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1. Introduction

We study the termination time in programs with unbounded recursion, which are either randomized or operate on sta-
tistically quantified inputs. As underlying formal model for such programs we use probabilistic pushdown automata (pPDAs)
[4,7,14,15] which are equivalent to recursive Markov chains [17-19]. Since pushdown automata are a standard and well-
established model for programs with recursive procedure calls, our abstract results imply generic and tight tail bounds for
termination time, the main performance characteristic of probabilistic recursive programs.

A pPDA consists of a finite set of control states, a finite stack alphabet, and a finite set of rules of the form pX & qo,
where p, g are control states, X is a stack symbol, « is a finite sequence of stack symbols (possibly empty), and x € (0, 1]
is the (rational) probability of the rule. We require that for each pX, the sum of the probabilities of all rules of the form

pX & qo is equal to 1. Each pPDA A induces an infinite-state Markov chain M,, where the states are configurations
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function And (node)
if node.leaf then
return node.value
else
Vv := Or(node.left)
if v=0 then
return 0
else
return Or (node.right)

function Or (node)
if node.leaf then
return node.value
else
v := And(node.left)
if v=1 then
return 1
else
return And (node.right)

1/4 1/4
qA — 1€ q0 < r1¢e
1/4 1/4
qA — g€ q0 <> rpe
1/2 1/2
qA—qOA q0 < qAO
1 1
rpA <— rp€ rn0 —re
1 1
rnA < q0 100 —qA

Fig. 1. The program Tree and its pPDA model Afre. In A7y the control state q is the default control state, and the control states ro,ry model the return
values 0 and 1. The stack symbols A and O represent (invocations of) the procedures And and Or.

of the form pa (p is the current control state and « is the current stack content), and pXg X qa B is a transition of Ma

iff pX & go is a rule of A. We also stipulate that pe A pe for every control state p, where € denotes the empty stack. For
example, consider the pPDA A with two control states p, q, two stack symbols X, Y, and the rules

1/4 1/4 1/2 1 1/2 1/2 1
pX — pe, pX — pXX, pX —qy, pY < pY, qY — qX, qY — qe, gX — qY.

The structure of Markov chain M is indicated below.

1/4 1/4 1/4 1/4
156 X T XX 7 pXXX " PXXXX ™ e

pPDAs can model programs that use unbounded “stack-like” data structures such as stacks, counters, or even queues.
For instance, if the exact ordering of items stored in a queue is irrelevant, the queue can be safely replaced with a stack.
Transition probabilities may reflect the random choices of the program (such as “coin flips” in randomized algorithms)
or some statistical assumptions about the input data. In particular, pPDAs model recursive programs. The global data of
such a program are stored in the finite control, and the individual procedures and functions together with their local
data correspond to the stack symbols (a function call/return is modeled by pushing/popping the associated stack symbol
onto/from the stack). As a simple example, consider the recursive program Tree of Fig. 1, which computes the value of an
And/Or-tree, i.e., a tree such that (i) every node has either zero or two children, (ii) every inner node is either an And-node
or an Or-node, and (iii) on any path from the root to a leaf And- and Or-nodes alternate. We further assume that the root is
either a leaf or an And-node. Tree starts by invoking the function And on the root of a given And/Or-tree. Observe that the
program evaluates subtrees only if necessary. Now assume that the input are random And/Or trees following the distribution
of a Galton-Watson process: a node of the tree has two children with probability 1/2, and no children with probability 1/2.
Furthermore, the conditional probabilities that a childless node evaluates to O and 1 are also both equal to 1/2. On inputs
with this distribution, the algorithm corresponds to the pPDA Arpe, of Fig. 1.

We study the termination time of runs in a given pPDA A. For every pair of control states p, q and every stack symbol X
of A, let Run(pXq) be the set of all runs (infinite paths) in M initiated in pX which visit ge. The termination time
is modeled by the random variable Tpx, which to every run w assigns either the number of steps needed to reach a
configuration with empty stack, or oo if there is no such configuration. The conditional expected value E[T,x | Run(pXq)],
denoted just by E[pXq] for short, then corresponds to the average number of steps needed to reach q¢ from pX, computed
only for those runs initiated in pX which terminate at qe. For example, using the results of [14,15,19], one can show that
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the functions And and Or of the program Tree terminate with probability one, and the expected termination times can be
computed by solving a system of linear equations. Thus, we obtain the following:

ElqArg] =7.155113 ElqAr] =7.172218
E[qOro] =7.172218 E[qOr1] =7.155113
E[rgArg] =1.000000 E[r1Arg] =8.172218 E[r1Ar1] =8.155113
E[r1Orq] =1.000000 E[roOrq] =8.172218 E[roOrp] =8.155113

However, the mere expectation of the termination time does not provide much information about its distribution until
we analyze the associated tail bound, i.e., the probability that the termination time deviates from its expected value by
a given amount. That is, we are interested in bounds for the conditional probability P (Tp,x >n|Run(pXq)). (Note this
probability makes sense regardless of whether E[pXq] is finite or infinite.) Assuming that the (conditional) expectation
and variance of Tyx are finite, one can apply Markov's and Chebyshev’s inequalities and thus yield bounds of the form
P (Tpx =n|Run(pXq)) <c/n and P (Tpx >n|Run(pXq)) < c/n?, respectively, where ¢ is a constant depending only on
the underlying pPDA. However, these bounds are asymptotically always worse than our exponential bound (see below).
If E[pXq] is infinite, these inequalities cannot be used at all.

Our contribution The main contributions of this paper are the following:

e We show that every pPDA can be effectively transformed into a stateless pPDA (called “pBPA”) so that all important
quantitative characteristics of runs are preserved. This simple (but fundamental) observation was overlooked in previous
works on pPDAs and related models [4,7,14,15,17-19], although it simplifies virtually all of these results. Hence, we can
w.lo.g. concentrate just on the study of pBPAs. Moreover, for the runtime analysis, the transformation yields a pBPA all
of whose symbols terminate with probability one, which further simplifies the analysis.

e We provide tail bounds for T,x which are asymptotically optimal for every pPDA and are applicable also in the case when
E[pXq] is infinite. More precisely, we show that for every pair of control states p,q and every stack symbol X, there
are essentially three possibilities:

- There is a “small” k such that P(Tpx >n|Run(pXq)) =0 for all n > k.

- E[pXq] is finite and P (Tpx > n | Run(pXq)) decreases exponentially in n.

- E[pXq] is infinite and P (Tpx > n | Run(pXq)) decreases “polynomially” in n.

The exact formulation of this result, including the explanation of what is meant by a “polynomial” decrease, is given
in Theorem 4.1 (technically, Theorem 4.1 is formulated for pBPAs which terminate with probability one, which is no
restriction as explained above). Observe that a direct consequence of the above theorem is that all conditional moments
E[T’;X | Run(pXq)] are simultaneously either finite or infinite. Clearly, if E[pXq] = E[T,x | Run(pXq)] is infinite, then

so is E[T’{;x | Run(pXq)] for every k > 1. If E[pXq] is finite, then P (Tpx >n | Run(pXq)) decreases exponentially in n,
which means that there exist np > 1 and 0 <a <1 such that for all n >ng we have that P(Tyx >n | Run(pXq)) <a".

From this we easily obtain ]E[’IJ;X | Run(pXq)] < oo. In particular, if E[pXq] is finite, then so is the conditional variance
of Tpx.

