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We study the runtime in probabilistic programs with unbounded recursion. As underlying 
formal model for such programs we use probabilistic pushdown automata (pPDAs) which 
exactly correspond to recursive Markov chains. We show that every pPDA can be 
transformed into a stateless pPDA (called “pBPA”) whose runtime and further properties are 
closely related to those of the original pPDA. This result substantially simplifies the analysis 
of runtime and other pPDA properties. We prove that for every pPDA the probability of 
performing a long run decreases exponentially in the length of the run, if and only if the 
expected runtime in the pPDA is finite. If the expectation is infinite, then the probability 
decreases “polynomially”. We show that these bounds are asymptotically tight. Our tail 
bounds on the runtime are generic, i.e., applicable to any probabilistic program with 
unbounded recursion.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We study the termination time in programs with unbounded recursion, which are either randomized or operate on sta-
tistically quantified inputs. As underlying formal model for such programs we use probabilistic pushdown automata (pPDAs)
[4,7,14,15] which are equivalent to recursive Markov chains [17–19]. Since pushdown automata are a standard and well-
established model for programs with recursive procedure calls, our abstract results imply generic and tight tail bounds for 
termination time, the main performance characteristic of probabilistic recursive programs.

A pPDA consists of a finite set of control states, a finite stack alphabet, and a finite set of rules of the form p X
x

↪→ qα, 
where p, q are control states, X is a stack symbol, α is a finite sequence of stack symbols (possibly empty), and x ∈ (0, 1]
is the (rational) probability of the rule. We require that for each p X , the sum of the probabilities of all rules of the form 
p X

x
↪→ qα is equal to 1. Each pPDA � induces an infinite-state Markov chain M� , where the states are configurations 

✩ This work has been published without proofs as a preliminary version in the Proceedings of the 38th International Colloquium on Automata, Languages and 
Programming (ICALP), volume 6756 of LNCS, pages 319–331, 2011 at Springer. The presentation has been improved since, and the general lower tail bound 
in Theorem 4.1 (3) has been tightened from Ω(1/n) to Ω(1/

√
n).
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function And(node)
if node.leaf then

return node.value
else

v := Or(node.left)
if v = 0 then

return 0
else

return Or(node.right)

function Or(node)
if node.leaf then

return node.value
else

v := And(node.left)
if v = 1 then

return 1
else

return And(node.right)

q A
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q A
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Fig. 1. The program Tree and its pPDA model �Tree . In �Tree the control state q is the default control state, and the control states r0, r1 model the return 
values 0 and 1. The stack symbols A and O represent (invocations of) the procedures And and Or.

of the form pα (p is the current control state and α is the current stack content), and p Xβ
x→ qαβ is a transition of M�

iff p X
x

↪→ qα is a rule of �. We also stipulate that pε
1→ pε for every control state p, where ε denotes the empty stack. For 

example, consider the pPDA �̂ with two control states p, q, two stack symbols X, Y , and the rules

p X
1/4

↪−−→ pε, p X
1/4

↪−−→ p X X, p X
1/2

↪−−→ qY , pY
1

↪−→ pY , qY
1/2

↪−−→ qX, qY
1/2

↪−−→ qε, qX
1

↪−→ qY .

The structure of Markov chain M
�̂

is indicated below.
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pPDAs can model programs that use unbounded “stack-like” data structures such as stacks, counters, or even queues. 
For instance, if the exact ordering of items stored in a queue is irrelevant, the queue can be safely replaced with a stack. 
Transition probabilities may reflect the random choices of the program (such as “coin flips” in randomized algorithms) 
or some statistical assumptions about the input data. In particular, pPDAs model recursive programs. The global data of 
such a program are stored in the finite control, and the individual procedures and functions together with their local 
data correspond to the stack symbols (a function call/return is modeled by pushing/popping the associated stack symbol 
onto/from the stack). As a simple example, consider the recursive program Tree of Fig. 1, which computes the value of an 
And/Or-tree, i.e., a tree such that (i) every node has either zero or two children, (ii) every inner node is either an And-node 
or an Or-node, and (iii) on any path from the root to a leaf And- and Or-nodes alternate. We further assume that the root is 
either a leaf or an And-node. Tree starts by invoking the function And on the root of a given And/Or-tree. Observe that the 
program evaluates subtrees only if necessary. Now assume that the input are random And/Or trees following the distribution 
of a Galton–Watson process: a node of the tree has two children with probability 1/2, and no children with probability 1/2. 
Furthermore, the conditional probabilities that a childless node evaluates to 0 and 1 are also both equal to 1/2. On inputs 
with this distribution, the algorithm corresponds to the pPDA �Tree of Fig. 1.

We study the termination time of runs in a given pPDA �. For every pair of control states p, q and every stack symbol X
of �, let Run(p Xq) be the set of all runs (infinite paths) in M� initiated in p X which visit qε. The termination time 
is modeled by the random variable Tp X , which to every run w assigns either the number of steps needed to reach a 
configuration with empty stack, or ∞ if there is no such configuration. The conditional expected value E[Tp X | Run(p Xq)], 
denoted just by E[p Xq] for short, then corresponds to the average number of steps needed to reach qε from p X , computed 
only for those runs initiated in p X which terminate at qε. For example, using the results of [14,15,19], one can show that 
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the functions And and Or of the program Tree terminate with probability one, and the expected termination times can be 
computed by solving a system of linear equations. Thus, we obtain the following:

E[q Ar0] = 7.155113 E[q Ar1] = 7.172218
E[qOr0] = 7.172218 E[qOr1] = 7.155113
E[r0 Ar0] = 1.000000 E[r1 Ar0] = 8.172218 E[r1 Ar1] = 8.155113
E[r1 Or1] = 1.000000 E[r0 Or1] = 8.172218 E[r0 Or0] = 8.155113

However, the mere expectation of the termination time does not provide much information about its distribution until 
we analyze the associated tail bound, i.e., the probability that the termination time deviates from its expected value by 
a given amount. That is, we are interested in bounds for the conditional probability P(Tp X ≥ n | Run(p Xq)). (Note this 
probability makes sense regardless of whether E[p Xq] is finite or infinite.) Assuming that the (conditional) expectation 
and variance of Tp X are finite, one can apply Markov’s and Chebyshev’s inequalities and thus yield bounds of the form 
P(Tp X ≥ n | Run(p Xq)) ≤ c/n and P(Tp X ≥ n | Run(p Xq)) ≤ c/n2, respectively, where c is a constant depending only on 
the underlying pPDA. However, these bounds are asymptotically always worse than our exponential bound (see below). 
If E[p Xq] is infinite, these inequalities cannot be used at all.

Our contribution The main contributions of this paper are the following:

• We show that every pPDA can be effectively transformed into a stateless pPDA (called “pBPA”) so that all important 
quantitative characteristics of runs are preserved. This simple (but fundamental) observation was overlooked in previous 
works on pPDAs and related models [4,7,14,15,17–19], although it simplifies virtually all of these results. Hence, we can 
w.l.o.g. concentrate just on the study of pBPAs. Moreover, for the runtime analysis, the transformation yields a pBPA all 
of whose symbols terminate with probability one, which further simplifies the analysis.

• We provide tail bounds for Tp X which are asymptotically optimal for every pPDA and are applicable also in the case when 
E[p Xq] is infinite. More precisely, we show that for every pair of control states p, q and every stack symbol X , there 
are essentially three possibilities:
– There is a “small” k such that P(Tp X ≥ n | Run(p Xq)) = 0 for all n ≥ k.
– E[p Xq] is finite and P(Tp X ≥ n | Run(p Xq)) decreases exponentially in n.
– E[p Xq] is infinite and P(Tp X ≥ n | Run(p Xq)) decreases “polynomially” in n.
The exact formulation of this result, including the explanation of what is meant by a “polynomial” decrease, is given 
in Theorem 4.1 (technically, Theorem 4.1 is formulated for pBPAs which terminate with probability one, which is no 
restriction as explained above). Observe that a direct consequence of the above theorem is that all conditional moments 
E[Tk

p X | Run(p Xq)] are simultaneously either finite or infinite. Clearly, if E[p Xq] = E[Tp X | Run(p Xq)] is infinite, then 
so is E[Tk

p X | Run(p Xq)] for every k ≥ 1. If E[p Xq] is finite, then P(Tp X ≥ n | Run(p Xq)) decreases exponentially in n, 
which means that there exist n0 ≥ 1 and 0 < a < 1 such that for all n ≥ n0 we have that P(Tp X ≥ n | Run(p Xq)) ≤ an . 
From this we easily obtain E[Tk

p X | Run(p Xq)] < ∞. In particular, if E[p Xq] is finite, then so is the conditional variance 
of Tp X .

The characterization given in Theorem 4.1 is effective. In particular, it is decidable in polynomial space whether E[p Xq]
is finite or infinite by using the results of [14,15,19], and if E[p Xq] is finite, we can compute concrete bounds on the 
probabilities. Our results vastly improve on what was previously known on the termination time Tp X . Previous work, in 
particular [3,15], has focused on computing expectations and variances for a class of random variables on pPDA runs, a 
class that includes Tp X as prime example. Note that our exponential bound given in Theorem 4.1 depends, like Markov’s 
inequality, only on expectations, which can be efficiently approximated by the methods of [13,15].

An intuitive interpretation of our results is that pPDAs with finite (conditional) expected termination time are well-
behaved in the sense that the termination time is exponentially unlikely to deviate from its expectation. Of course, a detailed 
analysis of a concrete pPDA may lead to better bounds, but these bounds will be asymptotically equivalent to our generic 
bounds. Also note that the conditional expected termination time can be finite even for pPDAs that do not terminate with 
probability one. Hence, for every ε > 0 we can compute a tight threshold k such that if a given pPDA terminates at all, it 
terminates after at most k steps with probability 1 − ε (this is useful for interrupting programs that are supposed but not 
guaranteed to terminate).

Proof techniques The main mathematical tool for establishing our results on runtime is (basic) martingale theory and its 
tools such as the optional stopping theorem and Azuma’s inequality (see Section 4). More precisely, we construct two 
different martingales corresponding to the cases when the expected termination time is finite resp. infinite. In combination 
with our reduction to pBPAs this establishes a powerful link between pBPAs, pPDAs, and martingale theory.

Our analysis of termination time in the case when the expected termination time is infinite builds on Perron–Frobenius 
theory for nonnegative matrices as well as on recent results from [13,19]. We also use some of the observations presented 
in [7,14,15].
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Related work The application of Azuma’s inequality in the analysis of particular randomized algorithms is also known as 
the method of bounded differences; see, e.g., [11,25] and the references therein. In contrast, we apply martingale methods not 
to particular algorithms, but to the pPDA model as a whole.

Analyzing the distribution of termination time is closely related to the analysis of multitype branching processes 
(MT-BPs) [20]. An MT-BP is very much like a pBPA (see above). The stack symbols in pBPAs correspond to species in MT-
BPs. An ε-rule corresponds to the death of an individual, whereas a rule with two or more symbols on the right hand side 
corresponds to reproduction. Since in MT-BPs the symbols on the right hand side of rules evolve concurrently, termination 
time in pBPAs does not correspond to extinction time in MT-BPs, but to the size of the total progeny of an individual, i.e., the 
number of direct or indirect descendants of an individual. The distribution of the total progeny of a MT-BP has been studied 
mainly for the case of a single species, see, e.g., [20,26,27] and the references therein, but to the best of our knowledge, no 
tail bounds for MT-BPs have been given. Hence, Theorem 4.1 can also be seen as a contribution to MT-BP theory.

