the 2.5% and 97.5% smallest to largest ordered values in the retained sam-
ple of 500 posterior draws of ρ in the analysis of dataset s. We used the same approach to 
compute the bias, MSE and coverage rate of α.

The simulations reveal that our Bayesian estimation approach performs well with 
respect to bias, MSE and the coverage rate of the 95% equal-tailed credible intervals of 
ρ and α (for detailed results, see Tables S1 to S6 in the Supplementary document of the 
manuscript). The bias of ρ and α in our hierarchical models increase with increasing net-
work density, consistent with findings regarding bias of ρ for linear NAMs reported and 
discussed in Mizruchi and Neuman (2008) and Dittrich et al. (2017). By comparing the 
performance of the three different priors for ρ , we found that the range of the prior has 
more impact than its shape on the estimated values. In particular, due to the asymmet-
ric support of ρ , 1/�min < ρ < 1/�max , the full-range uniform prior for ρ yields a pos-
terior median estimator of ρ exhibiting an asymmetric bias pattern either side of 0. In 
contrast, bias is much more symmetric around 0 under the uniform (−1, 1) prior for ρ , 
especially when network density is large. For example, for model (1) with the uniform 
(1/�min, 1/�max) prior for ρ , when d = 0.8 , bias = 0.025 if ρ = −0.5 and bias = −0.298 
if ρ = 0.5 . Under the uniform (−1, 1) prior for ρ , when d = 0.8 and ρ = −0.5 we obtain 
bias = 0.241 while if ρ = 0.5 then bias = −0.274 . These results imply that as network 
density increases in a binary-valued network, it becomes more challenging for the model 
to identify ρ . Intuitively, as density increases the information in the data about ρ declines 
due to the vast number of connections in the binary valued network making the varia-
tion across the actors in the extent to which they are more or less connected with other 
actors much lower than when density is low. It is under this high density scenario that 
slight differences in the non-informative prior specification for ρ nontrivially impact the 
resulting posterior distribution.

We also conducted a simulation study to evaluate the performance of model (1) and 
(2) for the motivating example in section "The impact on patient quality of hospitals’ 
adoption of robotic surgery" by building an undirected weighted network whose net-
work density and distribution of edge weights are similar to the network in the moti-
vating example (45 hospitals and 1,306 patients with network density = 0.779 and the 
mean and standard deviation of the weighted edge ≈ 226 and 664, respectively). In the 
simulated data sets, we set the number of hospitals to 50 with 30 individuals per hospital 
(the total number of individuals, N = 1,500 ), and the network density to 0.8. We then 
generated edge-weights from the Gamma(0.1, 2000) distribution. Other settings were 
maintained as for the simulations in Chen and O’Malley (2024). The results for model 
(1) and (2) under the various priors described in section "Prior distributions for Bayesian 
modelling" are shown in Tables 1, 2, 3 and 4, respectively.
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Compared to the binary-valued network, we observed smaller bias and MSE of the 
estimators of ρ and α under the weighted network. In addition, we found bias is more 
symmetric around 0 under the uniform (1/�min, 1/�max) prior (because 1/�min is close to 
−1 , some results are identical for the Unif 1 and Unif 2 priors). For example, in Table 3, 
using the uniform prior p(ρ) ∝ 1 over 1/�min < ρ < 1/�max , the bias of ρ is −0.001 
when ρ = −0.2 and is −0.013 when ρ = 0.2 , which emulate the results obtained when 

Table 1  Bias, mean squared error (MSE), and 95% coverage rates (Rate) of ρ using uniform priors 
(Unif 1 for 1/�min < ρ < 1/�max and Unif 2 for −1 < ρ < 1 ) and the transformed uniform prior (T Unif ) 
for model (1)

For each value of ρ , the results represent the bias, MSE and Rate of ρ . The results are rounded to 3 decimal places