The characterization given in Theorem 4.1 is effective. In particular, it is decidable in polynomial space whether E[pXq]
is finite or infinite by using the results of [14,15,19], and if E[pXq] is finite, we can compute concrete bounds on the
probabilities. Our results vastly improve on what was previously known on the termination time T,x. Previous work, in
particular [3,15], has focused on computing expectations and variances for a class of random variables on pPDA runs, a
class that includes Tpx as prime example. Note that our exponential bound given in Theorem 4.1 depends, like Markov’s
inequality, only on expectations, which can be efficiently approximated by the methods of [13,15].

An intuitive interpretation of our results is that pPDAs with finite (conditional) expected termination time are well-
behaved in the sense that the termination time is exponentially unlikely to deviate from its expectation. Of course, a detailed
analysis of a concrete pPDA may lead to better bounds, but these bounds will be asymptotically equivalent to our generic
bounds. Also note that the conditional expected termination time can be finite even for pPDAs that do not terminate with
probability one. Hence, for every € > 0 we can compute a tight threshold k such that if a given pPDA terminates at all, it
terminates after at most k steps with probability 1 — ¢ (this is useful for interrupting programs that are supposed but not
guaranteed to terminate).

Proof techniques The main mathematical tool for establishing our results on runtime is (basic) martingale theory and its
tools such as the optional stopping theorem and Azuma’s inequality (see Section 4). More precisely, we construct two
different martingales corresponding to the cases when the expected termination time is finite resp. infinite. In combination
with our reduction to pBPAs this establishes a powerful link between pBPAs, pPDAs, and martingale theory.

Our analysis of termination time in the case when the expected termination time is infinite builds on Perron-Frobenius
theory for nonnegative matrices as well as on recent results from [13,19]. We also use some of the observations presented
in [7,14,15].
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Related work The application of Azuma’s inequality in the analysis of particular randomized algorithms is also known as
the method of bounded differences; see, e.g., [11,25] and the references therein. In contrast, we apply martingale methods not
to particular algorithms, but to the pPDA model as a whole.

Analyzing the distribution of termination time is closely related to the analysis of multitype branching processes
(MT-BPs) [20]. An MT-BP is very much like a pBPA (see above). The stack symbols in pBPAs correspond to species in MT-
BPs. An g-rule corresponds to the death of an individual, whereas a rule with two or more symbols on the right hand side
corresponds to reproduction. Since in MT-BPs the symbols on the right hand side of rules evolve concurrently, termination
time in pBPAs does not correspond to extinction time in MT-BPs, but to the size of the total progeny of an individual, i.e., the
number of direct or indirect descendants of an individual. The distribution of the total progeny of a MT-BP has been studied
mainly for the case of a single species, see, e.g., [20,26,27] and the references therein, but to the best of our knowledge, no
tail bounds for MT-BPs have been given. Hence, Theorem 4.1 can also be seen as a contribution to MT-BP theory.

Stochastic context-free grammars (SCFGs) [24] are also closely related to pBPAs. The termination time in pBPAs corre-
sponds to the number of nodes in a derivation tree of a SCFG, so our analysis of pBPAs immediately applies to SCFGs.
Quasi-Birth-Death processes (QBDs) can also be seen as a special case of pPDAs. A QBD is a generalization of a birth-death
process studied in queuing theory and applied probability (see, e.g., [2,16,23]). Intuitively, a QBD describes an unbounded
queue, using a counter to count the number of jobs in the queue, where the queue can be in one of finitely many distinct
“modes”. Hence, a (discrete-time) QBD can be equivalently defined by a pPDA with one stack symbol used to emulate the
counter. These special pPDAs are also known as probabilistic one-counter automata (pOCs) [5,6,16]. Recently, it has been shown
in [8] that every pOC induces a martingale apt for studying the properties of both terminating and nonterminating runs in
pOCs. However, the paper [8] focuses on approximating (non-)termination probabilities and the expected termination time,
and does not study the distribution of the termination time, as we do in this paper. The constructions used in [8] are based
on ideas specific to pOCs that are unrelated to the ones presented in this paper.

Previous work on pPDAs and the equivalent model of recursive Markov chains includes [4,7,14,15,17-19]. In this paper
we use many of the results presented in these papers, which is explicitly acknowledged at appropriate places.

Organization of the paper We present our results after some preliminaries in Section 2. In Section 3 we show how to
transform a given pPDA into an equivalent pBPA, and in Section 4 we design the promised martingales and derive tight tail
bounds for the termination time. We conclude in Section 5.

2. Preliminaries

In the rest of this paper, N, Ng, and R denote the set of positive integers, nonnegative integers, and real numbers,
respectively. The tuples of A; x Ay x --- x A, are often written simply as aqay...a,. The set of all finite words over a given
alphabet X is denoted by X'*, and the set of all infinite words over X' is denoted by X“. We write ¢ for the empty word.
The length of a given w € X* U X® is denoted by |w|, where the length of an infinite word is cc. Given a word (finite or
infinite) over X, the individual letters of w are denoted by w(0), w(1),... For X € ¥ and w € X*, we denote by #(X)(w)
the number of occurrences of X in w.

Definition 2.1 (Markov Chains). A Markov chain is a triple M = (S, —, Prob) where S is a finite or countably infinite set
of states, — C S x S is a transition relation, and Prob is a function which to each transition (s,t) € — assigns its prob-

ability Prob((s,t)) > 0 so that for every s € S we have ) ., Prob((s,t)) = 1. We write s X t to indicate that s — ¢ and
Prob((s,t)) = x.

A path in M is a finite or infinite word w € S* U S® such that w(i — 1) — w(i) for every 1 <i < |w|. For a state s, we
use FPath(s) to denote the set of all finite paths initiated in s. A run in M is an infinite path in M. We denote by Run[M]
the set of all runs in M. The set of all runs that start with a given finite path w is denoted by Run[M](w). When M is
understood, we write just Run and Run(w) instead of Run[M] and Run[M](w), respectively. For a given run w and i € Np,
we use w; to denote the run w(i), w(i+1), w(i+2),.... Given s€ S and A C S, we say A is reachable from s if there is a run
w such that w(0) =s and w(i) € A for some i > 0.

To every s € S we associate the probability space (Run(s), F,P) where F is the o-field generated by all basic cylin-
ders Run(w) where w is a finite path starting with s, and P : F — [0, 1] is the unique probability measure such that

P (Run(w)) = [T/ ™" x; where w(i — 1) 2 w(i) for every 1 <i < |wl|. If |w| =1, we put P(Run(w)) = 1. Note that only
certain subsets of Run(s) are P-measurable, but in this paper we only deal with “safe” subsets that are guaranteed to be
in F. We remark that, technically, F and P depend on the start state s, but we suppress this dependence, as long as s is

clear from the context.

Definition 2.2 (Probabilistic PDA). A probabilistic pushdown automaton (pPDA) is a tuple A = (Q, I',—, Prob) where Q is a
finite set of control states, I" is a finite stack alphabet, < C (Q x I') x (Q x I'=2) is a transition relation (where I'S? =
{a € I'* | || <2}), and Prob is a function which to each transition (pX, qo) €= assigns its probability Prob((pX, qa)) > 0
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so that for all p € Q and X € I' we have that prgqa Prob((pX,qo)) = 1. We write pX & qo to indicate that pX — qo
and Prob((pX, qa)) = x.