Stochastic context-free grammars (SCFGs) [24] are also closely related to pBPAs. The termination time in pBPAs corre-
sponds to the number of nodes in a derivation tree of a SCFG, so our analysis of pBPAs immediately applies to SCFGs. 
Quasi-Birth–Death processes (QBDs) can also be seen as a special case of pPDAs. A QBD is a generalization of a birth–death 
process studied in queuing theory and applied probability (see, e.g., [2,16,23]). Intuitively, a QBD describes an unbounded 
queue, using a counter to count the number of jobs in the queue, where the queue can be in one of finitely many distinct 
“modes”. Hence, a (discrete-time) QBD can be equivalently defined by a pPDA with one stack symbol used to emulate the 
counter. These special pPDAs are also known as probabilistic one-counter automata (pOCs) [5,6,16]. Recently, it has been shown 
in [8] that every pOC induces a martingale apt for studying the properties of both terminating and nonterminating runs in 
pOCs. However, the paper [8] focuses on approximating (non-)termination probabilities and the expected termination time, 
and does not study the distribution of the termination time, as we do in this paper. The constructions used in [8] are based 
on ideas specific to pOCs that are unrelated to the ones presented in this paper.

Previous work on pPDAs and the equivalent model of recursive Markov chains includes [4,7,14,15,17–19]. In this paper 
we use many of the results presented in these papers, which is explicitly acknowledged at appropriate places.

Organization of the paper We present our results after some preliminaries in Section 2. In Section 3 we show how to 
transform a given pPDA into an equivalent pBPA, and in Section 4 we design the promised martingales and derive tight tail 
bounds for the termination time. We conclude in Section 5.

2. Preliminaries

In the rest of this paper, N, N0, and R denote the set of positive integers, nonnegative integers, and real numbers, 
respectively. The tuples of A1 × A2 × · · · × An are often written simply as a1a2 . . .an . The set of all finite words over a given 
alphabet Σ is denoted by Σ∗ , and the set of all infinite words over Σ is denoted by Σω . We write ε for the empty word. 
The length of a given w ∈ Σ∗ ∪ Σω is denoted by |w|, where the length of an infinite word is ∞. Given a word (finite or 
infinite) over Σ , the individual letters of w are denoted by w(0), w(1), . . . For X ∈ Σ and w ∈ Σ∗ , we denote by #(X)(w)

the number of occurrences of X in w .

Definition 2.1 (Markov Chains). A Markov chain is a triple M = (S,→,Prob) where S is a finite or countably infinite set 
of states, → ⊆ S × S is a transition relation, and Prob is a function which to each transition (s, t) ∈ → assigns its prob-

ability Prob((s, t)) > 0 so that for every s ∈ S we have 
∑

s→t Prob((s, t)) = 1. We write s x→ t to indicate that s → t and 
Prob((s, t)) = x.

A path in M is a finite or infinite word w ∈ S+ ∪ Sω such that w(i − 1) → w(i) for every 1 ≤ i < |w|. For a state s, we 
use FPath(s) to denote the set of all finite paths initiated in s. A run in M is an infinite path in M . We denote by Run[M]
the set of all runs in M . The set of all runs that start with a given finite path w is denoted by Run[M](w). When M is 
understood, we write just Run and Run(w) instead of Run[M] and Run[M](w), respectively. For a given run w and i ∈ N0, 
we use wi to denote the run w(i), w(i+1), w(i+2), . . . . Given s ∈ S and A ⊆ S , we say A is reachable from s if there is a run 
w such that w(0) = s and w(i) ∈ A for some i ≥ 0.

To every s ∈ S we associate the probability space (Run(s), F , P) where F is the σ -field generated by all basic cylin-
ders Run(w) where w is a finite path starting with s, and P : F → [0, 1] is the unique probability measure such that 
P(Run(w)) = ∏|w|−1

i=1 xi where w(i − 1) 
xi→ w(i) for every 1 ≤ i < |w|. If |w| = 1, we put P(Run(w)) = 1. Note that only 

certain subsets of Run(s) are P-measurable, but in this paper we only deal with “safe” subsets that are guaranteed to be 
in F . We remark that, technically, F and P depend on the start state s, but we suppress this dependence, as long as s is 
clear from the context.

Definition 2.2 (Probabilistic PDA). A probabilistic pushdown automaton (pPDA) is a tuple � = (Q , Γ, ↪→, Prob) where Q is a 
finite set of control states, Γ is a finite stack alphabet, ↪→ ⊆ (Q × Γ ) × (Q × Γ ≤2) is a transition relation (where Γ ≤2 =
{α ∈ Γ ∗ | |α| ≤ 2}), and Prob is a function which to each transition (p X,qα) ∈↪→ assigns its probability Prob((p X,qα)) > 0
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so that for all p ∈ Q and X ∈ Γ we have that 
∑

p X↪→qα Prob((p X, qα)) = 1. We write p X
x

↪→ qα to indicate that p X ↪→ qα
and Prob((p X, qα)) = x.

Elements of Q × Γ ∗ are called configurations of �. A pPDA with just one control state is called pBPA.3 In what follows, 
configurations of pBPAs are usually written without the (only) control state p (i.e., we write just α instead of pα). We 
define the size4 of a pPDA � as |�| = |Q | + |Γ | + |↪→| + |Prob|, where |Prob| is the sum of sizes of binary representations 
of values taken by Prob. To � we associate the Markov chain M� with Q × Γ ∗ as the set of states and transitions defined 
as follows:

• pε
1→ pε for each p ∈ Q ;

• p Xβ
x→ qαβ is a transition of M� iff p X

x
↪→ qα is a transition of �.

For all p Xq ∈ Q × Γ × Q and rY ∈ Q × Γ , we define

• Run(p Xq) = {w ∈ Run(p X) | w(i) = qε for some i ∈N}
• Run(rY ↑) = Run(rY ) \ ⋃

s∈Q Run(rY s).

Further, we put [p Xq] = P(Run(p Xq)) and [p X↑] = P(Run(p X↑)). If � is a pBPA, we write [X] and [X↑] instead of [p Xp]
and [p X↑], where p is the only control state of �.

Let pα ∈ Q × Γ ∗ . We denote by Tpα a random variable over Run(pα) where Tpα(w) is either the least n ∈ N0 such that 
w(n) = qε for some q ∈ Q , or ∞ if there is no such n. Intuitively, Tpα(w) is the number of steps (“the time”) in which 
the run w initiated in pα terminates. We write E[pα] := E[Tpα] for the expected termination time (usually omitting the 
control state p for pBPAs).

3. Transforming pPDAs into pBPAs

In this section we show how to transform a given pPDA � into an “equivalent” pBPA �• such that all stack symbols of 
�• terminate either with probability 0 or 1. This transformation preserves virtually all interesting properties and it is to 
some extent effective. However, the transition probabilities in �• may take irrational values.

Let � = (Q , Γ, ↪→, Prob) be a pPDA. The construction of the associated pBPA �• is a relatively straightforward modifica-
tion of the standard method for transforming a PDA into an equivalent context-free grammar (see, e.g., [21]), but has so far 
been overlooked in the existing literature on probabilistic PDA. The stack alphabet Γ• of �• is defined as follows: For every 
p X ∈ Q × Γ such that [p X↑] > 0 we add a fresh stack symbol 〈p X↑〉, and for every p Xq ∈ Q × Γ × Q such that [p Xq] > 0
we add a fresh stack symbol 〈p Xq〉. Note that Γ• is effectively constructible in polynomial space by applying the results of 
[14,19]. Now we construct the rules ↪−→• of �• . For all 〈p Xq〉 ∈ Γ• we have the following rules:

• if p X
x

↪→ rY Z in �, then for all s ∈ Q such that y = x · [rY s] · [sZq] > 0 we put 〈p Xq〉 y/[p Xq]
↪−−−−→• 〈rY s〉〈sZq〉;

• if p X
x

↪→ rY in �, where y = x · [rY q] > 0, we put 〈p Xq〉 y/[p Xq]
↪−−−−→• 〈rY q〉;

• if p X
x

↪→ qε in �, we put 〈p Xq〉 x/[p Xq]
↪−−−−→• ε.

For all 〈p X↑〉 ∈ Γ• we have the following rules:

• if p X
x

↪→ rY Z in �, then for every s ∈ Q where y = x · [rY s] · [sZ↑] > 0 we add 〈p X↑〉 y/[p X↑]
↪−−−−−→• 〈rY s〉〈sZ↑〉;

• for all qY ∈ Q × Γ where y = [qY ↑] · ∑
p X

z
↪→qY β

z > 0, we add 〈p X↑〉 y/[p X↑]
↪−−−−−→• 〈qY ↑〉.

Observe that all symbols of the form 〈p X↑〉 terminate with probability 0, and we show that all symbols of the form 
〈p Xq〉 terminate with probability 1. Also note that the transition probabilities of �• may take irrational values. Still, the 
construction of �• is to some extent “effective” due to the following proposition:

Proposition 3.1. (See [14,19].) Let � = (Q , Γ, ↪→, Prob) be a pPDA. Let p Xq ∈ Q × Γ × Q . There is a formula Φ(x) of ExTh(R)

(the existential theory of the reals) with one free variable x such that the length of Φ(x) is polynomial in |�| and Φ(x/r) is valid iff 
r = [p Xq].

3 The “BPA” acronym stands for “Basic Process Algebra” and is used mainly for historical reasons. pBPAs are closely related to stochastic context-free 
grammars and are also called 1-exit recursive Markov chains (see, e.g., [19]).

4 When a pPDA � is used as an input of some algorithm, we assume that all transition probabilities of � are rational and represented as fractions of 
binary integers.
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Using Proposition 3.1, one can compute formulae of ExTh(R) that “encode” transition probabilities of �• . Moreover, 
these probabilities can be effectively approximated up to an arbitrarily small positive error by employing either the decision 
procedure for ExTh(R) [9] or by using Newton’s method [12,13,22].

Example 3.2. Consider a pPDA � with two control states p, q, one stack symbol X , and the following transitions, where 
a > 1/2:

p X
a

↪−→ qX X, p X
1−a

↪−−→ qε, qX
a

↪−→ p X X, qX
1−a

↪−−→ pε,

Clearly, [p Xp] = [qXq] = 0. Using the results of [14], one can easily verify that [p Xq] = [qXp] = (1 − a)/a. Hence, [p X↑] =
[qX↑] = (2a − 1)/a. Consequently, the stack symbols of �• are 〈p Xq〉, 〈qXp〉, 〈p X↑〉, and 〈qX↑〉, and the transitions of �•
are the following:

〈p Xq〉 1−a
↪−−→• 〈qXp〉〈p Xq〉 〈qXp〉 1−a

↪−−→• 〈p Xq〉〈qXp〉
〈p Xq〉 a

↪−→• ε 〈qXp〉 a
↪−→• ε

〈p X↑〉 1−a
↪−−→• 〈qXp〉〈p X↑〉 〈qX↑〉 1−a

↪−−→• 〈p Xq〉〈qX↑〉
〈p X↑〉 a

↪−→• 〈qX↑〉 〈qX↑〉 a
↪−→• 〈p X↑〉

As a > 1/2, the resulting pBPA has a tendency to decrease the stack height. Hence, both 〈p Xq〉 and 〈qXp〉 terminate with 
probability 1.

Every run of M� initiated in p X that reaches qε can be “mimicked” by the associated run of M�• initiated in 〈p Xq〉. 
Similarly, almost every5 run of M� initiated in p X that does not visit a configuration with empty stack corresponds to some 
run of M�• initiated in 〈p X↑〉.