ρ = −0.2 ρ = 0 ρ = 0.2

Unif 1 Unif 2 T Unif Unif 1 Unif 2 T Unif Unif 1 Unif 2 T Unif

ρ

 Bias −0.002 −0.002 −0.003 −0.007 −0.007 −0.004 −0.012 −0.012 −0.004

 MSE 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012

 Rate 0.972 0.972 0.970 0.968 0.968 0.966 0.962 0.962 0.962

Table 2  Bias, mean squared error (MSE), and 95% coverage rates (Rate) of ρ using uniform (0, 1) prior 
(Pos Unif ), N(0.36, 0.72) prior (Norm) for ρ and half Cauchy prior (HC) for ω for model (1)

For each value of ρ , the results represent the bias, MSE and Rate of ρ . For the half Cauchy scenario, we use uniform prior 
1/�min < ρ < 1/�max for ρ . The results are rounded to 3 decimal places

ρ = 0 ρ = 0.2 ρ = 0.5

Pos Unif Norm HC Pos Unif Norm HC Pos Unif Norm HC

ρ

 Bias 0.089 0.006 0.002 0.017 −0.005 −0.028 −0.005 −0.017 −0.061

 MSE 0.011 0.012 0.040 0.009 0.012 0.042 0.011 0.011 0.041

 Rate 0 0.952 0.964 0.978 0.956 0.954 0.954 0.946 0.946

Table 3  Bias, mean squared error (MSE), and 95% coverage rates (Rate) of ρ using uniform priors 
(Unif 1 for 1/�min < ρ < 1/�max and Unif 2 for −1 < ρ < 1 ) and transformed uniform prior (T Unif ) and 
assume an improper flat prior for α in model (2)

For each value of ρ in the first row, the results represent the bias, MSE and Rate of ρ and α . The results are rounded to 3 
decimal places

ρ = −0.2 ρ = 0 ρ = 0.2

Unif 1 Unif 2 T Unif Unif 1 Unif 2 T Unif Unif 1 Unif 2 T Unif

ρ

 Bias −0.001 −0.003 −0.001 −0.007 −0.006 −0.002 −0.013 −0.013 −0.002

 MSE 0.017 0.017 0.018 0.018 0.018 0.019 0.018 0.018 0.019

 Rate 0.962 0.968 0.958 0.956 0.956 0.95 0.946 0.946 0.944

α

 Bias −0.006 −0.004 −0.006 −0.006 −0.007 −0.006 −0.007 −0.007 −0.007

 MSE 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

 Rate 0.936 0.924 0.936 0.94 0.934 0.94 0.936 0.936 0.934
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p(ρ) ∝ 1 over −1 < ρ < 1 . This is because: (1) W based on the weighted edge network 
may contain more information about relationships between the actors in a network than 
the binary-valued network; (2) Under these simulation settings, 1/�min is close to −1 and 
1/�max = 1 ; therefore, the interval support for the uniform prior (1/�min, 1/�max) and 
the transformed uniform prior is more symmetric.

The results from using the normal informative prior N (0.36, 0.72) are very similar to 
those under the original three priors of ρ described earlier while the results from using 
the half-Cauchy prior for ω are very similar to those under the uniform prior for ω . 
Because 0 is at the boundary of the parameter space of (0, 1), as expected the positive 
uniform prior U(0, 1) yielded a large bias and zero coverage rate when ρ = 0 under both 
model (1) and (2).

The impact on patient quality of hospitals’ adoption of robotic surgery
Robotic surgery, with its advantages of shorter hospital stays, less pain and faster recov-
ery, has been widely used on patients suffering from many health conditions, particu-
larly in the cure of prostate cancer, lung cancer, kidney cancer and colorectal cancer. In 
our study, we are interested in whether the extent to which peer hospital adoption of 
robotic surgery influences the time from when a patient undergoes prostatectomy sur-
gery until they are discharged at a hospital. We first construct a “New England region” of 
the six states in the Northeastern US (Maine, New Hampshire, Vermont, Massachusetts, 
Connecticut, and Rhode Island) patient sharing hospital network. As a substantial sub-
region of the US, the New England region provides an adequate sample size for our anal-
ysis. Consequently, analyses focused on the New England region are considered to be 
based on a sufficient magnitude and richness of data to be informative and have a realis-
tic chance of detecting effects of clinical significance. Following the approach introduced 
in Moen et  al. (2016) and O’Malley et  al. (2020), for each pair of physicians we com-
pute the weighted edges between physicians by summing the geometric means of the 
number of visits the same patient made to each physician in the pair across all patients 
suffering one of these four cancer types. To clarify, let aijl and aikh denote the number 