Elements of Q x I'* are called configurations of A. A pPDA with just one control state is called pBPA.> In what follows,
configurations of pBPAs are usually written without the (only) control state p (i.e., we write just « instead of po). We
define the size* of a pPDA A as |A|=|Q |+ |I'| 4+ |<>| + |Prob|, where |Prob| is the sum of sizes of binary representations
of values taken by Prob. To A we associate the Markov chain M with Q x I'* as the set of states and transitions defined
as follows:

. ps—l> pe foreach pe Q;
e pXB X qa B is a transition of M, iff pX & qo is a transition of A.

For all pXqe Q xI' x Q and rY € Q x I', we define

e Run(pXq) = {w € Run(pX) | w(i) = q¢ for some i € N}
e Run(rY1) =Run(rY)\ USEQ Run(rYs).

Further, we put [pXq] =P (Run(pXq)) and [pX1] =P (Run(pX1)). If A is a pBPA, we write [X] and [X1] instead of [pXp]
and [pX*], where p is the only control state of A.

Let pa € Q x I'’*. We denote by Ty, a random variable over Run(pa) where T,y (W) is either the least n € Ng such that
w(n) = g¢ for some q € Q, or oo if there is no such n. Intuitively, Ty (w) is the number of steps (“the time”) in which
the run w initiated in pa terminates. We write E[po] := E[Tpy] for the expected termination time (usually omitting the
control state p for pBPAs).

3. Transforming pPDAs into pBPAs

In this section we show how to transform a given pPDA A into an “equivalent” pBPA A, such that all stack symbols of
A, terminate either with probability 0 or 1. This transformation preserves virtually all interesting properties and it is to
some extent effective. However, the transition probabilities in A, may take irrational values.

Let A=(Q, I',—, Prob) be a pPDA. The construction of the associated pBPA A, is a relatively straightforward modifica-
tion of the standard method for transforming a PDA into an equivalent context-free grammar (see, e.g., [21]), but has so far
been overlooked in the existing literature on probabilistic PDA. The stack alphabet I, of A, is defined as follows: For every
pX € Q x I' such that [pX1] > 0 we add a fresh stack symbol (pX+1), and for every pXqe Q x I x Q such that [pXq] >0
we add a fresh stack symbol (pXq). Note that I', is effectively constructible in polynomial space by applying the results of
[14,19]. Now we construct the rules —, of A,. For all (pXq) € I, we have the following rules:

X
o if pX X rYZin A, then for all s € Q such that y =x-[rYs]-[sZq] > 0 we put (pXq) M. (rYs)(sZq);
X
o if pX XY in A, where y =x-[rYq] > 0, we put (pXq) M. (ryq);
X
o if prL ge in A, we put (pXq) M. €
For all (pX*) € I, we have the following rules:
. X . y/[pX1]
e if pX<—1rYZ in A, then for every s € Q where y =x-[rYs]-[sZ1] >0 we add (pX1) ———, (rYs)(sZ1);

X
e for all qY € Q x I where y =[qY1]- préqyﬂz >0, we add (pX1) M, qY1).

Observe that all symbols of the form (pX1) terminate with probability 0, and we show that all symbols of the form
(pXq) terminate with probability 1. Also note that the transition probabilities of A, may take irrational values. Still, the
construction of A, is to some extent “effective” due to the following proposition:

Proposition 3.1. (See [14,19].) Let A = (Q, I", <, Prob) be a pPDA. Let pXq € Q x I' x Q. There is a formula @ (x) of ExTh(R)
(the existential theory of the reals) with one free variable x such that the length of ® (x) is polynomial in |A| and @ (x/r) is valid iff
r=[pXql.

3 The “BPA” acronym stands for “Basic Process Algebra” and is used mainly for historical reasons. pBPAs are closely related to stochastic context-free
grammars and are also called 1-exit recursive Markov chains (see, e.g., [19]).

4 When a pPDA A is used as an input of some algorithm, we assume that all transition probabilities of A are rational and represented as fractions of
binary integers.
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Using Proposition 3.1, one can compute formulae of ExTh(R) that “encode” transition probabilities of A,. Moreover,
these probabilities can be effectively approximated up to an arbitrarily small positive error by employing either the decision
procedure for ExTh(R) [9] or by using Newton’s method [12,13,22].

Example 3.2. Consider a pPDA A with two control states p,q, one stack symbol X, and the following transitions, where
a>1/2:

pr—a)qXX, pxﬂqe, qu—a>pXX, qu]—_a>p8,

Clearly, [pXp] = [qXq] = 0. Using the results of [14], one can easily verify that [pXq] = [qXp] = (1 — a)/a. Hence, [pX1] =
[gX1] = (2a — 1)/a. Consequently, the stack symbols of A, are (pXq), (qXp), (pX*), and {(gX*), and the transitions of A,
are the following:

(pXq) —=5>. (@XP)(PXq)  (qXP) ——>. (pXq)(gXp)
(pXq) >. & (aXp) . ¢

(PX1) =, @Xp)(PX1)  (gX1) ——> (pXq)(aX1)
(pX1) <> (gX1) (gX1) <> (pX1)

As a > 1/2, the resulting pBPA has a tendency to decrease the stack height. Hence, both (pXq) and (qXp) terminate with
probability 1.

Every run of M, initiated in pX that reaches ge can be “mimicked” by the associated run of M,, initiated in (pXq).
Similarly, almost every® run of M, initiated in pX that does not visit a configuration with empty stack corresponds to some
run of My, initiated in (pX1).

Example 3.3. Let A be a pPDA with two control states p, q, one stack symbol X, and the following transitions:

0.5 0.5 1
pX — pXX, pX — qe, gxX — qe.
Then [pXq] =1 and [gXq] =1, which means that A, has just two stack symbols (pXq), (gXq), and the transitions

0.5 0.5 1
(pXq) — o (pXq)(gXq), (pXq) —. €, (@Xq) —. €.
The infinite run pX, pXX, pXXX, ... does not correspond to any run in M, (note that (pX1) ¢ I,), but since the total
probability of all infinite runs initiated in pX is zero, we still have that almost all (but not all) of these runs correspond to
some run in Ma,.

The correspondence between the runs of Ma and My, is formally captured by a finite family of functions Tz where
© € QU{1}. For every run w € Run(pX) in M4, the function 7 returns an infinite sequence wg such that wg (i) € I, U{x}
for every i € No. The sequence wg is either a run of M,, initiated in (pX®), or an invalid sequence. As we shall see, all
invalid sequences have an infinite suffix of “x” symbols and correspond to those runs of Run(pX) that cannot be mimicked
by a run of Run({pX®)).

So, let ® € Q U {1}, and let w be a run of M initiated in pX. We define an infinite sequence wq over I U {x}
inductively as follows:

e wg(0) is either (pX®) or x, depending on whether (pX®) € I', or not, respectively.
o If wg(i) = x or wg(i) = ¢, then wg(i+1) = wg(i). Otherwise, we have that wg (i) = (pXT)a, where 7€ Q U {1}, and
w(i) = pXy for some y € I'*. Let pX < rf8 be the rule of A used to derive the transition w(i) - w(i+1). We put
o iff=candf=r;
rYf)a if =Y and [rY{] > O;
(rYs)(sZf)a ifB=YZ, [sZ{] >0, and thereis k > i such that w(k) =sZy
and the stack length in all w(j), wherei < j <k, is strictly larger

woli+1) = than the stack length in w(i);
rY Mo if=YZ, T=1[rY1] > 0, and the stack length in every w(j), where j > i,
is strictly larger that the stack length in w(i);
X otherwise.