Example 3.3. Let � be a pPDA with two control states p, q, one stack symbol X , and the following transitions:

p X
0.5

↪−→ p X X, p X
0.5

↪−→ qε, qX
1

↪−→ qε.

Then [p Xq] = 1 and [qXq] = 1, which means that �• has just two stack symbols 〈p Xq〉, 〈qXq〉, and the transitions

〈p Xq〉 0.5
↪−→• 〈p Xq〉〈qXq〉, 〈p Xq〉 0.5

↪−→• ε, 〈qXq〉 1
↪−→• ε.

The infinite run p X, p X X, p X X X, . . . does not correspond to any run in M�• (note that 〈p X↑〉 /∈ Γ•), but since the total 
probability of all infinite runs initiated in p X is zero, we still have that almost all (but not all) of these runs correspond to 
some run in M�• .

The correspondence between the runs of M� and M�• is formally captured by a finite family of functions Υ� where 
� ∈ Q ∪{↑}. For every run w ∈ Run(p X) in M� , the function Υ� returns an infinite sequence w� such that w�(i) ∈ Γ ∗• ∪{×}
for every i ∈ N0. The sequence w� is either a run of M�• initiated in 〈p X�〉, or an invalid sequence. As we shall see, all 
invalid sequences have an infinite suffix of “×” symbols and correspond to those runs of Run(p X) that cannot be mimicked 
by a run of Run(〈p X�〉).

So, let � ∈ Q ∪ {↑}, and let w be a run of M� initiated in p X . We define an infinite sequence w� over Γ ∗• ∪ {×}
inductively as follows:

• w�(0) is either 〈p X�〉 or ×, depending on whether 〈p X�〉 ∈ Γ• or not, respectively.
• If w�(i) = × or w�(i) = ε, then w�(i+1) = w�(i). Otherwise, we have that w�(i) = 〈p X†〉α, where † ∈ Q ∪ {↑}, and 

w(i) = p Xγ for some γ ∈ Γ ∗ . Let p X ↪→ rβ be the rule of � used to derive the transition w(i) → w(i+1). We put

w�(i+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α if β = ε and † = r;
〈rY †〉α if β = Y and [rY †] > 0;
〈rY s〉〈sZ†〉α if β = Y Z , [sZ†] > 0, and there is k > i such that w(k) = sZγ

and the stack length in all w( j), where i < j < k, is strictly larger
than the stack length in w(i);

〈rY ↑〉α if β = Y Z , † = ↑[rY ↑] > 0, and the stack length in every w( j), where j > i,
is strictly larger that the stack length in w(i);

× otherwise.

5 Here “almost every” is meant in the usual probabilistic sense, i.e., the probability of the remaining runs is zero.
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We say that w ∈ Run(p X) is �-invalid if w�(i) = × for some i ∈ N0. Otherwise, w is �-valid. It is easy to check that w is 
�-valid iff w� ∈ Run(〈p X�〉). Hence, Υ� can be seen as a partial function from Run(p X) to Run(〈p X�〉) which is defined 
only for �-valid runs. Further, for every �-valid w ∈ Run(p X) and every i ∈N0 we have that

• w(i) = rY β iff w�(i) = 〈rY †〉γ for some † ∈ Q ∪ {↑} and γ ∈ Γ ∗• ,
• w(i) = rε iff w�(i) = ε and � = r.

Hence, Υ� preserves all properties of runs that depend just on the heads of visited configurations. Further, Υ� preserves the 
probability of all measurable subsets of Run(p X) with respect to a probability measure P� defined as follows. Let F be the 
standard σ -field over Run(p X) generated by all basic cylinders (see Section 2). The function P� is the unique probability 
function over F such that for every w ∈ FPath(p X) we have that

P�
(
Run(w)

) = P(Run(w) ∩ Run(p X�))

[p X�]
where P is the standard probability function introduced in Section 2. Note that P�(R) = P(R ∩Run(p X�))/[p X�] for every 
R ∈ F .

Now we can state the main proposition, which says that Υ� is a probability preserving measurable function.

Proposition 3.4. Let � = (Q , Γ, ↪→, Prob) be a pPDA, p ∈ Q , X ∈ Γ , and � ∈ Γ ∪ {↑} such that [p X�] > 0. Then for every measur-
able subset R ⊆ Run(〈p X�〉) we have that Υ −1� (R) ⊆ Run(p X) is measurable and P(R) = P�(Υ −1� (R)). Here Υ −1� (R) is the set of 
all w ∈ Run(p X) such that w� ∈ R.

Proof. Since the probability space (Run(〈p X�〉), F , P) is generated by all Run(v) where v ∈ FPath(〈p X�〉), it suffices to 
show that Υ −1� (Run(v)) is measurable and P(Run(v)) = P�(Υ −1� (Run(v))) for all v ∈ FPath(〈p X�〉).

Let us start with some auxiliary observations. Note that every configuration γ reachable from 〈p X�〉 in M�• is of the 
form γ = 〈p1 X1 p2〉 · · · 〈pk−1 Xk−1 pk〉〈pk Xk�〉 where k ≥ 0 (if k = 0, then γ = ε). We put

P [γ ] = [p1 X1 p2] · · · [pk−1 Xk−1 pk] · [pk Xk�]
Further, we say that a configuration pα of � is compatible with γ if p = p1 and α = X1 · · · Xkβ , where β ∈ Γ ∗ . If � �= ↑, we 
also require that β = ε. A run w of M� models γ , written w |� γ , if the following conditions are satisfied:

• w is initiated in a configuration p1 X1 · · · Xkβ compatible with γ ;
• w starts with a finite prefix of the form

p1 X1 · · · Xkβ →∗ p2 X2 · · · Xkβ →∗ · · · →∗ pk Xkβ

where for all 1 ≤ i < k, the stack length of all intermediate configurations visited along the subpath pi Xi · · · Xkβ →∗
pi+1 Xi+1 · · · Xkβ is at least |Xi · · · Xkβ|. Further, if � = ↑, then the stack length in all configurations visited after pk Xkβ

is at least |Xkβ|; and if � = q for some q ∈ Q , then the above prefix is followed by a path from pk Xk to qε (recall that 
β = ε if � = q).

A straightforward induction on k reveals that for every configuration p1 X1 · · · Xkβ compatible with γ we have that

P
({

w ∈ Run(p1 X1 · · · Xkβ)
∣∣ w |� γ

}) = P [γ ] (1)

Now we can continue with the main proof. For a finite path u in M� ending in a configuration pδ and a set of runs 
R ⊆ Run(pδ), we write u ⊕ R to denote the set of all runs obtained by concatenating u and w1 for some w ∈ R . Let 
v = α0, . . . , αn be a finite path in M�• initiated in 〈p X�〉. We say that a finite path p0δ0, . . . , pnδn in M� initiated in p X is 
compatible with v if piδi is compatible with αi for every 0 ≤ i ≤ n. Let C(v) be the set of all finite paths compatible with v . 
It is easy to check (by induction on n) that

Υ −1�
(
Run(α0, . . . ,αn)

) =
⋃

p0δ0,...,pnδn∈C(α0,...,αn)

p0δ0, . . . , pnδn ⊕ {
w ∈ Run(pnδn)

∣∣ w |� αn
}

(2)

Hence, Υ −1� (Run(α0, . . . , αn)) is measurable. By combining (1) and (2) we further obtain

P�
(
Υ −1�

(
Run(α0, . . . ,αn)

)) = P [αn]
[p X�] ·

∑
p0δ0,...,pnδn∈C(α0,...,αn)

P
(
Run(p0δ0, . . . , pnδn)

)
(3)

It remains to prove that P�(Υ −1� (Run(α0, . . . , αn))) = P(Run(α0, . . . , αn)). We proceed by induction on n. In what 
follows, the symbols P and P� are slightly overloaded since we need to consider sets of runs initiated in various con-
figurations.
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In the base case, when n = 0 and α0 = 〈p X�〉, we have that P(Run(〈p X�〉)) = 1 and

P�
(
Υ −1�

(
Run

(〈p X�〉))) = P [〈p X�〉]
[p X�] ·

∑
p0δ0∈C(〈p X�〉)

P
(
Run(p0δ0)

) = 1

by applying (3) (note that P [〈p X�〉] = [p X�] and the only path initiated in p X compatible with 〈p X�〉 is p X).
For the inductive step, let us denote the finite path α0, . . . , αn−1 by v̄ (i.e., v = α0, . . . ,αn = v̄,αn), and let x be the prob-

ability of the transition αn−1 → αn in M�• . By induction hypothesis, P�(Υ −1� (Run(v̄))) = P(Run(v̄)), and by applying (3)
we get

P
(
Run(v̄)

) = P [αn−1]
[p X�] ·

∑
p0δ0,...,pn−1δn−1∈C(v̄)

P
(
Run(p0δ0, . . . , pn−1δn−1)

)
(4)

Further, for every configuration pn−1δn−1 which is compatible with αn−1 we have that

P
({

w ∈ Run(pn−1δn−1)
∣∣ w |� αn−1, w1 |� αn

}) = x · P
({

w ∈ Run(pn−1δn−1)
∣∣ w |� αn−1

})
(5)

Equality (5) follows easily by considering possible forms of the rule that induces the transition αn−1
x→ αn . From now 

on we use u to range over C(v), and ū to range over C(v̄). That is, u abbreviates p0δ0, . . . , pnδn , and ū abbreviates 
p0δ0, . . . , pn−1δn−1. However, we keep writing pnδn instead of u(n), and pn−1δn−1 instead of ū(n − 1), because we find 
these symbols more suggestive. Using this notation, we finally obtain that P�(Υ −1� (Run(v))) is equal to

P�
( ⋃

u∈C(v)

u ⊕ {
w ∈ Run(pnδn)

∣∣ w |� αn
})

(by (2))

= 1

[p X�] · P
( ⋃

u∈C(v)

u ⊕ {
w ∈ Run(pnδn)

∣∣ w |� αn
})

(defn. of P�)

= 1

[p X�] · P
( ⋃

ū∈C(v̄)

ū ⊕ {
w ∈ Run(pn−1δn−1)

∣∣ w |� αn−1, w1 |� αn
})

= 1

[p X�] ·
∑

ū∈C(v̄)

P
(
ū ⊕ {

w ∈ Run(pn−1δn−1)
∣∣ w |� αn−1, w1 |� αn

})

= 1

[p X�] ·
∑

ū∈C(v̄)

P
(
Run(ū)

) · x · P
({

w ∈ Run(pn−1δn−1)
∣∣ w |� αn−1

})
(by (5))

= x · P [αn−1]
[p X�] ·

∑
ū∈C(v̄)

P
(
Run(ū)

)
(by (1))

= x · P
(
Run(v̄)

) = P
(
Run(v)

)
(by (4)) �

In particular, Proposition 3.4 implies that all symbols of the form 〈p Xq〉 which belong to Γ• terminate with probability 1. 
To see this, let R be the set of all terminating runs initiated in 〈p Xq〉. By Theorem 3.4, we obtain P(R) = Pq(Υ

−1
q (R)) =

Pq(Run(p Xq)) = 1.
It is worth noting that all configurations reachable from a nonterminating configuration 〈p X↑〉 ∈ Γ• take the form 

α〈qY ↑〉, where α terminates almost surely and 〈qY ↑〉 never terminates. It follows that �• can be transformed into a 
finite-state Markov chain whose states are the nonterminating symbols of Γ• , and transitions correspond to finite paths 
between two consecutive visits to nonterminating symbols. This finite-state Markov chain is very useful when investigating 
the properties of nonterminating runs, and many of the existing results about pPDAs can be substantially simplified using 
this approach.