Table 4  Bias, mean squared error (MSE), and 95% coverage rates (Rate) of ρ using the uniform 
(0, 1) prior (Pos Unif ), N(0.36, 0.72) prior (Norm) for ρ and half Cauchy prior (HC) for ω and assume an 
improper flat prior for α in model (2)

For each value of ρ in the first row, the results represent the bias, MSE and Rate of ρ and α . For the half Cauchy scenario, we 
use uniform prior 1/�min < ρ < 1/�max for ρ . The results are rounded to 3 decimal places

ρ = 0 ρ = 0.2 ρ = 0.5

Pos Unif Norm HC Pos Unif Norm HC Pos Unif Norm HC

ρ

 Bias 0.108 0.007 0.004 0.026 −0.006 −0.038 −0.023 −0.016 −0.064

 MSE 0.016 0.016 0.044 0.012 0.017 0.045 0.015 0.014 0.039

 Rate 0 0.964 0.956 0.97 0.95 0.956 0.948 0.946 0.95

α

 Bias 0.007 −0.006 0 −0.001 −0.007 0.001 0.002 0.003 −0.001

 MSE 0.003 0.003 0.003 0.004 0.003 0.003 0.004 0.004 0.003

 Rate 0.942 0.936 0.93 0.94 0.934 0.958 0.956 0.946 0.944
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of visits by patient i to physician j in hospital l and physician k in hospital h, respec-
tively. The weighted edge between physician j in hospital l and k in hospital h across n 
shared-patients can then be represented as ejlkh =

∑n
i=1

√
aijlaikh . We use the method 

introduced in Bynum et al. (2007) to assign physicians to hospitals and then compute 
weighted edges between hospitals by aggregating the physicians’ edge weights over the 
physician dyads spanning each pair of hospitals. That is, we compute the weighted edge 
between hospital l and h as Elh =

∑m
jlkh=1 ejlkh with the summation over all m pairs of 

physicians bridging hospitals l and h.
We use an example to depict the computation of weighted edges between physicians 

and aggregated weighted edges between hospitals (Fig. 5). As demonstrated above, the 
weighted edge between physicians is computed by summing the geometric means of a 
patient’s number of visits to each physician in a dyad across all patients. In the exam-
ple in Fig. 5, the weighted edge between physician A and C is 

√
2× 4 +

√
3× 6 = 7.071 

and the weighted edge between physician B and C is 
√
4 × 8+

√
5× 10 = 12.728 . 

The weighted edge between hospitals is then computed by aggregating the edges over 
the physician dyads bridging each pair of hospitals. Because 2 pairs of physicians (A, 
C and B, C) span hospitals 1 and 2, the weighted edge between hospital 1 and 2 is 
7.071+ 12.728 = 19.799 . The resulting undirected weighted hospital network matrix is 

Fig. 5  Depiction on the construction of patient sharing hospital network. Note: Nodes A, B and C represent 
physicians assigned to hospital 1 and 2, respectively. P1 to P4 represent patients shared by these physicians. 
Numbers on the ties between physicians and patients represent the number of visits by each patient to each 
physician
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row normalized to form the W used in the application of models (1) and (2) to these 
data.