5 Here “almost every” is meant in the usual probabilistic sense, i.e., the probability of the remaining runs is zero.
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We say that w € Run(pX) is O-invalid if wg (i) = x for some i € Ng. Otherwise, w is ©-valid. It is easy to check that w is
O-valid iff wg € Run({pX®)). Hence, T can be seen as a partial function from Run(pX) to Run({pX®)) which is defined
only for ®-valid runs. Further, for every ®-valid w € Run(pX) and every i € Ny we have that

o w(i)=rYBiff wo(i) =(rYf)y for some € Q U{t}and y € I'},
e w(i)=re iff wg(i)=¢ and ©=r.

Hence, Ty, preserves all properties of runs that depend just on the heads of visited configurations. Further, 7 preserves the
probability of all measurable subsets of Run(pX) with respect to a probability measure P defined as follows. Let F be the
standard o -field over Run(pX) generated by all basic cylinders (see Section 2). The function P is the unique probability
function over F such that for every w € FPath(pX) we have that

P (Run(w) NRun(pX®))
[pXQ]

where P is the standard probability function introduced in Section 2. Note that P (R) = P(RNRun(pX©®))/[pX®] for every
ReF.
Now we can state the main proposition, which says that 7%, is a probability preserving measurable function.

Po (Run(w)) =

Proposition 3.4. Let A = (Q, I, —, Prob) beapPDA, p € Q, X € I',and ® € I" U {1} such that [pX®] > 0. Then for every measur-
able subset R C Run({pX®)) we have that Te‘l (R) € Run(pX) is measurable and P (R) = P@(TO_l (R)). Here Te_l (R) is the set of
all w € Run(pX) such that wg € R.

Proof. Since the probability space (Run({pX®)), F,P) is generated by all Run(v) where v € FPath({pX@®)), it suffices to
show that Te_l(Run(v)) is measurable and P (Run(v)) = P@(To_l(Run(v))) for all v € FPath({pXQ®)).

Let us start with some auxiliary observations. Note that every configuration y reachable from (pX®) in Mj, is of the
form y = (p1X1p2) - - - (Pk—1Xk—1Dk) (P Xk®) where k > 0 (if k=0, then y = ¢). We put

Plyl=Ip1Xip2l---[Pr—1Xk—1Pk] - [Pk Xk O]

Further, we say that a configuration pa of A is compatible with y if p=p1 and o = X1 --- Xy, where g € I'*. If © # 1, we
also require that 8 =¢. A run w of Ma models y, written w = y, if the following conditions are satisfied:

e w is initiated in a configuration p;Xj - -- Xg8 compatible with y;
e w starts with a finite prefix of the form

p1X1-- XkB =" paXa- - XeB =" - = DXk B

where for all 1 <i <k, the stack length of all intermediate configurations visited along the subpath p;X;--- Xg8 —*
Di+1Xi41--- XgB is at least | X; - - - XgB|. Further, if ® =1, then the stack length in all configurations visited after py X8
is at least | X B|; and if ® =q for some g € Q, then the above prefix is followed by a path from p;X; to qe (recall that
B=c¢if ©=q).

A straightforward induction on k reveals that for every configuration p1Xj --- Xy compatible with  we have that

P({w e Run(p1 X1 -+ XiB) | w = v }) = Ply] (1)

Now we can continue with the main proof. For a finite path u in M ending in a configuration pé and a set of runs
R C Run(pd), we write u @ R to denote the set of all runs obtained by concatenating u and w; for some w € R. Let
vV =0y, ..., o, be a finite path in M, initiated in (pX©®). We say that a finite path podo, ..., pndn in M initiated in pX is
compatible with v if p;8; is compatible with «; for every 0 <i <n. Let C(v) be the set of all finite paths compatible with v.
It is easy to check (by induction on n) that

15" (Run(ao, ..., on)) = U P03, - .. Pndn ® {W € Run(pndy) | w = an} (2)
P0do,-...Pndn€C (o, ....0n)
Hence, Tg] (Run(wy, ..., ay)) is measurable. By combining (1) and (2) we further obtain
_1 Plog]
Po (Y5 (Run(ao, ..., an))) = X0l Z P (Run(podo, - .., Pndn)) (3)

P0d0;--, Pndn€C (o, ....0n)

It remains to prove that P@(Te_l(Run(oto,...,an))) = P(Run(wy, ...,ay)). We proceed by induction on n. In what
follows, the symbols P and Pg are slightly overloaded since we need to consider sets of runs initiated in various con-
figurations.
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In the base case, when n =0 and «p = (pX©®), we have that P (Run({pX©®))) =1 and

_PLoXO) g

Po(75" (Run((pX@)))) = PXO] P (Run(podo)) = 1

Podo€C((pXO))

by applying (3) (note that P[(pX®)] = [pX®] and the only path initiated in pX compatible with (pX®) is pX).

For the inductive step, let us denote the finite path «g,...,oz—1 by v (i.e,, v=0p,...,0n =V, o), and let x be the prob-
ability of the transition oy—1 — o in Ma,. By induction hypothesis, P@(TO’I(Run(f/))) = P (Run(v)), and by applying (3)
we get

_ Plan—1]
P (Run(v)) = [px—"oi : > P (Run(podo. - .., Prn—18n-1)) (4)
P0d0, -+, Pn—18n-1€C(V)

Further, for every configuration p,—18,—1 which is compatible with «;—1 we have that

P({w € Run(pp—18n—1) | w E an—1. w1 Ean}) =x-P({w € Run(pn—16n-1) | W = an—1}) (5)
Equality (5) follows easily by considering possible forms of the rule that induces the transition o1 =X oy. From now
on we use u to range over C(v), and u to range over C(Vv). That is, u abbreviates podp, ..., pndn, and u abbreviates
podo, ..., Pn—16n—1. However, we keep writing p,d, instead of u(n), and p,_18,—1 instead of ui(n — 1), because we find
these symbols more suggestive. Using this notation, we finally obtain that Py (75 1(Run(v))) is equal to

P@( U u® {weRun(paso) | w »=an}) (by (2)

ueC(v)
1
= P U u® {w e Run(ppdn) | w k= o } (defn. of Pg)
[pXQ] ueC(v)
1 _
= 'P< U U@{WERun(pn—l‘sn—1)|W':an—lywl':an}>
[pXO] it
ueC(v)
1 -
= ‘ Z P(i @ {w € Run(pn—18n-1) | W = otn—1, w1 = atn})
[pXO] _~—
ueC(v)
1 _
= -y P(Run@)-x-P({w e Run(pn-18p-1) | w = an1})  (by(5)
[pXOl =
ueC(v)
X- P[(anl] Z _
=" . P (Run(i1)) (by (1))
[pXO] iieC(v)
=x-P(Run(v)) = P (Run(v)) (by (4)) O

In particular, Proposition 3.4 implies that all symbols of the form (pXq) which belong to I', terminate with probability 1.
To see this, let R be the set of all terminating runs initiated in (pXq). By Theorem 3.4, we obtain P(R) = Pq(Tq”(R)) =
Pg(Run(pXq)) = 1.

It is worth noting that all configurations reachable from a nonterminating configuration (pX+*) € I', take the form
a{qY?), where o terminates almost surely and (qY1) never terminates. It follows that A, can be transformed into a
finite-state Markov chain whose states are the nonterminating symbols of I,, and transitions correspond to finite paths
between two consecutive visits to nonterminating symbols. This finite-state Markov chain is very useful when investigating
the properties of nonterminating runs, and many of the existing results about pPDAs can be substantially simplified using
this approach.