Another consequence of Proposition 3.4 is the following:

Proposition 3.5. Let p Xq ∈ Q × Γ × Q and [p Xq] > 0. Then for all n ∈N we have that

P
(
Tp X = n

∣∣ Run(p Xq)
) = P(T〈p Xq〉 = n).

Here, Tp X : Run(p X) → N0 and T〈p Xq〉 : Run(〈p Xq〉) → N0 are the random variables introduced in Section 2.

Proof. Let R be the set of all w ∈ Run(〈p Xq〉) such that T〈p Xq〉(w) = n. Observe that Υ −1� (R) is the set R̂ of all ŵ ∈ Run(p Xq)

such that Tp X (ŵ) = n. Hence,

P(T〈p Xq〉 = n) = P(R) = Pq
(
Υ −1

q (R)
) = Pq(R̂) = P(R̂)/[p Xq] = P

(
Tp X = n

∣∣ Run(p Xq)
) �
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4. Analysis of pBPAs

In this section we establish the promised tight tail bounds for the termination time. By virtue of Proposition 3.5, it 
suffices to analyze almost surely terminating pBPAs, i.e., only pBPAs such that all stack symbols terminate with probability 1. 
In what follows we assume that � is such a pBPA, and we also fix an initial stack symbol X0. For X, Y ∈ Γ , we say that 
X depends directly on Y , if there is a rule X ↪→ α such that Y occurs in α. Further, we say that X depends on Y , if either X
depends directly on Y , or X depends directly on a symbol Z ∈ Γ which depends on Y . One can compute, in linear time, 
the directed acyclic graph (DAG) of strongly connected components (SCCs) of the dependence relation. The height of this 
DAG, denoted by h, is defined as the longest distance between a top SCC and a bottom SCC plus 1 (i.e., h = 1 if there is 
only one SCC). We can safely assume that all symbols on which X0 does not depend were removed from �. We abbreviate 
P(TX0 ≥ n | Run(X0)) to P(TX0 ≥ n), and we use pmin to denote min{p | X

p
↪→ α in �}. Here is our main result:

Theorem 4.1. Let � be an almost surely terminating pBPA with stack alphabet Γ . Assume that X0 ∈ Γ depends on all X ∈ Γ \ {X0}, 
and let pmin = min{p | X

p
↪→ α in �}. Then one of the following is true:

(1) P(TX0 ≥ 2|Γ |) = 0.
(2) E[X0] is finite and for all n ∈N with n ≥ 2E[X0] we have that

pn
min ≤ P(TX0 ≥ n) ≤ exp

(
1 − n

8E2
max

)
where Emax = maxX∈Γ E[X].

(3) E[X0] is infinite and there is n0 ∈N such that for all n ≥ n0 we have that

c/n1/2 ≤ P(TX0 ≥ n) ≤ d1/nd2

where d1 = 18h|Γ |/p3|Γ |
min , and d2 = 1/(2h+1 − 2). Here, h is the height of the DAG of SCCs of the dependence relation, and c is a 

suitable positive constant depending on �.

More colloquially, Theorem 4.1 states that � satisfies either (1) or (2) or (3), where (1) is when � does not have any 
long terminating runs; and (2) resp. (3) is when the expected termination time is finite (resp. infinite) and the probability 
of performing a terminating run of length n decreases exponentially (resp. polynomially) in n.

One can effectively distinguish between the three cases set out in Theorem 4.1. More precisely, case (1) can be recognized 
in polynomial time by looking only at the structure of the pBPA, i.e., disregarding the probabilities. Determining whether 
E[X0] is finite or infinite can be done in polynomial space by employing the results of [3,15]. This holds even if the transition 
probabilities of � are represented just symbolically by formulae of ExTh(R) (see Proposition 3.1).

The proof of Theorem 4.1 is based on designing suitable martingales that are used to analyze the concentration of 
the termination time. Recall that a martingale is an infinite sequence of random variables m(0), m(1), . . . such that, for all 
i ∈ N, E[|m(i)|] < ∞, and E[m(i+1) | m(1), . . . ,m(i)] = m(i) almost surely. If |m(i) − m(i−1)| < ci for all i ∈ N, then we have the 
following Azuma’s inequality (see, e.g., [28]):

P
(
m(n) − m(0) ≥ t

) ≤ exp

( −t2

2
∑n

k=1 c2
k

)
We split the proof of Theorem 4.1 into four propositions (namely Propositions 4.2–4.5 below), which together imply 

Theorem 4.1.
The following proposition establishes the lower bound from Theorem 4.1 (2):

Proposition 4.2. Let � be an almost surely terminating pBPA with stack alphabet Γ . Let pmin = min{p | X
p

↪→ α in �}. Assume that 
P(TX0 ≥ 2|Γ |) > 0. Then we have

pn
min ≤ P(TX0 ≥ n) for all n ∈N.

Proof. Let TX0 (w) ≥ n for some n ∈ N and some w ∈ Run(X0). It follows from the definition of the probability space of a 
pPDA that the set of all runs starting with w(0), w(1), . . . , w(n) has a probability of at least pn

min . Therefore, in order to 
complete the proof, it suffices to show that P(TX0 ≥ 2|Γ |) > 0 implies P(TX0 ≥ n) > 0 for all n ∈N.

To this end, we use a form of the pumping lemma for context-free languages. Notice that a pBPA can be regarded as a 
context-free grammar with probabilities (a stochastic context-free grammar) with an empty set of terminal symbols and Γ
as the set of nonterminal symbols. Each finite run w ∈ Run(X0) corresponds to a derivation tree with root X0 that derives 
the word ε. The termination time TX0 is the number of (internal) nodes in the tree. In the rest of the proof we use this 
correspondence.



T. Brázdil et al. / Journal of Computer and System Sciences 81 (2015) 288–310 297
Let P(TX0 ≥ 2|Γ |) > 0. Then there is a run w ∈ Run(X0) with TX0 (w) ≥ 2|Γ | . This run w corresponds to a derivation tree 
with at least 2|Γ | (internal) nodes. In this tree there is a path from the root (labeled with X0) to a leaf such that on this 
path there are two different nodes, both labeled with the same symbol. Let us call those nodes n1 and n2, where n1 is the 
node closer to the root. By replacing the subtree rooted at n2 with the subtree rooted at n1 we obtain a larger derivation 
tree. This completes the proof. �

The following proposition establishes the upper bound of Theorem 4.1 (2):

Proposition 4.3. Let � be an almost surely terminating pBPA with stack alphabet Γ . Assume that X0 depends on all X ∈ Γ \ {X0}. 
Define

Emax := max
X∈Γ

E[X] and B := max
X↪→α

∣∣∣∣1 − E[X] +
∑
Y ∈Γ

#(Y )(α) · E[Y ]
∣∣∣∣.

Then for all n ∈N with n ≥ 2E[X0] we have

P(TX0 ≥ n) ≤ exp
2E[X0] − n

2B2
≤ exp

(
1 − n

8E2
max

)
.

Proof. Let w ∈ Run(X0). We denote by I(w) the maximal number j ≥ 0 such that w( j − 1) �= ε. Given i ≥ 0, we define 
m(i)(w) := E[w(i)] + min{i, I(w)}. We prove that E(m(i+1) | m(i)) = m(i) , i.e., m(0), m(1), . . . forms a martingale. It has been 
shown in [15] that

E[X] =
∑
X

x
↪→ε

x +
∑

X
x

↪→Y

x · (1 + E[Y ]) +
∑

X
x

↪→Y Z

x · (1 + E[Y ] + E[Z ])
= 1 +

∑
X

x
↪→Y

x · E[Y ] +
∑

X
x

↪→Y Z

x · (E[Y ] + E[Z ]).
On the other hand, let us fix a path u ∈ FPath(X0) of length i + 1 and let w be an arbitrary run of Run(u). First assume that 
u(i) = Xα ∈ Γ Γ ∗ . Then we have:

E
[
m(i+1)

∣∣ Run(u)
]

= E
[

E
[

w(i + 1)
] + i + 1

∣∣ Run(u)
]

= i + 1 +E
[

E
[

w(i + 1)
] ∣∣ Run(u)

]
= i + 1 + E[α] +

∑
X

x
↪→Y

x · E[Y ] +
∑

X
x

↪→Y Z

x · (E[Y ] + E[Z ])
= E[X] + E[α] + i = E[Xα] + i = m(i)(w)

If u(i) = ε, then for every w ∈ Run(u) we have m(i+1)(w) = I(w) = m(i)(w). This proves that m(0), m(1), . . . is a martingale.
By Azuma’s inequality (see [28]), we have

P
(
m(n) − E[X0] ≥ n − E[X0]

) ≤ exp

(−(n − E[X0])2

2
∑n

k=1 B2

)
≤ exp

(
2E[X0] − n

2B2

)
.

For every w ∈ Run(X0) we have that w(n) �= ε implies m(n) ≥ n. It follows:

P(TX0 ≥ n) ≤ P
(
m(n) ≥ n

) ≤ exp

(
2E[X0] − n

2B2

)
≤ exp

(
1 − n

8E2
max

)
,

where the final inequality follows from the inequality B ≤ 2Emax . �
The following proposition establishes the upper bound of Theorem 4.1 (3):

Proposition 4.4. Let � be an almost surely terminating pBPA with stack alphabet Γ . Assume that X0 depends on all X ∈ Γ \ {X0}. Let 
pmin = min{p | X

p
↪→ α in �}. Let h denote the height of the DAG of SCCs. Then there is n0 ∈N such that

P(TX0 ≥ n) ≤ 18h|Γ |/p3|Γ |
min

n1/(2h+1−2)
for all n ≥ n0.



298 T. Brázdil et al. / Journal of Computer and System Sciences 81 (2015) 288–310
Proof sketch. A full proof is given in Section 4.1. Assume that E[X0] is infinite. To give some idea of the (quite involved) 

proof, let us first consider a simple pBPA � with Γ = {X} and the rules X
1/2
↪→ X X and X

1/2
↪→ ε. In fact, � is closely related to 

a simple random walk starting at 1, for which the time until it hits 0 can be exactly analyzed (see, e.g., [28, Chapter 10.12]). 
Clearly, we have h = |Γ | = 1 and pmin = 1/2. Theorem 4.1 (3) implies P(TX ≥ n) ∈ O(1/

√
n). Let us sketch why this upper 

bound holds.
Let θ > 0, define g(θ) := 1

2 · exp(−θ · (−1)) + 1
2 · exp(−θ · (+1)), and define for a run w ∈ Run(X) the sequence

m(i)
θ (w) =

{
exp(−θ · |w(i)|)/g(θ)i if i = 0 or w(i − 1) �= ε

m(i−1)
θ (w) otherwise.