We focus on a sub-group of hospitals in the network that are equipped with a robotic 
surgery system and that conducted more than 5 prostatectomies per year to study the 
association between the peer hospital adoption of robotic surgery and patients’ pros-
tatectomy time to discharge post-surgery. Medicare health insurance claims data from 
2016 is used to build the patient-sharing hospital network and evaluate hospital covari-
ates while the 2017 Medicare data is used to evaluate all other patient outcomes and 
covariates. In our analysis, we include patient’s age, disability, whether receiving a 
robotic surgery and the Charlson Comorbidity Index (Charlson et al. 1994) as covariates. 
Because most patients ( 96%) have a Charlson Comorbidity Index of 0, we converted the 
Charlson Comorbidity index to a binary variable using 0 as the threshold; i.e., patients 
with comorbidity versus patients without comorbidity. For hospital-level covariates, we 
include the number of beds, percentage of robotic prostatectomy and number of peer 
hospitals in the network. For the outcome, patient’s prostatectomy time to discharge 
post-surgery, we use a log plus 1 transformation of the data to reduce skewness. In addi-
tion, we standardize all continuous covariates to ensure estimates and operating char-
acteristics of these variables are on the same scale. The cohort contains 45 hospitals and 
1,306 patients with the network density d = 0.779 ( 1/�max = 1 and 1/�min = −1.660).

We report the posterior median estimators and 95% equal-tailed credible intervals of 
ρ , α and other parameters in Table 5. In addition, we compute the Deviance Informa-
tion Criterion (DIC) (Spiegelhalter et  al. 2002) for model comparison due to its data-
determined evaluation of the effective degrees-of-freedom of the model to penalize our 
Bayesian hierarchical models for model complexity and thus guard against over-fitting 
when comparing the extended hierarchical network autocorrelation model (model (2)) 
to its base model counterpart in which α = 0 (model (1)).

Table 5  Estimates, credible interval and DIC for model (1) and (2)

The results are for the prior p(ρ) ∝ 1 , 1/�min < ρ < 1/�max ; similar findings are observed for the other non-informative 
priors. Numbers are rounded to 3 decimal places

Predictors and Key Model 
Parameters

Estimate (95% Equal-tailed Credible Interval)

Model 1 Model 2

Intercept 0.971(0.922, 1.021) 0.973(0.921, 1.029)

Whether done by robotic surgery −0.164(−0.214,−0.114) −0.164(−0.214,−0.114)

Age 0.052(0.029, 0.076) 0.052(0.029, 0.076)

Disability 0.184(0.112, 0.256) 0.184(0.112, 0.257)

Charlson Comorbidity Index 0.145(0.046, 0.244) 0.144(0.045, 0.243)

Beds −0.015(−0.039, 0.008) −0.016(−0.045, 0.007)

Percentage of robotic prostatectomy 0.004(−0.018, 0.027) 0.006(−0.016, 0.029)

Number of peer hospitals 0.010(−0.013, 0.032) 0.007(−0.017, 0.031)

ρ −0.048(−1.164, 0.771) −0.525(−1.481, 0.804)

α NA 1.355(−2.539, 4.168)

σ 2 (residual variance) 0.127(0.117, 0.137) 0.127(0.117, 0.137)

ω2 (variance of random effects) 1.673E− 04 (3.465E−07, 1.772E−03) 2.150E− 04 (2.663E−07, 2.173E−03)

DIC 1018.878 1016.843
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Table 3 finds similar results for all parameters other than the peer effect parameters ρ 
and α between the two models. For instance, robotic surgery is associated with shorter 
hospital stays, while age, disability, and the Charlson Comorbidity index are associated 
with longer hospital stays. Comparing the two models, we observe a change in the esti-
mated value of ρ . With the inclusion of α , ρ̂ changes from −0.048 ( −1.164, 0.771) to −
0.525 ( −1.481, 0.804). Though not statistically significant (the credible interval of ρ over-
laps 0), the negative value of ρ̂ indicates that peer hospitals’ adoption of robotic surgery 
indirectly associates with shorter hospital stays of patients. The interpretation of α is 
similar to that of a coefficient at a higher level than the observation level in a standard 
hierarchical regression model and α̂ = 1.355 ( −2.539, 4.168) suggests that peer hospitals’ 
propensity to adopt robotic surgery is directly associated with longer patient hospital 
stays, although the result is far from statistically significant. The wide credible intervals 
for both ρ and α overlap 0, revealing that with a very large network density (i.e., 0.779), 
the information in the data about ρ and α is limited (much more so than if density were 
lower). Because ρ and α are not significantly different from 0, it is not surprising that the 
DICs of the two models are very close in value. The DIC of model (2) is slightly smaller 
than the DIC for model (1), suggesting that model (2) fits the data better, even after 
accounting for its increased complexity.