Another consequence of Proposition 3.4 is the following:

Proposition 3.5. Let pXq € Q x I' x Q and [pXq] > 0. Then for all n € N we have that

P(Tpx =n|Run(pXq)) =P (Tpxq =n).
Here, Tpx : Run(pX) — No and T, xq) : Run({pXq)) — Ny are the random variables introduced in Section 2.

Proof. Let R be the set of all w € Run({pXq)) such that T;pxq,(w) = n. Observe that TQ_I(R) is the set R of all W Run(pXq)
such that Tpx (W) = n. Hence,

P(Tpxq =n) =P (R) =Py(Y, ' (R)) =Pq(R) =P(R)/[pXql =P (Tpx =n | Run(pXq)) O
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4. Analysis of pBPAs

In this section we establish the promised tight tail bounds for the termination time. By virtue of Proposition 3.5, it
suffices to analyze almost surely terminating pBPAs, i.e., only pBPAs such that all stack symbols terminate with probability 1.
In what follows we assume that A is such a pBPA, and we also fix an initial stack symbol Xy. For X,Y € I, we say that
X depends directly on Y, if there is a rule X < « such that Y occurs in «. Further, we say that X depends on Y, if either X
depends directly on Y, or X depends directly on a symbol Z € I' which depends on Y. One can compute, in linear time,
the directed acyclic graph (DAG) of strongly connected components (SCCs) of the dependence relation. The height of this
DAG, denoted by h, is defined as the longest distance between a top SCC and a bottom SCC plus 1 (i.e.,, h =1 if there is
only one SCC). We can safely assume that all symbols on which X does not depend were removed from A. We abbreviate

P (Tx, = n|Run(Xo)) to P(Tx, >n), and we use py;, to denote min{p | X L o in A}. Here is our main result:

Theorem 4.1. Let A be an almost surely terminating pBPA with stack alphabet I'. Assume that Xo € I" dependson all X € I' \ {Xo},

and let ppmin = min{p | X L ain A}. Then one of the following is true:

(1) P(Tx, =21 =0.
(2) E[Xo] is finite and for all n € N with n > 2E[X(] we have that

n
Pmin < P(Txy 2 1) < exp(] - F)
max

where Epqx = maxyer E[X].
(3) E[Xo] is infinite and there is ng € N such that for all n > ny we have that

c/n'/2 <P (Tx, = n) <d/n®
where di = 18h|F|/pi1|i1,;|, and dy = 1/(2"+1 — 2). Here, h is the height of the DAG of SCCs of the dependence relation, and c is a
suitable positive constant depending on A.

More colloquially, Theorem 4.1 states that A satisfies either (1) or (2) or (3), where (1) is when A does not have any
long terminating runs; and (2) resp. (3) is when the expected termination time is finite (resp. infinite) and the probability
of performing a terminating run of length n decreases exponentially (resp. polynomially) in n.

One can effectively distinguish between the three cases set out in Theorem 4.1. More precisely, case (1) can be recognized
in polynomial time by looking only at the structure of the pBPA, i.e., disregarding the probabilities. Determining whether
E[Xo] is finite or infinite can be done in polynomial space by employing the results of [3,15]. This holds even if the transition
probabilities of A are represented just symbolically by formulae of ExTh(R) (see Proposition 3.1).

The proof of Theorem 4.1 is based on designing suitable martingales that are used to analyze the concentration of
the termination time. Recall that a martingale is an infinite sequence of random variables m©@, m™ ... such that, for all
ieN, E[lm?|] < oo, and EmD |m® . m®]=m® almost surely. If m® —m{—D| <¢; for all i € N, then we have the
following Azuma’s inequality (see, e.g., [28]):

—t2
Pm™ -m®>1) < exp<7)
== 2
ZZZ:] Ck

We split the proof of Theorem 4.1 into four propositions (namely Propositions 4.2-4.5 below), which together imply
Theorem 4.1.
The following proposition establishes the lower bound from Theorem 4.1 (2):

Proposition 4.2. Let A be an almost surely terminating pBPA with stack alphabet I'. Let pmin = min{p | X L o in A}. Assume that
P (Tx, > 271y > 0. Then we have
min <P(Tx, >n) forallneN.

Proof. Let Tyx,(w) >n for some n € N and some w € Run(Xp). It follows from the definition of the probability space of a
pPDA that the set of all runs starting with w(0), w(1),..., w(n) has a probability of at least pgﬁn. Therefore, in order to
complete the proof, it suffices to show that P(Tx, > 2!"'!) > 0 implies P (Tx, > n) > 0 for all n € N.

To this end, we use a form of the pumping lemma for context-free languages. Notice that a pBPA can be regarded as a
context-free grammar with probabilities (a stochastic context-free grammar) with an empty set of terminal symbols and I"
as the set of nonterminal symbols. Each finite run w € Run(Xp) corresponds to a derivation tree with root X that derives

the word ¢. The termination time Ty, is the number of (internal) nodes in the tree. In the rest of the proof we use this
correspondence.
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Let P(Tx, > 2"y > 0. Then there is a run w € Run(Xg) with Tx,(w) > 2", This run w corresponds to a derivation tree
with at least 2/”'! (internal) nodes. In this tree there is a path from the root (labeled with Xg) to a leaf such that on this
path there are two different nodes, both labeled with the same symbol. Let us call those nodes n; and ny, where ny is the
node closer to the root. By replacing the subtree rooted at n, with the subtree rooted at n; we obtain a larger derivation
tree. This completes the proof. O

The following proposition establishes the upper bound of Theorem 4.1 (2):

Proposition 4.3. Let A be an almost surely terminating pBPA with stack alphabet I". Assume that Xo depends on all X € I \ {Xo}.
Define

Emax :=maxE[X] and B := max
Xel’ X—>a

1—E[X]+ ) #(Y)(@)- E[Y]‘.

YeI"
Then for alln € N with n > 2E[Xo] we have
PMy >n) <exp ol =1 _o(1- "
Xo ==& p— =P\ T gp2_ )

Proof. Let w € Run(Xo). We denote by I(w) the maximal number j >0 such that w(j — 1) # ¢. Given i > 0, we define
m®(w) := E[w(i)] + min{i, [(w)}. We prove that Em{+D | m®) =m® ie, m©@ m® .. . forms a martingale. It has been
shown in [15] that

E[X]=Y x4+ Y x-(1+EY)+ > x-(1+E[Y]+E[Z])
xSe xSy xSyz
=1+ > x-E[Y]+ Y x-(E[Y]+E[Z]).
XSy xSyz
On the other hand, let us fix a path u € FPath(Xy) of length i + 1 and let w be an arbitrary run of Run(u). First assume that
u(i) = Xa € I'T*. Then we have:
E[m*V | Run(u)]

=E[E[w(i+ D] +i+1|Run)]

=i+1+E[E[w(@i+1)]|Run()]

=i+1+Eal+ Y x-EY]+ Y x-(E[Y]+E[Z])

xSy x&yz
= E[X]+ E[a] +i = E[Xa] +i=m?(w)

If u(i) = ¢, then for every w € Run(u) we have mU*tD(w) = I(w) = m® (w). This proves that m©@ m™, ... is a martingale.
By Azuma’s inequality (see [28]), we have

—n— 2 B
P (m™ — E[Xo] > n — E[Xo]) < exp<w> - exp<25[xol ”)_

2Y p_1B2 2B?