One can show (cf. [28, Chapter 10.12]) that m(0)
θ , m(1)

θ , . . . is a martingale, i.e., E[m(i)
θ | m(i−1)

θ ] = m(i−1)
θ for all θ > 0. Our 

proof crucially depends on some analytic properties of the function g : R → R: It is easy to verify that 1 = g(0) < g(θ)

for all θ > 0, and 0 = g′(0), and 1 = g′′(0). One can show that Doob’s Optional-Stopping Theorem (see Theorem 10.10 (ii) 
of [28]) applies, which implies m(0)

θ = E[m(TX )
θ ]. It follows that for all n ∈ N and θ > 0 we have that

exp(−θ) = m(0)
θ = E

[
m(TX )

θ

] = E
[

g(θ)−TX
] =

∞∑
i=0

P(TX = i) · g(θ)−i

≤
n−1∑
i=0

P(TX = i) · 1 +
∞∑

i=n

P(TX = i) · g(θ)−n

= 1 − P(TX ≥ n) + P(TX ≥ n) · g(θ)−n (6)

Rearranging this inequality yields P(TX ≥ n) ≤ 1−exp(−θ)

1−g(θ)−n , from which one obtains, setting θ := 1/
√

n, and using the men-

tioned properties of g and several applications of l’Hopital’s rule, that P(TX ≥ n) ∈ O(1/
√

n).
Next we sketch how we generalize this proof to pBPAs that consist of only one SCC, but have more than one stack 

symbol. In this case, the term |w(i)| in the definition of m(i)
θ (w) needs to be replaced by the sum of weights of the symbols 

in w(i). Each Y ∈ Γ has a weight which is drawn from the dominant eigenvector of a certain matrix, which is characteristic 
for �. Perron–Frobenius theory guarantees the existence of a suitable weight vector �u ∈ R

Γ+ . The function g consequently 
needs to be replaced by a function gY for each Y ∈ Γ . We need to keep the property that g′′

Y (0) > 0. Intuitively, this means 
that � must have, for each Y ∈ Γ , a rule Y ↪→ α such that Y and α have different weights. This can be accomplished by 
transforming � into a certain normal form.

Finally, we sketch how the proof is generalized to pBPAs with more than one SCC. For simplicity, assume that � has only 
two stack symbols, say X and Y , where X depends on Y , but Y does not depend on X . Let us change the execution order 
of pBPAs as follows: whenever a rule with α ∈ Γ ∗ on the right hand side fires, then all X-symbols in α are added on top 
of the stack, but all Y -symbols are added at the bottom of the stack. This change does not influence the termination time 
of pBPAs, but it allows to decompose runs into two phases: an X-phase where X-rules are executed which may produce 
Y -symbols or further X-symbols; and a Y -phase where Y -rules are executed which may produce further Y -symbols but 
no X-symbols, because Y does not depend on X . Arguing only qualitatively, assume that TX is “large”. Then either (a) the 
X-phase is “long” or (b) the X-phase is “short”, but the Y -phase is “long”. For the probability of event (a) one can give an 
upper bound using the bound for one SCC, because the produced Y -symbols can be ignored. For event (b), observe that 
if the X-phase is short, then only few Y -symbols can be created during the X-phase. For a bound on the probability of 
event (b) we need a bound on the probability that a pBPA with one SCC and a “short” initial configuration takes a “long” 
time to terminate. The previously sketched proof for an initial configuration with a single stack symbol can be suitably 
generalized to handle other “short” configurations. All details are given in Section 4.1. �

The following proposition establishes the lower bound of Theorem 4.1 (3):

Proposition 4.5. Let � be an almost surely terminating pBPA with stack alphabet Γ . Assume that X0 depends on all X ∈ Γ \ {X0}. 
Assume E[X0] = ∞. Then there is c > 0 such that

c√
n

≤ P(TX0 ≥ n) for all n ∈ N.

The proof of Proposition 4.5 follows the lines of the previous proof sketch, but with an additional trick: To obtain the 
desired bound, one needs to take the derivative with respect to θ on both sides of Eq. (6). The full proof is given in 
Section 4.2.
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Tightness of the bounds in the case of infinite expectation If E[X0] is infinite, the lower and upper bounds of Theorem 4.1 (3) 
asymptotically coincide in the “strongly connected” case (i.e., where h = 1 holds for the height of the DAG of the SCCs of 
the dependence relation). In other words, in the strongly connected case we must have P(T ≥ n) ∈ Θ(1/

√
n). Otherwise 

(i.e., for larger h) the upper bound in Theorem 4.1 (3) cannot be substantially tightened. This follows from the following 
proposition:

Proposition 4.6. Let �h be the pBPA with Γh = {X1, . . . , Xh} and the following rules:

Xh
1/2

↪−−→ Xh Xh, Xh
1/2

↪−−→ Xh−1, . . . , X2
1/2

↪−−→ X2 X2, X2
1/2

↪−−→ X1, X1
1/2

↪−−→ X1 X1, X1
1/2

↪−−→ ε

Then [Xh] = 1, E[Xh] = ∞, and there is ch > 0 with

ch

n1/2h
≤ P(TXh ≥ n) for all n ∈ N.

Proposition 4.6 is proved in Section 4.3.

4.1. Proof of Proposition 4.4

In this subsection we prove Proposition 4.4. Given a finite set Γ , we regard the elements of RΓ as vectors. Given two 
vectors �u, �v ∈ R

Γ , we define a scalar product by setting �u �v := ∑
X∈Γ �u(X) · �v(X). Further, elements of RΓ ×Γ are regarded 

as matrices, with the usual matrix–vector multiplication.
It will be convenient for the proof to measure the termination time of pBPAs starting in an arbitrary initial configura-

tion α0 ∈ Γ Γ ∗ , not just with a single initial symbol X0 ∈ Γ . To this end we generalize TX0 , Run(X0), etc. to Tα0 , Run(α0), 
etc. in the straightforward way.

It will also be convenient to allow “pBPAs” that have transition rules with more than two stack symbols on the right-hand 
side. We call them relaxed pBPAs. All concepts associated to a pBPA, e.g., the induced Markov chain, termination time, etc., 
are defined analogously for relaxed pBPAs.

A relaxed pBPA is called strongly connected, if the DAG of the dependence relation on its stack alphabet consists of a 
single SCC.

For any α ∈ Γ ∗ , define #(α) as the Parikh image of α, i.e., the vector of NΓ such that #(α)(Y ) is the number of 
occurrences of Y in α. Given a relaxed pBPA �, let A� ∈R

Γ ×Γ be the matrix with

A�(X, Y ) =
∑

X
p

↪→α

p · #(α)(Y ).

We drop the subscript of A� if � is clear from the context. Intuitively, A(X, Y ) is the expected number of Y -symbols pushed 

on the stack when executing a rule with X on the left hand side. For instance, if X
1/5
↪→ X X and X

4/5
↪→ ε, then A(X, X) = 2/5. 

Note that A is nonnegative. The matrix A plays a crucial role in the analysis of pPDAs and related models (see e.g. [19]) and 
in the theory of branching processes [20]. We have the following lemma:

Lemma 4.7. Let � be an almost surely terminating, strongly connected pBPA. Then there is a positive vector �u ∈R
Γ+ such that A · �u ≤ �u, 

where ≤ is meant componentwise. All such vectors �u satisfy �umin�umax
≥ p|Γ |

min, where pmin denotes the least rule probability in �, and �umin

and �umax denote the least and the greatest component of �u, respectively.

Proof. Let X, Y ∈ Γ . Since � is strongly connected, there is a sequence X = X1, X2, . . . , Xn = Y with n ≥ 1 such that Xi
depends directly on Xi+1 for all 1 ≤ i ≤ n −1. A straightforward induction on n shows that An(X, Y ) �= 0; i.e., A is irreducible. 
The assumption that � is almost surely terminating implies that the spectral radius of A is less than or equal to one, see, 
e.g., Section 8.1 of [19]. Perron–Frobenius theory (see, e.g., [1]) then implies that there is a positive vector �u ∈ R

Γ+ such that 
A · �u ≤ �u; e.g., one can take for �u the dominant eigenvector of A.

Let A · �u ≤ �u. It remains to show that �umin�umax
≥ p|Γ |

min . The proof is essentially given in [13], we repeat it for convenience. 
W.l.o.g. let Γ = {X1, . . . , X|Γ |}. We write �ui for �u(Xi). W.l.o.g. let �u1 = �umax and �u|Γ | = �umin . Since � is strongly connected, 
there is a sequence 1 = r1, r2, . . . , rq = |Γ | with q ≤ |Γ | such that Xr j depends on Xr j+1 for all j. We have

�umin

�umax
= �u|Γ |

�u1
= �urq

�urq−1

· . . . · �ur2

�ur1

.

By picking the smallest factor in the product, we find j with 2 ≤ j ≤ q such that

�umin

� ≥
( �us

�
)q−1

≥
( �us

�
)|Γ |

where s := r j and t := r j−1. (7)

umax ut ut
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We have A · �u ≤ �u, which implies A(Xs, Xt) · �ut ≤ �us and so A(Xs, Xt) ≤ �us/�ut . On the other hand, since Xs depends on Xt , 
we clearly have pmin ≤ A(Xs, Xt). Combining those inequalities with (7) yields �umin�umax

≥ (A(Xs, Xt))
|Γ | ≥ p|Γ |

min . �
Given a relaxed pBPA � and vector �u ∈R

Γ+ , we say that � is �u-progressive, if � has, for all X ∈ Γ , a rule X ↪→ α such that 
|�u(X) − #(α) �u| ≥ �umin/2. The following lemma states that, intuitively, any pBPA can be transformed into a �u-progressive 
relaxed pBPA that is at least as fast but no more than |Γ | times faster.

Lemma 4.8. Let � be an almost surely terminating pBPA with stack alphabet Γ . Let pmin denote the least rule probability in �, and 
let �u ∈R

Γ+ with A� · �u ≤ �u. Then one can construct a �u-progressive, almost surely terminating relaxed pBPA �′ with stack alphabet Γ

such that for all α0 ∈ Γ ∗ and for all a ≥ 0

P ′(Tα0 ≥ a) ≤ P(Tα0 ≥ a) ≤ P ′(Tα0 ≥ a/|Γ |),
where P and P ′ are the probability measures associated with � and �′ , respectively. Furthermore, the least rule probability in �′ is 
at least p|Γ |

min, and A�′ · �u ≤ �u. Finally, if A� · �u = �u, then A�′ · �u = �u.

Proof. A sequence of transitions X1 ↪→ α1, . . . , Xn ↪→ αn is called derivation sequence from X1 to αn , if for all i ∈ {2, . . . , n}
the symbol Xi ∈ Γ occurs in αi−1. The word induced by a derivation sequence X1 ↪→ α1, . . . , Xn ↪→ αn is obtained by taking 
α1, replacing an occurrence of X2 by α2, then replacing an occurrence of X3 by α3, etc., and finally replacing an occurrence 
of Xn by αn .

Given a pBPA � and a derivation sequence s = (X1
p1
↪→ α1

1 X2α
2
1 , X2

p2
↪→ α2, . . . , Xn

pn
↪→ αn) with Xi �= X j for all 1 ≤ i <

j ≤ n, we define the contraction Con(s) of s, a set of X1-transitions with possibly more than two symbols on the right hand 
side. The contraction Con(s) will include a rule X1 ↪→ γ , where γ is the word induced by s. We define Con(s) inductively 
over the length n of s. If n = 1, then Con(s) = {X1

p1
↪→ α1

1 X2α
2
1}. If n ≥ 2, let s′ = (X2

p2
↪→ α2, . . . , Xn

pn
↪→ αn) and define

δ2 := {X2 ↪→ β | X2 ↪→ β is a rule in �} − {
X2

p2
↪→ α2

} ∪ Con
(
s′); (8)

i.e., δ2 is the set of X2-transitions in � with X2
p2
↪→ α2 replaced by Con(s′). W.l.o.g. assume δ2 = {X2

q1
↪→ β1, . . . , X2

qk
↪→ βk}. 

Then we define

Con(s) := {
X1

p1q1
↪→ α1

1β1α
2
1, . . . , X1

p1qk
↪→ α1

1βkα
2
1

}
.