Discussion
In this paper, we developed two hierarchical network autocorrelation models to study 
the direct and indirect peer effects of actors at a higher level of the hierarchical data 
structure. The novel contributions include the exploration of both direct and indirect 
peer effects among higher-level actors and the impact of peer actor behavior on an 
observation-level outcome. In addition, we proposed a Bayesian approach for estimation 
and compared the performance of the resulting estimators under different prior distri-
butions for the model parameters, with particular focus on ρ , to gain insights into the 
sensitivity of the posterior distribution and associated inferences to the prior.

For model (2), we set W1 = W2 = W  because only a single source of network rela-
tionship information was available. However, W1 and W2 may be different matrices rep-
resenting different types of connections between actors. For example, a shared patient 
hospital network is representative of many other potential networks, including shared-
physician and shared-specialist networks (a hospital-hospital network based on health-
care professionals working at multiple facilities). Using a shared-physician network for 
W2 might have yielded more informative results in our robotic surgery study. This is a 
limitation of our study. Therefore, the performance of our models under different speci-
fications of W is an important topic for future research.

In this paper, we focused on models that assume peer effects act on the outcomes 
themselves. However, the peer effect could instead act on the error term. In social net-
work analysis, models with both autocorrelated outcome and autocorrelated error terms 
have also been considered (Anselin 1988; O’Malley and Marsden 2008). These consid-
erations suggest a series of additional avenues of further work (e.g., the indirect effect 
could be modeled using an autocorrelated outcome term while the direct effect could 
be modeled through an autocorrelated error term). While our focus was on continuous 
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outcomes, another direction for further research is to generalize the hierarchical and 
extended hierarchical network autocorrelation models to non-continuous outcomes 
such as binary, count and rate outcomes.

Homophily (the tendency for relationships to form between actors having similar 
attributes) may be a confounder to peer-influence. In the context of a shared patient 
network, homophily may be represented by predictors that quantify the similarity of 
hospital characteristics, in which case the associated regression coefficients capture the 
magnitude of homophily in relation to a given outcome. Because we are not modeling 
the network itself, the inferences on the coefficients of such predictors would not test 
the hypothesis that homophily is driving the formation of the network itself. Rather, 
these coefficients would test the hypothesis that patients of hospitals with more similar 
values of these predictors have more similar outcomes. An appealing extension of the 
involvement of homophily terms is to allow interaction effects between the similarity 
of hospital-level predictors (i.e., hospital-level homophily measures) and the magnitude 
of peer effects. This extension is a direction for future research in the vein of O’Malley 
et al. (2020), which considered a related term in a longitudinal linear peer-effect model. 
Although our simulation study confirmed that our models are estimable, further study of 
the relationship between network features and the precision of estimation of peer effects 
is warranted.

Our model and methodological development were applied to data from an obser-
vational study of the diffusion of robotic surgery on the quality of patient outcomes. 
Although our findings were inconclusive with the credible intervals of ρ and α overlap-
ping 0, a consequence of the densely connected network resulting in their being a mod-
est amount of information in the data about ρ and α , in general our models have the 
potential to be widely applied and to reveal important scientific findings regarding the 
direct and indirect impact of the adoption of a health technology by peer hospitals on 
the outcomes of patients at the focal hospital, from which important policy recommen-
dations may be derived.

Appendix
Hierarchical network autocorrelation model

As discussed in the main text, the conditional posterior of ρ does not have a well-known 
form for direct sampling. Therefore, we use the Metropolis-Hastings algorithm with 
an independent candidate generating function. To approximate the target distribution, 
we firstly approximate ln|A| using the quadratic polynomial approximation by a Taylor 
series expansion at ρ = 0 (Dittrich et al. 2017):

where �i(i = 1, . . . , g) are eigenvalues of W (Ord 1975) and ln |A| =
∑

ln (1− ρ�i) . By a 
second-order Taylor series expansion:

|A| =
∏

(1− ρ�i),

ln |A| ≈
∑

−ρ�i − ρ2
�
2
i /2 =

∑

−ρ2
�
2
i /2 as

∑

�i = tr(W ) = 0.
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That is, |A| ≈ exp