For every w € Run(Xg) we have that w(n) # e implies m™ > n. It follows:

2E[Xo] —n n
P (Tx, zn)sP(m(”)zn)sexp(#> sexp<1— 3 )
2B 8Emax

where the final inequality follows from the inequality B < 2En.. O
The following proposition establishes the upper bound of Theorem 4.1 (3):

Proposition 4.4. Let A be an almost surely terminating pBPA with stack alphabet I". Assume that Xo dependson all X € I' \ {Xo}. Let
Pmin = min{p | X L « in A}. Let h denote the height of the DAG of SCCs. Then there is ng € N such that

min
n]/(2h+1_2)

18h|r|/pL]

P(Tx, >n) < foralln > ng.
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Proof sketch. A full proof is given in Section 4.1. Assume that E[X,] is infinite. To give some idea of the (quite involved)

proof, let us first consider a simple pBPA A with I = {X} and the rules X lf XX and X 3—/3 . In fact, A is closely related to
a simple random walk starting at 1, for which the time until it hits O can be exactly analyzed (see, e.g., [28, Chapter 10.12]).
Clearly, we have h =|I'| =1 and py; = 1/2. Theorem 4.1 (3) implies P (Tx > n) € O(1/4/n). Let us sketch why this upper
bound holds.

Let 6 > 0, define g(0) := % -exp(—60 - (—1)) + % -exp(—0 - (+1)), and define for a run w € Run(X) the sequence

(i) . exp(—0~|w(i)|)/g(9)i ifi=0orw(@i—1)#¢
my (W) = (i-1) .
my, ' (w) otherwise.

One can show (cf. [28, Chapter 10.12]) that m((,O),mé]),... is a martingale, i.e., E[mg) | mg_l)] = mg_l) for all 6 > 0. Our
proof crucially depends on some analytic properties of the function g: R — R: It is easy to verify that 1 = g(0) < g(9)
for all # >0, and 0 = g’(0), and 1 = g”(0). One can show that Doob’s Optional-Stopping Theorem (see Theorem 10.10 (ii)

of [28]) applies, which implies méo) = ]E[méT")]. It follows that for all n € N and 6 > 0 we have that

exp(—0) =m =E[m™] =E[g@®) ] =) PTx=i)-g@®)"

i=0
n—1 00
<Y P@x=i)-14+) PTx=i)-g@)"
i=0 i=n
=1-PTx>n)+P(Tx>n)-g®)™" (6)
Rearranging this inequality yields P (Tx >n) < %, from which one obtains, setting 6 := 1/+/n, and using the men-

tioned properties of g and several applications of I'Hopital’s rule, that P (Tx >n) € O(1/4/n).

Next we sketch how we generalize this proof to pBPAs that consist of only one SCC, but have more than one stack
symbol. In this case, the term |w(i)| in the definition of mg)(w) needs to be replaced by the sum of weights of the symbols
in w(i). Each Y € I' has a weight which is drawn from the dominant eigenvector of a certain matrix, which is characteristic
for A. Perron-Frobenius theory guarantees the existence of a suitable weight vector i € Ri. The function g consequently
needs to be replaced by a function gy for each Y € I". We need to keep the property that g{ (0) > 0. Intuitively, this means
that A must have, for each Y € I', a rule Y < « such that Y and « have different weights. This can be accomplished by
transforming A into a certain normal form.

Finally, we sketch how the proof is generalized to pBPAs with more than one SCC. For simplicity, assume that A has only
two stack symbols, say X and Y, where X depends on Y, but Y does not depend on X. Let us change the execution order
of pBPAs as follows: whenever a rule with & € I'* on the right hand side fires, then all X-symbols in « are added on top
of the stack, but all Y-symbols are added at the bottom of the stack. This change does not influence the termination time
of pBPAs, but it allows to decompose runs into two phases: an X-phase where X-rules are executed which may produce
Y-symbols or further X-symbols; and a Y-phase where Y-rules are executed which may produce further Y-symbols but
no X-symbols, because Y does not depend on X. Arguing only qualitatively, assume that Tx is “large”. Then either (a) the
X-phase is “long” or (b) the X-phase is “short”, but the Y-phase is “long”. For the probability of event (a) one can give an
upper bound using the bound for one SCC, because the produced Y-symbols can be ignored. For event (b), observe that
if the X-phase is short, then only few Y-symbols can be created during the X-phase. For a bound on the probability of
event (b) we need a bound on the probability that a pBPA with one SCC and a “short” initial configuration takes a “long”
time to terminate. The previously sketched proof for an initial configuration with a single stack symbol can be suitably
generalized to handle other “short” configurations. All details are given in Section 4.1. O

The following proposition establishes the lower bound of Theorem 4.1 (3):

Proposition 4.5. Let A be an almost surely terminating pBPA with stack alphabet I". Assume that Xy depends on all X € I" \ {Xo}.
Assume E[Xg] = oo. Then there is ¢ > 0 such that

- <P(Tx,>n) forallneN.

Jn

The proof of Proposition 4.5 follows the lines of the previous proof sketch, but with an additional trick: To obtain the
desired bound, one needs to take the derivative with respect to # on both sides of Eq. (6). The full proof is given in
Section 4.2.
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Tightness of the bounds in the case of infinite expectation If E[Xo] is infinite, the lower and upper bounds of Theorem 4.1 (3)
asymptotically coincide in the “strongly connected” case (i.e., where h =1 holds for the height of the DAG of the SCCs of
the dependence relation). In other words, in the strongly connected case we must have P(T > n) € ®(1/4/n). Otherwise
(i.e., for larger h) the upper bound in Theorem 4.1 (3) cannot be substantially tightened. This follows from the following
proposition:

Proposition 4.6. Let Ap, be the pBPA with I, = {X1, ..., Xp} and the following rules:

172 1/2 1/2 1/2 12 12
Xn — XpXp, Xp— Xp_1, ..., Xo—>X2X2, Xo— X1, X1— X1X1, X1 ¢

Then [Xp] =1, E[Xy] = o0, and there is ¢, > 0 with

Ch
/2 <P(Tx,=n) forallneN.

Proposition 4.6 is proved in Section 4.3.
4.1. Proof of Proposition 4.4

In this subsection we prove Proposition 4.4. Given a finite set I", we regard the elements of R’ as vectors. Given two
vectors i, v € RT", we define a scalar product by setting ii*V := >y ti(X) - V(X). Further, elements of R"*!" are regarded
as matrices, with the usual matrix-vector multiplication.

It will be convenient for the proof to measure the termination time of pBPAs starting in an arbitrary initial configura-
tion g € I'T"*, not just with a single initial symbol Xo € I'. To this end we generalize Tx,, Run(Xop), etc. to Tg,, Run(oo),
etc. in the straightforward way.

It will also be convenient to allow “pBPAs” that have transition rules with more than two stack symbols on the right-hand
side. We call them relaxed pBPAs. All concepts associated to a pBPA, e.g., the induced Markov chain, termination time, etc.,
are defined analogously for relaxed pBPAs.

A relaxed pBPA is called strongly connected, if the DAG of the dependence relation on its stack alphabet consists of a
single SCC.