The following properties are easy to show by induction on n:

(a) Con(s) contains X1 ↪→ γ , where γ is the word induced by s.
(b) The rule probabilities are at least pn

min .

(c) Let �′ be the relaxed pBPA obtained from � by replacing X1
p1
↪→ α1

1 X2α
2
1 with Con(s). Then each path in M�′ corre-

sponds in a straightforward way to a path in M� , namely to the path obtained by “re-expanding” the contractions. 
The corresponding path in M� has the same probability and is not shorter but at most |Γ | times longer than the one 
in M�′ .

(d) Let �′ be as in (c). Then A�′ · �u ≤ �u. Let us prove that explicitly. The induction hypothesis n = 1 is trivial. For the in-

duction step, using the definition for δ2 in (8) and δ2 = {X2
q1
↪→ β1, . . . , X2

qk
↪→ βk}, we know by the induction hypothesis 

that 
∑k

i=1 qi · #(βi) �u ≤ �u(X2). This implies

k∑
i=1

p1qi · #
(
α1

1βiα
2
1

) �u ≤ p1 · #
(
α1

1 X2α
2
1

) �u, and hence

(A�′ · �u)(X1) ≤ (A� · �u)(X1) ≤ �u(X1).

Since A� and A�′ may differ only in the X1-row, we have A�′ · �u ≤ �u.
(e) Let �′ be as in (c) and (d). If A� · �u = �u, then A�′ · �u = �u. This follows as in (d), with the inequality signs replaced by 

equality.

Associate to each symbol X1 ∈ Γ a shortest derivation sequence

c(X1) = (X1 ↪→ α1, . . . , Xn−1 ↪→ αn−1, Xn ↪→ ε)

from X1 to ε. Since � is almost surely terminating, the length of c(X1) is at most |Γ | for all X1 ∈ Γ . Let X1 ∈ Γ , and let 
γ1 denote the word induced by c(X1), and let γ2 denote the word induced by the derivation sequence c2(X1) := (X1 ↪→
α1, . . . , Xn−1 ↪→ αn−1). We have #(γ2) �u = #(γ1) �u + �u(Xn) ≥ #(γ1) �u + �umin , so we can choose γ ∈ {γ1, γ2} such that 
|�u(X1) − #(γ ) �u| ≥ �umin/2. Choose ĉ(X1) ∈ {c(X1), c2(X1)} such that ĉ(X1) induces γ . (Of course, if c2(X1) has length zero, 
take ĉ(X1) = c(X1).) Note that (X1 ↪→ γ ) ∈ Con(ĉ(X1)).



T. Brázdil et al. / Journal of Computer and System Sciences 81 (2015) 288–310 301
The relaxed pBPA �′ from the statement of the lemma is obtained by replacing, for all X1 ∈ Γ , the first rule of ĉ(X1)

with Con(ĉ(X1)). The properties (a)–(e) from above imply:

(a) The relaxed pBPA �′ is �u-progressive.
(b) The rule probabilities are at least p|Γ |

min .
(c) For each finite path w ′ in M�′ from some α0 ∈ Γ ∗ to ε there is a finite path w in M� from α0 to ε such that 

|w ′| ≤ |w| ≤ |Γ | · |w ′| and P ′(w ′) = P(w). Hence, P ′(Tα0 < a/|Γ |) ≤ P(Tα0 < a) ≤ P ′(Tα0 < a) holds for all a ≥ 0, 
which implies P ′(Tα0 ≥ a) ≤ P(Tα0 ≥ a) ≤ P ′(Tα0 ≥ a/|Γ |).

(d) We have A�′ · �u ≤ �u.
(e) If A� · �u = �u, then A�′ · �u = �u.

This completes the proof of the lemma. �
Proposition 4.9. Let � be an almost surely terminating relaxed pBPA with stack alphabet Γ . Let �u ∈ R

Γ+ be such that �umax = 1 and 
A� · �u ≤ �u and � is �u-progressive. Let pmin denote the least rule probability in �. Let C := 17|Γ |/(pmin · �u2

min). Then for each k ∈N0
there is n0 ∈N such that

P
(
Tα0 ≥ n2k+2/

(
2|Γ |)) ≤ C/n for all n ≥ n0 and for all α0 ∈ Γ ∗ with 1 ≤ |α0| ≤ nk.

Proof. For each X ∈ Γ we define a function g X : R →R by setting

g X (θ) :=
∑

X
p

↪→α

p · exp
(−θ · (−�u(X) + #(α) �u))

.

The following lemma states important properties of g X .

Lemma 4.10. The following holds for all X ∈ Γ :

(a) For all θ > 0 we have 1 = g X (0) < g X (θ).
(b) For all θ > 0 we have 0 ≤ g′

X (0) < g′
X (θ).

(c) For all θ ≥ 0 we have 0 < g′′
X (θ). In particular, g′′

X (0) ≥ pmin · �u2
min/4.

Proof of the lemma.

(a) Clearly, g X (0) = 1. The inequality g X (0) < g X (θ) follows from (b).
(b) We have:

g X (θ) =
∑

X
p

↪→α

p · exp
(−θ · (−�u(X) + #(α) �u))

g′
X (θ) =

∑
X

p
↪→α

p · (�u(X) − #(α) �u) · exp
(−θ · (−�u(X) + #(α) �u))

Let A(X) denote the X-row of A, i.e., the vector �v ∈R
Γ such that �v(Y ) = A(X, Y ). Then A · �u ≤ �u implies

g′
X (0) =

∑
X

p
↪→α

p · (�u(X) − #(α) �u)

= �u(X) −
∑

X
p

↪→α

p · #(α) �u = �u(X) − A(X) �u

≥ �u(X) − �u(X) = 0.

The inequality g′
X (0) < g′

X (θ) follows from (c).
(c) We have

g′′
X (θ) =

∑
X

p
↪→α

p · (�u(X) − #(α) �u)2 · exp
(−θ · (−�u(X) + #(α) �u))

> 0.

Since � is �u-progressive, there is a rule X
p

↪→ α with |�u(X) − #(α) �u| ≥ �umin/2. Hence, for θ = 0 we have g′′
X (0) ≥

pmin · �u2
min/4.

This proves the lemma. �
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We construct a martingale by generalizing the martingale from the proof sketch for Proposition 4.4. Let in the following 
θ > 0. Given a run w ∈ Run(α0) and i ≥ 0, we write X (i)(w) for the symbol X ∈ Γ for which w(i) = Xα. Define

m(i)
θ (w) =

{
exp(−θ · #(w(i)) �u) · ∏i−1

j=0
1

gX( j)(w)
(θ)

if i = 0 or w(i − 1) �= ε

m(i−1)
θ (w) otherwise

Lemma 4.11. m(0)
θ , m(1)

θ , . . . is a martingale.

Proof of the lemma. Let us fix a path v ∈ FPath(α0) of length i ≥ 1 and let w be an arbitrary run of Run(v). First assume 
that v(i − 1) = Xα ∈ Γ Γ ∗ . Then we have:

E
[
m(i)

θ

∣∣ Run(v)
]

= E

[
exp

(−θ · #
(

w(i)
) �u) ·

i−1∏
j=0

1

g X( j)(w)(θ)

∣∣∣∣ Run(v)

]

=
∑

X
p

↪→α

p · exp
(−θ · (#

(
w(i − 1)

) − �1X + #(α)
) �u) ·

i−1∏
j=0

1

g X( j)(w)(θ)

=
∑

X
p

↪→α

p · exp
(−θ · (#

(
w(i − 1)

) �u − �u(X) + #(α) �u)) ·
i−1∏
j=0

1

g X( j)(w)(θ)

= exp
(−θ · #

(
w(i − 1)

) �u) ·
∑

X
p

↪→α

p · exp
(−θ · (−�u(X) + #(α) �u)) ·

i−1∏
j=0

1

g X( j)(w)(θ)

= exp
(−θ · #

(
w(i − 1)

) �u) · g X(i−1)(w)(θ) ·
i−1∏
j=0

1

g X( j)(w)(θ)

= exp
(−θ · #

(
w(i − 1)

) �u) ·
i−2∏
j=0

1

g X( j)(w)(θ)

= m(i−1)
θ (w).

If v(i − 1) = ε, then for every w ∈ Run(v) we have m(i)
θ (w) = m(i−1)

θ (w). Hence, m(0)
θ , m(1)

θ , . . . is a martingale. �
Since θ > 0 and since g X( j)(w)(θ) ≥ 1 by Lemma 4.10 (a), we have 0 ≤ m(i)

θ (w) ≤ 1, so the martingale is bounded. Since, 
furthermore, Tα0 (we write only T in the following) is finite with probability 1, it follows using Doob’s Optional-Stopping 
Theorem (see Theorem 10.10 (ii) of [28]) that m(0)

θ = E[m(T)
θ ]. Let k ∈N0. For each n ∈N we have:

exp
(−θ · �umax · nk)

≤ exp
(−θ · �u #(α0)

) = m(0)
θ

= E
[
m(T)

θ

]
(by optional-stopping)

= E

[
exp(−θ · 0) ·

T−1∏
j=0

1

g X( j) (θ)

]

= E

[T−1∏
j=0

1

g X( j) (θ)

]

≤ E

[
1

g X (θ)T

]
(for some X ∈ Γ )

=
∞∑

P(T = i) · 1

g X (θ)i

i=0
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≤
�n2k+2/(2|Γ |)�−1∑

i=0

P(T = i) · 1 (Lemma 4.10 (a))

+
∞∑

i=�n2k+2/(2|Γ |)�
P(T = i) · 1

g X (θ)n2k+2/(2|Γ |)

= 1 − P
(
T ≥ n2k+2/

(
2|Γ |))

+ P
(
T ≥ n2k+2/

(
2|Γ |)) · 1

g X (θ)n2k+2/(2|Γ |)

Rearranging the inequality, we obtain

P
(
T ≥ n2k+2/

(
2|Γ |)) ≤ 1 − exp(−θ · �umax · nk)

1 − g X (θ)−n2k+2/(2|Γ |) . (9)

For the following we set θ = n−(k+1) . We want to give an upper bound for the right hand side of (9). To this end we will 
show:

lim
n→∞

(1 − exp(−n−(k+1) · �umax · nk)) · n

1 − g X (n−(k+1))−n2(k+1)/(2|Γ |) ≤ 1

1 − exp(−pmin · �u2
min/(16|Γ |)) . (10)

Combining (9) with (10), we obtain

lim sup
n→∞

n · P
(
T ≥ n2k+2/

(
2|Γ |)) ≤ 1

1 − exp(−pmin · �u2
min/(16|Γ |))

<
1

1 − (1 − 16
17 · (pmin · �u2

min/(16|Γ |)))
= 17|Γ |/(pmin · �u2

min

)
,

which implies the proposition. Here the second inequality is by observing that exp(−x) < 1 − 16
17 x holds for all x ∈ (0, 1

16 ).
To prove (10), we compute limits for the nominator and the denominator separately. For the nominator, we use l’Hopital’s 

rule to obtain:

lim
n→∞

1 − exp(−�umax · n−1)

n−1
= lim

n→∞
−�umax · n−2 · exp(−�umax · n−1)

−n−2
= �umax = 1.

For the denominator of (10) we consider first the following limit:

lim
n→∞

1

2|Γ | · n2(k+1) · ln g X
(
n−(k+1)

)
= 1

2|Γ | lim
n→∞

ln g X (n−(k+1))

n−2(k+1)

= 1

2|Γ | lim
n→∞

g′
X (n−(k+1)) · (−(k + 1)) · n−k−2

g X (n−(k+1)) · (−2(k + 1)) · n−2k−3
(l’Hopital’s rule)

= 1

4|Γ | lim
n→∞

g′
X (n−(k+1))

n−(k+1)
(by Lemma 4.10 (a)).