(

∑

−ρ�i − ρ2�2i
2

)

= exp

(

∑

−ρ2�2i
2

)

 . Therefore,

where, TN (µ∗,V ∗) is the truncated normal distribution candidate generating distribu-
tion with mean µ∗ and variance V ∗:

The acceptance ratio γ for a Metropolis-Hastings algorithm with an independence can-
didate generating function is:

where ρc is the current state of ρ and ρp is the proposed state of ρ , is randomly generated 
from the candidate generating distribution with

To perform a Metropolis-Hastings step we randomly draw a random variable u from 
U(0, 1) and accept the proposed state if u ≤ γ , otherwise rejecting the proposed state 
and staying at current state (i.e., if u > γ).

Similarly, for p(ρ) ∝ 1,−1 < ρ < 1 , the resulting candidate generating distribution of ρ 
is TN (µ∗,V ∗) , −1 < ρ < 1 . For

the conditional posterior of ρ is:

The above distribution does not have a well-known closed-form that can be used for 
directly sampling. Therefore, we use the same candidate generating distribution intro-
duced in Eq. (5) to sample ρ.

(5)

p
(

ρ | β ,ω2, δ, σ 2, θ ,Y
)

∝ exp

(

∑

−ρ2
�
2
i

2

)

exp

(

− (Aδ − Xβ)T (Aδ − Xβ)

2ω2

)

∼ TN
(

µ∗,V ∗), 1/�min < ρ < 1/�max

µ∗ = δTWT (δ − Xβ)

ω2
∑

�i
2 + δTWTW δ

V ∗ = ω2

ω2
∑

�i
2 + δTWTW δ

γ = min

(

1,
π
(

ρp
)

TN (ρc,µ
∗,V ∗)

π(ρc)TN
(

ρp,µ∗,V ∗)

)

π(ρ) = |A| exp
(

− (Aδ − Xβ)T (Aδ − Xβ)

2ω2

)

.

p(ρ) ∝ 1

(1/�max − ρ)(ρ − 1/�min)
,

p
(

ρ | β ,ω2, δ, σ 2, θ ,Y
)

∝ |A| exp
(

− (Aδ − Xβ)T (Aδ − Xβ)

2ω2

)

1

(1/�max − ρ)(ρ − 1/�min)
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The conditional posterior of δ is:

Writing H = σ
ω
A , so that

we then let � = σ
ω
Xβ to obtain

Letting M = Y − Zθ we then obtain

and

Finally, let D = HTH + BTB,C = �TH +MTB so that

Hence,

Extended hierarchical network autocorrelation model

The likelihood function of the model (2) is:

We assign a flat prior for α , that is p(α) ∝ 1 and the prior distributions for the other 
parameters align with these in model (1).

Letting K = Y − Zθ − Bδ , the conditional posterior of α can be expressed as:

p
�

δ | β ,ω2, ρ, σ 2, θ ,Y
�

∝ exp

�

− (Aδ − Xβ)T (Aδ − Xβ)

2ω2
− (Y − Zθ − Bδ)T (Y − Zθ − Bδ)

2σ 2

�

= exp





σ 2

w2 (Aδ − Xβ)T (Aδ − Xβ)+ (Y − Zθ − Bδ)T (Y − Zθ − Bδ)

−2σ 2



.

= exp

(

(

Hδ − σ
ω
Xβ

)T (
Hδ − σ

ω
Xβ

)

+ (Y − Zθ − Bδ)T (Y − Zθ − Bδ)

−2σ 2

)

.

(

Hδ − σ

ω
Xβ

)T(

Hδ − σ

ω
Xβ

)

=
(

δTHT −�T
)

(Hδ −�).