For any o« € I'*, define #(«) as the Parikh image of «, ie. the vector of N/ such that #(«)(Y) is the number of
occurrences of Y in «. Given a relaxed pBPA A, let Ax € RT"™*! be the matrix with

Aa(X,Y)= " p-#@)(Y).
X‘E)Ol
We drop the subscript of A if A is clear from the context. Intuitively, A(X, Y) is the expected number of Y-symbols pushed

1/5 4/5
on the stack when executing a rule with X on the left hand side. For instance, if X ci> XX and X <L> g, then A(X, X) =2/5.
Note that A is nonnegative. The matrix A plays a crucial role in the analysis of pPDAs and related models (see e.g. [19]) and
in the theory of branching processes [20]. We have the following lemma:

Lemma4.7. Let A be an almost surely terminating, strongly connected pBPA. Then there is a positive vector il € Ri suchthat A-u < i,

where < is meant componentwise. All such vectors i satisfy % > plf;“L where pmin denotes the least rule probability in A, and il

and iiyqx denote the least and the greatest component of i, respectively.

Proof. Let X,Y € I'. Since A is strongly connected, there is a sequence X = X1, X2,..., Xy =Y with n> 1 such that X;
depends directly on X;j41 for all 1 <i <n—1. A straightforward induction on n shows that A™(X,Y) # 0; i.e., A is irreducible.
The assumption that A is almost surely terminating implies that the spectral radius of A is less than or equal to one, see,
e.g., Section 8.1 of [19]. Perron-Frobenius theory (see, e.g., [1]) then implies that there is a positive vector i e }Ri such that
A -1 <1ii; e.g., one can take for ii the dominant eigenvector of A.

Let A - i <ii. It remains to show that %‘M > p}ﬂ The proof is essentially given in [13], we repeat it for convenience.
max
Wlo.g. let I' ={Xj,..., X|r|}. We write #; for u(X;). W.Lo.g. let i1 = limgx and uUjp| = timin. Since A is strongly connected,
there is a sequence 1=r1,12,...,1rg =|I"| with g <|I"| such that er depends on erH for all j. We have
nin _ Uiry _ Urg -l
amax ﬁ] arq,l arl

By picking the smallest factor in the product, we find j with 2 < j < g such that

: NIl NI
Umin Us Us
= > == > == wheres:=rjandt:=r;_1. (7)
Umax ug Ue
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We have A - i < 1, which implies A(Xs, X¢) - iy <15 and so A(Xs, X;) < iis/us. On the other hand, since X; depends on X;,
we clearly have pyin < A(Xs, X¢). Combining those inequalities with (7) yields %’ﬁ > (A(Xs, X )T > pllﬂ ]

Given a relaxed pBPA A and vector i € R%, we say that A is ti-progressive, if A has, for all X € I', a rule X — « such that
[ti(X) — #(ct)*li| > timin/2. The following lemma states that, intuitively, any pBPA can be transformed into a ii-progressive
relaxed pBPA that is at least as fast but no more than |I"| times faster.

Lemma 4.8. Let A be an almost surely terminating pBPA with stack alphabet I". Let pni, denote the least rule probability in A, and
letii e ]Ri with A - 1 < 1. Then one can construct a ti-progressive, almost surely terminating relaxed pBPA A’ with stack alphabet I’
such that for all g € I'* and for alla > 0

P'(Toy = @) <P (Tey > a) <P'(Tgy > a/IT]),

where P and P’ are the probability measures associated with A and A’, respectively. Furthermore, the least rule probability in A’ is

at least P;:;L and Ap/ -t < . Finally, if A - U =1, then Ax - U = 1l.
Proof. A sequence of transitions Xi; < o1, ..., Xp <> oy is called derivation sequence from X1 to «y, if for all i € {2,...,n}
the symbol X; € I' occurs in «j_1. The word induced by a derivation sequence Xi < o1, ..., Xp <> &, is obtained by taking

o1, replacing an occurrence of X, by a5, then replacing an occurrence of X3 by a3, etc., and finally replacing an occurrence
of X, by o

Given a pBPA A and a derivation sequence s = (X; L2y a}XZa%, X5 & o,..., Xn & ap) with X; # X forall 1 <i <
j <n, we define the contraction Con(s) of s, a set of X;-transitions with possibly more than two symbols on the right hand
side. The contraction Con(s) will include a rule X; — y, where y is the word induced by s. We define Con(s) inductively

over the length n of s. If n =1, then Con(s) = {X; & a}Xzaf}. Ifn>2lets =(Xy <p—2> oy, ..., Xy & o) and define

8 :={Xa > B| Xz Bisarulein A} — {X; L oz} U Con(s'); (8)
i.e., 8y is the set of X,-transitions in A with X, g o replaced by Con(s’). W.lo.g. assume & = {X> EIY B1,..., X2 Jk Brl).
Then we define

Con(s) := {X; AR alprod, .. X ARG o] pra?}.

The following properties are easy to show by induction on n:

(a) Con(s) contains X; < y, where y is the word induced by s.
(b) The rule probabilities are at least p}. .

(c) Let A’ be the relaxed pBPA obtained from A by replacing X; 2 a}Xz(xf with Con(s). Then each path in M,/ corre-
sponds in a straightforward way to a path in Ma, namely to the path obtained by “re-expanding” the contractions.
The corresponding path in M has the same probability and is not shorter but at most |I"| times longer than the one
in M.

(d) Let A’ be as in (c). Then A,/ -1 < 1. Let us prove that explicitly. The induction hypothesis n =1 is trivial. For the in-
duction step, using the definition for 8, in (8) and 8, = {X> iy B1,..., X2 S Bk}, we know by the induction hypothesis
that 3K, q; - #(Bi)+ii < i(Xy). This implies

k
Zplq,- -#(oz]]ﬂ,-a]z)-ﬁ <p1 -#(ozlleoclz)-ﬁ, and hence
i=1

(Ap - W)(X1) < (Aa - 1) (X1) < U(X1).

Since Ap and A, may differ only in the Xi-row, we have A/ -1 <1ii.
(e) Let A’ be as in (c) and (d). If Aa - =1, then A - il = u. This follows as in (d), with the inequality signs replaced by
equality.

Associate to each symbol X; € I a shortest derivation sequence

(X=X =>a1,...,Xn-1 = Ap—1, Xy = &)

from X; to &. Since A is almost surely terminating, the length of c(X7) is at most |I"| for all X; € I". Let X1 € I', and let
y1 denote the word induced by c(X7), and let y, denote the word induced by the derivation sequence c(X1) := (X1 —
A1y .. Xno1 <> ap—1). We have #(yo) il = #(y1) U + U(Xn) > #(y1) *U + Umin, SO we can choose y € {y1, 2} such that
[Ui(X1) — #(y)*i| > limin/2. Choose ¢(X1) € {c(X1),c2(X1)} such that &(X;) induces y. (Of course, if c2(X1) has length zero,
take ¢(X1) = c(X1).) Note that (X7 < y) € Con(¢(X1)).
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The relaxed pBPA A’ from the statement of the lemma is obtained by replacing, for all X; € I, the first rule of ¢(X;)
with Con(¢(X7)). The properties (a)-(e) from above imply:

(a) The relaxed pBPA A’ is ii-progressive.

(b) The rule probabilities are at least p'nfl,L

(c) For each finite path w’ in M,/ from some g € I'* to ¢ there is a finite path w in M from «g to & such that
[w'| < |w| <|I'|-|w| and P’(w') = P(w). Hence, P'(Ty, < a/|I"|) < P(Tg, < a) < P'(Ty, < a) holds for all a >0,
which implies P’ (To(0 >a) <P (Ty, > a) <P'(Ty, >a/|T)).

(d) We have AA/ U <1l

(e) If Ap -li=1i, then Ay -1 =1i.