If g′
X (0) > 0, then the limit is +∞. Otherwise, by Lemma 4.10 (b), we have g′

X (0) = 0 and hence

= 1

4|Γ | lim
n→∞

g′′
X (n−(k+1)) · (−(k + 1)) · n−k−2

(−(k + 1)) · n−k−2
(l’Hopital’s rule)

= 1

4|Γ | g′′
X (0) ≥ pmin · �u2

min/(16|Γ |) (by Lemma 4.10 (c)).

This proves (10) and thus completes the proof of Proposition 4.9. �
The following lemma serves as induction base for the proof of Proposition 4.4.
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Lemma 4.12. Let � be an almost surely terminating pBPA with stack alphabet Γ . Assume that all SCCs of � are bottom SCCs. Let pmin

denote the least rule probability in �. Let D := 17|Γ |/p3|Γ |
min . Then for each k ∈N0 there is n0 ∈N such that

P
(
Tα0 ≥ n2k+2/2

) ≤ D/n for all n ≥ n0 and for all α0 ∈ Γ ∗ with 1 ≤ |α0| ≤ nk.

Proof. Decompose Γ into its SCCs, say Γ = Γ1 ∪· · ·∪Γs , and let the pBPA �i be obtained by restricting � to the Γi-symbols. 
For each i ∈ {1, . . . , s}, Lemma 4.7 gives a vector �ui ∈ R

Γi+ . W.l.o.g. we can assume for each i that the largest component 
of �ui is equal to 1, because �ui can be multiplied with any positive scalar without changing the properties guaranteed by 
Lemma 4.7. If the vectors �ui are assembled (in the obvious way) to the vector �u ∈ R

Γ+ , the assertions of Lemma 4.7 carry 
over; i.e., we have A� · �u ≤ �u and �umax = 1 and �umin ≥ p|Γ |

min . Let �′ be the �u-progressive relaxed pBPA from Lemma 4.8, and 
denote by P ′ and p′

min its associated probability measure and least rule probability, respectively. Then we have:

P
(
Tα0 ≥ n2k+2/2

) ≤ P ′(Tα0 ≥ n2k+2/
(
2|Γ |)) (by Lemma 4.8)

≤ 17|Γ |/(p′
min · �u2

min · n
)

(by Proposition 4.9)

≤ 17|Γ |/(p′
min · p2|Γ |

min · n
)

(as argued above)

≤ 17|Γ |/(p3|Γ |
min · n

)
(by Lemma 4.8). �

Now we are ready to prove Proposition 4.4, which is restated here.

Proposition 4.4. Let � be an almost surely terminating pBPA with stack alphabet Γ . Assume that X0 depends on all X ∈ Γ \ {X0}. Let 
pmin = min{p | X

p
↪→ α in �}. Let h denote the height of the DAG of SCCs. Then there is n0 ∈ N such that

P(TX0 ≥ n) ≤ 18h|Γ |/p3|Γ |
min

n1/(2h+1−2)
for all n ≥ n0.

Proof. Let D = 17|Γ |/p3|Γ |
min be the D from Lemma 4.12. We will show:

P
(
TX0 ≥ n2h+1−2) ≤ hD

n
for almost all n ∈N. (11)

Eq. (11) implies the proposition. Indeed, assume that P(TX0 ≥ m2h+1−2) ≤ hD
m holds for all m ≥ m0 for some m0 ∈ N. Let n

be large enough so that m2h+1−2 ≤ n ≤ (m + 1)2h+1−2 holds for some m ≥ m0. Then we have:

P(TX0 ≥ n) ≤ P
(
TX0 ≥ m2h+1−2) ≤ hD

m
≤ hD

n1/(2h+1−2) − 1
≤ 18

17
· hD

n1/(2h+1−2)
,

where the last inequality holds for large enough n. Thus we have shown that (11) implies the proposition.
We prove (11) by induction on h. The case h = 1 (induction base) is implied by Lemma 4.12. Let h ≥ 2. Partition Γ

into Γhigh ∪ Γlow such that Γlow contains the variables of the SCCs of depth h in the DAG of SCCs, and Γhigh contains the 
other variables (in “higher” SCCs). If X0 ∈ Γlow , then we can restrict � to the variables that are in the same SCC as X0, and 
Lemma 4.12 implies (11). So we can assume X0 ∈ Γhigh .

Assume for a moment that P(TX0 ≥ n2h+1−2) holds for a run w ∈ Run(X0); i.e., we have:

n2h+1−2 ≤ ∣∣{i ∈N0
∣∣ w(i) ∈ Γ Γ ∗}∣∣

= ∣∣{i ∈ N0
∣∣ w(i) ∈ ΓhighΓ

∗}∣∣ + ∣∣{i ∈N0
∣∣ w(i) ∈ ΓlowΓ ∗}∣∣.

It follows that one of the following events is true for w:

(a) At least n2h−2 steps in w have a Γhigh-symbol on top of the stack. More formally,∣∣{i ∈N0
∣∣ w(i) ∈ ΓhighΓ

∗}∣∣ ≥ n2h−2.

(b) Event (a) is not true, but at least n2h+1−2 − n2h−2 steps in w have a Γlow-symbol on top of the stack. More formally,∣∣{i ∈N0
∣∣ w(i) ∈ ΓhighΓ

∗}∣∣ < n2h−2 and∣∣{i ∈N0
∣∣ w(i) ∈ ΓlowΓ ∗}∣∣ ≥ n2h+1−2 − n2h−2.
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In order to give bounds on the probabilities of events (a) and (b), it is convenient to “reshuffle” the execution order of runs 
in the following way: Whenever a rule X ↪→ α is executed, we do not replace the X-symbol on top of the stack by α, but 
instead we push only the Γhigh-symbols in α on top of the stack, whereas the Γlow-symbols in α are added to the bottom of 
the stack. Since � is a pBPA and thus does not have control states, the reshuffling of the execution order does not influence 
the distribution of the termination time. The advantage of this execution order is that each run can be decomposed into 
two phases:

(1) In the first phase, the symbol on the top of the stack is always a Γhigh-symbol. When rules are executed, Γlow-symbols 
may be produced, which are added to the bottom of the stack.

(2) In the second phase, the stack consists of Γlow-symbols exclusively. Notice that by definition of Γlow , no new 
Γhigh-symbols can be produced.

In terms of those phases, the events (a) and (b) above can be reformulated as follows:

(a) The first phase of w consists of at least n2h−2 steps. The probability of this event is equal to

P�high

(
TX0 ≥ n2h−2),

where �high is the pBPA obtained from � by deleting all Γlow-symbols from the right hand sides of the rules and 
deleting all rules with Γlow-symbols on the left hand side, and P�high is its associated probability measure.

(b) The first phase of w consists of fewer than n2h−2 steps (which implies that at most n2h−2 Γlow-symbols are produced 
during the first phase), and the second phase consists of at least n2h+1−2 − n2h−2 steps. Therefore, the probability of the 
event (b) is at most

max
{
P�low

(
Tα0 ≥ n2h+1−2 − n2h−2) ∣∣ α0 ∈ Γ ∗

low, 1 ≤ |α0| ≤ n2h−2},
where �low is the pBPA � restricted to the Γlow-symbols, and P�low is its associated probability measure. Notice that 
n2h+1−2 − n2h−2 ≥ n2h+1−2/2 for large enough n. Furthermore, by the definition of Γlow , the SCCs of �low are all bottom 
SCCs. Hence, by Lemma 4.12, the above maximum is at most D/n.

Summing up, we have for almost all n ∈ N:

P
(
TX0 ≥ n2h+1−2) ≤ P

(
event (a)

) + P
(
event (b)

)
≤ P�high

(
TX0 ≥ n2h−2) + D/n (as argued above)

≤ (h − 1)D

n
+ D

n
= hD

n
(by the induction hypothesis).

This completes the induction proof. �
4.2. Proof of Proposition 4.5

The proof of Proposition 4.5 is similar to the proof of Proposition 4.4 from the previous subsection. Here is a restatement 
of Proposition 4.5.

Proposition 4.5. Let � be an almost surely terminating pBPA with stack alphabet Γ . Assume that X0 depends on all X ∈ Γ \ {X0}. 
Assume E[X0] = ∞. Then there is c > 0 such that

c√
n

≤ P(TX0 ≥ n) for all n ∈N.

Proof. For a square matrix M denote by ρ(M) the spectral radius of M , i.e., the greatest absolute value of its eigenvectors. 
Let A� be the matrix from the previous subsection. We claim:

ρ(A�) = 1. (12)

The assumption that � is almost surely terminating implies that ρ(A�) ≤ 1, see, e.g., Section 8.1 of [19]. Assume for a 
contradiction that ρ(A�) < 1. Using standard theory of nonnegative matrices (see, e.g., [1]), this implies that the matrix 
inverse B := (I − A�)−1 (here, I denotes the identity matrix) exists; i.e., B is finite in all components. It is shown in [15]
that E[X0] = (B · �1)(X0) (here, �1 denotes the vector with �1(X) = 1 for all X). This is a contradiction to our assumption that 
E[X0] = ∞. Hence, (12) is proved.
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It follows from (12) and standard theory of nonnegative matrices [1] that A� has a principal submatrix, say A′ , which 
is irreducible and satisfies ρ(A′) = 1. Let Γ ′ be the subset of Γ such that A′ is obtained from A by deleting all rows and 
columns which are not indexed by Γ ′ . Let �′ be the pBPA with stack alphabet Γ ′ such that �′ is obtained from � by 
removing all rules with symbols from Γ \ Γ ′ on the left hand side and removing all symbols from Γ \ Γ ′ from all right 
hand sides. Clearly, A�′ = A′ , so ρ(A�′ ) = 1 and A�′ is irreducible. Since �′ is a sub-pBPA of � and X0 depends on all 
symbols in Γ ′ , it suffices to prove the proposition for �′ and an arbitrary start symbol X ′

0 ∈ Γ ′ .
Therefore, w.l.o.g. we can assume in the following that A� = A is irreducible. Then it follows, using (12) and Perron–

Frobenius theory [1], that there is a positive vector �u ∈ R
Γ+ such that A · �u = �u. W.l.o.g. we assume �u(X0) = 1. Using 

Lemma 4.8 we can assume w.l.o.g. that � is �u-progressive. (The pBPA � may be relaxed.)
As in the proof of Proposition 4.9, for each X ∈ Γ we define a function g X :R →R by setting

g X (θ) :=
∑

X
p

↪→α

p · exp
(−θ · (−�u(X) + #(α) �u))

.

The following lemma states some properties of g X .

Lemma 4.13. The following holds for all X ∈ Γ :

(a) For all θ > 0 we have 1 = g X (0) < g X (θ).
(b) For all θ > 0 we have 0 = g′

X (0) < g′
X (θ).

(c) For all θ ≥ 0 we have 0 < g′′
X (θ).

(d) There is c2 > 0 such that for all 0 < θ ≤ 1 we have g′
X (θ) ≤ c2θ .

(e) There is c3 > 1 such that for all n ∈N we have g X (1/
√

n)n ≥ c3 .
(f) There is c4 > 0 such that for all n ∈N we have 1/n

1−1/g X (1/
√

n)
≤ c4 .

Proof of the lemma. The proof of items (a)–(c) follows exactly the proof of Lemma 4.10 and is therefore omitted. (For the 
equality 0 = g′

X (0) in (b) one uses A · �u = �u.)