(Y − Zθ − Bδ)T (Y − Zθ − Bδ) = (M − Bδ)T (M − Bδ) =
(

MT − δTBT
)

(M − Bδ)

(Hδ −�)T (Hδ −�)+ (M − Bδ)T (M − Bδ) ∝ δT
(

HTH + BTB
)

δ − 2
(

�TH +MTB
)

δ

δTDδ − 2Cδ ∝
(

δ − D−1CT
)T

D
(

δ − D−1CT
)

.

p
(

δ | β ,ω2, ρ, σ 2, θ ,Y
)

∼ N
(

D−1CT, σ 2D−1
)

.

f
(

Y | θ , δ, σ 2,α
)

=
(

2πσ 2
)−N/2

exp

(

− (Y − Zθ − B(δ + αW δ))T (Y − Zθ − B(δ + αW δ))

2σ 2

)

.

p
(

α | β ,ω2, ρ, σ 2, θ ,Y , δ
)

∼ N

(

δTWTBTK

δTWTBTBW δ
,

σ 2

δTWTBTBW δ

)
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Moreover, the conditional posterior of δ is:

Let G = B
[

Ig + αW
]

,D = HTH + GTG,C = �TH +MTG . Therefore, p
(

δ | β ,ω2,

ρ, σ 2, θ ,Y ,α
)

∝ N
(

D
−1

C
T , σ 2

D
−1

)

 . Similar to the model (1), the conditional posterior 

of θ , σ 2,ω2,β and ρ are:

To sample ρ , we use the same approach used for the model in (1).

Half Cauchy prior for ω

Let η = δ/ξ and ση = ω/|ξ | , so that we can write model (1) as

The likelihood function can be expressed as:

while the prior distribution of η is:

p
(

δ | β ,ω2, ρ, σ 2, θ ,Y ,α
)

∝ exp

(

− (Aδ − Xβ)T (Aδ − Xβ)

2ω2
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2σ 2

)

P
(

θ | δ, σ 2, ρ,ω2,β ,Y ,α
)

∼ N

(

(
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(
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σ 2

)

P
(
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∼ IG

(

N − 1

2
,
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2

)

P
(
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)

∼ IG

(

g − 1

2
,
(Aδ − Xβ)T (Aδ − Xβ)

2

)

P
(
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)

∼ N

(

(

XTX
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(

XTX
)−1

ω2

)

p
(

ρ | β ,ω2, δ, σ 2, θ ,Y ,α
)

∝ |A| exp
(

− (Aδ − Xβ)T (Aδ − Xβ)

2ω2

)

p(ρ)

Y = Zθ + Bξη + ε

η = ρWη + Xβ

ξ
+ τ

ξ

ε ∼ N
(

0, σ 2IN
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τ
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(

0, σ 2
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)

f
(

Y | θ , ξ , η, σ 2
)

=
(

2πσ 2
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exp
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2σ 2

)
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2πσ 2
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2
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
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�

2σ 2
η




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We assign these priors for ξ and σ 2
η : ξ ∼ N

(

0,φ2
)

, σ 2
η ∼ IG(0.5, 0.5) . Given the expected 

range of ω is under 100, we set φ = 25 and when φ → ∞ , the half Cauchy prior for ω 
becomes a uniform prior for ω (Gelman 2006). We also assign uniform prior distribu-
tions on θ ,β , σ and p(ρ) ∝ 1 , 1/�min < ρ < 1/�max.

The conditional posteriors for the model parameters under the model in (1) follow below:

In addition, the conditional posterior of η is:

Let

and � = σ
ξση

Xβ.

Then letting M = Y − Zθ,

and

P
(

σ 2 | ξ , η, θ ,β , σ 2
η , ρ,Y

)

∼ IG

(

N − 1

2
,
(Y − Zθ − Bξη)T (Y − Zθ − Bξη)

2

)

P
(
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)
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(
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(
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σ 2

)
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(
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∝ exp
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2
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2
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exp
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)

p
(

η | β , ξ , σ 2
η , ρ, σ
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∝ exp
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exp
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exp
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Finally, let D = HTH + BTB,C = �TH +MTB

Hence,

Therefore, the conditional posterior of ξ is:

To sample ξ from its conditional posterior distribution, we used following candidate 
generating function:

The conditional posterior of ρ is:

As previously discussed, the candidate generate function of ρ is:

In the above, we used model (1) to show the derivation of the half Cauchy prior for ω . A 
similar construction applies for (2).
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