(d) It suffices to prove that g′
X (θ)/θ is bounded for θ → 0. Using l’Hopital’s rule we have limθ→0 g′

X (θ)/θ = g′′
X (0) > 0.

(e) Clearly, we have g X (1/
√

n)n > 1 for all n. Furthermore, we have:

lim
n→∞ ln g X (1/

√
n)n = lim

n→∞
ln g X (n−1/2)

1/n

= 1

2
lim

n→∞
g′

X (n−1/2)

n−1/2
(l’Hopital’s rule)

= g′′
X (0)

2
(l’Hopital’s rule)

> 0 (by (c))

Hence the claim follows.
(f) The claim follows again from l’Hopital’s rule:

lim
n→∞

1/n

1 − 1/g X (n−1/2)
= lim

n→∞
−1/n2

(1/g X (n−1/2))2 · g′
X (n−1/2) · (−1/2)n−3/2

= lim
n→∞

2n−1/2

g′
X (n−1/2)

= 2

g′′
X (0)

< ∞

This completes the proof of the lemma. �
Let in the following θ > 0. As in the proof of Proposition 4.9, given a run w ∈ Run(X0) and i ≥ 0, we write X (i)(w) for 

the symbol X ∈ Γ for which w(i) = Xα. Define

m(i)
θ (w) =

{
exp(−θ · #(w(i)) �u) · ∏i−1

j=0
1

gX( j)(w)
(θ)

if i = 0 or w(i − 1) �= ε

m(i−1)
θ (w) otherwise

As in Lemma 4.11, one can show that the sequence m(0)
θ , m(1)

θ , . . . is a martingale. As in the proof of Proposition 4.9, Doob’s 

Optional-Stopping Theorem implies exp(−θ) = m(0) = E[m(TX0 )]. Hence we have for each n ∈ N (writing T for TX0 ):
θ θ



T. Brázdil et al. / Journal of Computer and System Sciences 81 (2015) 288–310 307
exp(−θ) = E
[
m(T)

θ

]
(by optional-stopping)

= E

[
exp(−θ · 0) ·

T−1∏
j=0

1

g X( j) (θ)

]

= E

[T−1∏
j=0

1

g X( j) (θ)

]

We show that by taking, on both sides, the derivative with respect to θ we get

exp(−θ) ≤
∞∑

i=1

i · P(T = i) · g′
1,θ (θ)

g0,θ (θ)i+1
, (13)

where g0,θ = g X and g1,θ = gY for some X, Y ∈ Γ possibly depending on θ . Indeed, we have:

exp(−θ) = − d

dθ
E

[T−1∏
j=0

1

g X( j) (θ)

]

= − d

dθ

∫
w∈Run(X0)

T(w)−1∏
j=0

1

g X( j)(w)(θ)
dP

=
∫

w∈Run(X0)

T(w)−1∑
i=0

g′
X(i)(w)

(θ)

g X(i)(w)(θ)2

∏
j∈{0,...,T(w)−1}\{i}

1

g X( j)(w)(θ)
dP

≤
∫

w∈Run(X0)

T(w)
g′

1,θ (θ)

g0,θ (θ)T(w)+1
dP

=
∞∑

i=1

i · P(T = i) · g′
1,θ (θ)

g0,θ (θ)i+1

The integral in this computation could in fact be replaced by a countable sum over terminating runs, because � is almost 
surely terminating. This justifies the exchange of the derivative and the integral in the third line of the previous computation. 
Thus (13) follows.

The following lemma bounds an “upper” subseries of the right-hand-side of (13).

Lemma 4.14. For all ε > 0 there is a ∈N such that for all n ∈N and θ = 1/
√

n we have

∞∑
i=an+1

i · P(T = i) · g′
1,θ (θ)

g0,θ (θ)i+1
≤ ε.

Proof of the lemma. By rearranging the series we get for all n ∈ N and θ = 1/
√

n:

∞∑
i=an+1

i · P(T = i) · g′
1,θ (θ)

g0,θ (θ)i+1

≤
an−1∑
i=0

P(T > an) · g′
1,θ (θ)

g0,θ (θ)an+2
+

∞∑
i=an

P(T > i) · g′
1,θ (θ)

g0,θ (θ)i+2

≤ an · P(T > an) · g′
1,θ (θ)

g0,θ (θ)an︸ ︷︷ ︸
=:q1

+
∞∑

i=an

P(T > i) · g′
1,θ (θ)

g0,θ (θ)i︸ ︷︷ ︸
=:q2

We bound q1 and q2 separately. By Proposition 4.4 there is c1 > 0 such that P(T > k) ≤ c1/
√

k. Hence we have, using 
Lemma 4.13 (d), (e):
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q1 ≤
√

an · c1 · c2/
√

n

ca
3

= c1c2
√

a

ca
3

, and similarly,

q2 ≤ c1√
an

· c2√
n

·
∞∑

i=an

1

g0,θ (θ)i

= c1c2√
a · n · g0,θ (θ)an · (1 − 1/g0,θ (θ))

≤ c1c2c4√
a · ca

3

(by Lemma 4.13 (e), (f)).

These bounds on q1 and q2 can be made arbitrarily small by choosing a large enough. This completes the proof of the 
lemma. �

This lemma implies a first lower bound on the distribution of T:

Lemma 4.15. For any c > 0 there is s ∈N such that for all n ∈N we have:

sn∑
i=1

i · P(T = i) ≥ c
√

n.

Proof of the lemma. Let a ∈N be the number from Lemma 4.14 for ε = exp(−1)/2. For all n ∈ N and θ = 1/
√

n we have:

g′
1,θ (θ) ·

an∑
i=1

i · P(T = i)

≥
an∑

i=1

i · P(T = i) · g′
1,θ (θ)

g0,θ (θ)i+1

≥ exp(−θ) − ε (by (13) and Lemma 4.14)

≥ exp(−1) − ε = ε (by the choice of ε),

so, with Lemma 4.13 (d) we have for all n ∈ N:

an∑
i=1

i · P(T = i) ≥ ε

c2

√
n.

For the given number c > 0, choose s := a�cc2/ε�2. Then it follows for all m ∈ N:

sm∑
i=1

i · P(T = i) ≥ c
√

m,

which proves the lemma. �
Now we can complete the proof of the proposition. By Proposition 4.4 there is c1 > 0 such that P(T > n) ≤ c1/

√
n for all 

n ∈N. By Lemma 4.15, there is s ∈ N such that

sn∑
i=1

i · P(T = i) ≥ (2c1 + 2)
√

n for all n ∈N.

We have for all n ∈ N:

sn∑
i=n

i · P(T = i) ≥
sn∑

i=1

i · P(T = i) −
n∑

i=1

i · P(T = i)

≥ (2c1 + 2)
√

n −
n∑

i=0

P(T > i) (by the choice of s above)

≥ (2c1 + 2)
√

n − 1 −
n∑ c1√

i
(by the choice of c1 above)
i=1
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≥ (2c1 + 1)
√

n −
n∫

0

c1√
i

di

= (2c1 + 1)
√

n − 2c1
√

n

= √
n

It follows:

snP(T ≥ n) ≥ sn
sn∑

i=n

P(T = i) ≥
sn∑

i=n

i · P(T = i)

≥ √
n (by the computation above)

Hence we have

P(T ≥ n) ≥ 1/s√
n

,

which completes the proof of the proposition. �
4.3. Proof of Proposition 4.6

Here is a restatement of Proposition 4.6.

Proposition 4.6. Let �h be the pBPA with Γh = {X1, . . . , Xh} and the following rules:

Xh
1/2

↪−−→ Xh Xh, Xh
1/2

↪−−→ Xh−1, . . . , X2
1/2

↪−−→ X2 X2, X2
1/2

↪−−→ X1, X1
1/2

↪−−→ X1 X1, X1
1/2

↪−−→ ε

Then [Xh] = 1, E[Xh] = ∞, and there is ch > 0 with

ch

n1/2h
≤ P(TXh ≥ n) for all n ∈ N.

Proof. Observe that the third statement implies the second statement, since

E[Xh] =
∞∑

n=1

P(TXh ≥ n) ≥
∞∑

n=1

ch · n−1/2h ≥
∞∑

n=1

ch/n = ∞.

We proceed by induction on h. Let h = 1. The pBPA �1 is equivalent to a random walk on {0, 1, 2, . . .}, started at 1, with 
an absorbing barrier at 0. It is well-known (see, e.g., [10]) that the probability that the random walk finally reaches 0 is 1, 
but that there is c1 > 0 such that the probability that the random has not reached 0 after n steps is at least c1/

√
n. Hence 

[X1] = 1 and P(TX1 ≥ n) ≥ c1/
√

n = c1 · n−1/2.
Let h > 1. The behavior of �h can be described in terms of a random walk Wh whose states correspond to the number 

of Xh-symbols in the stack. Whenever an Xh-symbol is on top of the stack, the total number of Xh-symbols in the stack 
increases by 1 with probability 1/2, or decreases by 1 with probability 1/2, very much like the random walk equivalent 

to �1. In the second case (i.e., the rule Xh
1/2
↪→ Xh−1 is taken), the random walk Wh resumes only after a run of �h−1

(started with a single Xh−1-symbol) has terminated. By the induction hypothesis, [Xh−1] = 1, so with probability 1 all 
spawned “sub-runs” of �h−1 terminate. Since Wh also terminates with probability 1, it follows [Xh] = 1.

It remains to show that there is ch > 0 with P(TXh ≥ n) ≥ ch · n−1/2h
for all n ≥ 1. Consider, for any n ≥ 1 and any � > 0, 

the event A� that Wh needs at least � steps to terminate (not counting the steps of the spawned sub-runs) and that at least 
one of the spawned sub-runs needs at least n steps to terminate. Clearly, TXh (w) ≥ n holds for all w ∈ A� , so it suffices to 
find ch > 0 so that for all n ≥ 1 there is � > 0 with P(A�) ≥ ch · n−1/2h

. At least half of the steps of Wh are steps down, so 
whenever Wh needs at least 2� steps to terminate, it spawns at least � sub-runs. It follows:

P(A�) ≥ P(Wh needs at least 2�steps) · (1 − (
P(TXh−1 < n)

)�)
≥ c1√

2�
· (1 − (

1 − ch−1 · n−1/2h−1)�)
(by induction hypothesis)

Now we fix � := n1/2h−1
. Then the second factor of the product above converges to 1 − e−ch−1 for n → ∞, so for large 

enough n

P(A�) ≥ c1

2
· (1 − e−ch−1

) · n−1/2h
.

Hence, we can choose ch <
c1
2 · (1 − e−ch−1 ) such that P(A�) ≥ ch · n−1/2h

holds for all n ≥ 1. �
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5. Conclusions and future work

We have provided a reduction from stateful to stateless pPDAs which gives new insights into the theory of pPDAs and at 
the same time simplifies it substantially. We have used this reduction and martingale theory to exhibit a dichotomy result 
that precisely characterizes the distribution of the termination time in terms of its expected value.

Although the bounds presented in this paper are asymptotically optimal, there is still space for improvements. We 
conjecture that our results can be extended to more general reward-based models, where each configuration is assigned 
a nonnegative reward and the total reward accumulated in a given service is considered instead of its length. This is 
particularly challenging if the rewards are unbounded (for example, the reward assigned to a given configuration may 
correspond to the total memory allocated by the procedures in the current call stack). Full answers to these questions 
would generalize some of the existing deep results about simpler models, and probably reveal an even richer underlying 
theory of pPDAs which is still undiscovered.
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