This completes the proof of the lemma. O
Proposition 4.9. Let A be an almost surely terminating relaxed pBPA with stack alphabet I'. Let ii € ]RF be such that timgy = 1 and

Aa -1 <1iand A is U-progressive. Let pmin denote the least rule probability in A. Let C := 17|I"|/(Pmin - U2,; ). Then for each k € Ng
there is ng € N such that

mm

P(Too = n**2/(2II"|)) <C/n foralln > ng and for all atg € I'* with 1 < |arg| < n¥.

Proof. For each X € I we define a function gx : R — R by setting

gx(0):= Y p-exp(—0 - (—i(X) + #(a)+i)).
X<—>oz

The following lemma states important properties of gx.

Lemma 4.10. The following holds for all X € I'":

(a) Forall6 > 0 we have 1 = gx(0) < gx(0).

(b) Forall 6 > 0 we have 0 < g% (0) < g% (6).

(c) Forall 6 > 0 we have 0 < g% (6). In particular, g% (0) > pip - ﬁgﬂ.n/4.

Proof of the lemma.

(a) Clearly, gx(0) = 1. The inequality gx(0) < gx(0) follows from (b).

(b) We have:
gx©0)= ) p-exp(=6 - (—i(X) + #(@)+1))
Xfia
g@ =Y p-(UX)—#(@)eu)-exp(—0 - (—U(X) + #(@) 1))
X<£>ot

Let A(X) denote the X-row of A, i.e., the vector v € R’ such that v(Y) = A(X, Y). Then A - i <u implies
gx0) = Y p- (U(X) —#(a)+ii)
14
X—>a
=U(X)— Y p-#@)i=0(X)— AX)U
x5a
>u(X)—u(X)=0

The inequality g (0) < g’ (6) follows from (c).
(c) We have

- 2 - -
gk@ =Y p-(UX) —#(@)u)" - exp(—0 - (~U(X) + #(a)*11)) > 0.
X=£>ot
Since A is u-progressive, there is a rule X L o with |t(X) — #(a) U] > lpmin/2. Hence, for 6 =0 we have g (0) >
Pmin - a%—”‘n/‘l'

This proves the lemma. O
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We construct a martingale by generalizing the martingale from the proof sketch for Proposition 4.4. Let in the following
§ > 0. Given a run w € Run(cg) and i > 0, we write X® (w) for the symbol X € I" for which w(i) = X«. Define

(,)( {exp( 0 -#(w(i))eu) - ]_[] ngm—w)(g) ifi=0orw(@i—1)#¢

mé"” (w) otherwise

Lemma4.11. méo), mg), ... IS a martingale.

Proof of the lemma. Let us fix a path v € FPath(ap) of length i > 1 and let w be an arbitrary run of Run(v). First assume
that v(i — 1) = Xa € I'T"*. Then we have:

E[m, m | Run(v)]

=E|exp(—6 -# W(l) —— | Run(v)
|: ( ( l:[ Exh ) (©) i|
i—1
= > pexp(=0- (#(w(i — 1) — Ix +#(@)*il) - [ [ ———
i—0 X(J)(w)(e)
X=—>o¢ J
— 1
ex w(i—1) -u—u(X)+#(a)-u _
Z b p ( ) U X(J>(w)(9)
X;)a -
i—1
=exp(—0 - #(w(i —1))*u Z p-exp(—0 - (—u(X) + #(x) 1) ]—[7
i—0 X(])(W)(O)
X%a J=
i—1 1
=exp(—0 -#(w@i—1))*u) - gyi-1)y,(O) - _
( ( ) ) XEDw) 1_[ gx(})(w)(e)
i—2 1
=exp(—0 - #W(z—l) -u _
( ( ]1:!) gx(1>(w)(9)
(1 ])(W)
If v(i — 1) = ¢, then for every w € Run(v) we have m(l)(w) (’ 1)(W). Hence, m(go),mél), ... Is a martingale. O

Since 6 > 0 and since gxy)(@) > 1 by Lemma 4.10 (a), we have 0 < mg)(w) <1, so the martingale is bounded. Since,
furthermore, Ty, (we write only T in the following) is finite with probability 1, it follows using Doob’s Optional-Stopping

Theorem (see Theorem 10.10 (ii) of [28]) that m(o) E[m(T)] Let k € Np. For each n € N we have:
exp(—0 - limax - 1¥)

<exp(—0 - l#(ap)) = méo)

= E[méT)] (by optional-stopping)

r T-1 1
=E 6-0
oo l_[ gxu>(9):|

-1

1
=E
_]l:!) gxi (0) i|

1
<E (for some X € I'")
_gx(Q)T]
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m2+2/2|rp1-1

< > P(T=i)-1 (Lemma 4.10 (a))
i=0
+ > P(T=i)- !

W2/ IT)
i= 22/ )] £x(0)

=1-P(T=n*"/(2I1)))

2k+2 R T wpsa—
+P(T=n""/(2T)) ax () @IT])

Rearranging the inequality, we obtain

1—exp(—0 - limax - 1¥)

2k+2
PI=n™%/QIN) = S o " aim

9)
For the following we set & =n~®*+1D_ We want to give an upper bound for the right hand side of (9). To this end we will
show:

lim (1 —exp(—n —(k+1) . umax k)) Tl< 1
n—oo 1 — gy(n—k+D)=w*V/QCD T 1 — exp(—ppmin - U2, /(16]T]))

(10)

Combining (9) with (10), we obtain

1

limsupn - P(T > n2k+2/(2|r|))

n—>00 1 — exp(—Pmin - (1611°1))

mm/
1
< 16 ,
1— (1= 13 - (Pmin - Uy, /(16]T°])))
= 17|F|/(pmin : ﬁﬁu'n),
which implies the proposition. Here the second inequality is by observing that exp(—x) <1 — %x holds for all x € (0, 11—6).

To prove (10), we compute limits for the nominator and the denominator separately. For the nominator, we use I'Hopital’s
rule to obtain:

- —1 - -2 - -1
1—exp(—Umax-n"") —Umax N~ 7 -eXp(—Umax-N"") -

lim 1 = lim 5 =Upax = 1.
n—o0 n— n— o0 —n—
For the denominator of (10) we consider first the following limit:
1
lim —— - n2®&+D g gy (=D
n—o00 2|T| 8x( )
1. Ingx@ *tD)
= lim
2| n>o0  p=2(k+D)
= {0 B ol G ) R ('Hopital’s rule)
2|l n—>o00 gx (n=k+D) . (=2(k + 1)) - n=2k=3
1 (n—k+1)
Ex( ) (by Lemma 4.10 (a)).

T 4o p-GkFD

If g%(0) > 0, then the limit is +oo. Otherwise, by Lemma 4.10 (b), we have g/ (0) =0 and hence

L. gy *Dy (—(k+ 1)) -n~k2

= 4|F| nLoo (—(k+ 1)) -n—k=2 (I'Hopital’s rule)

:4|r| £%(0) = Prmin - tpnin/ (161T) (by Lemma 4.10 (c)).

This proves (10) and thus completes the proof of Proposition 4.9. O

The following lemma serves as induction base for the proof of Proposition 4.4.
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Lemma 4.12. Let A be an almost surely terminating pBPA with stack alphabet I". Assume that all SCCs of A are bottom SCCs. Let pmin
denote the least rule probability in A. Let D := 17|F|/pﬂi1;‘. Then for each k € Ny there is ng € N such that
P (T, =n**2/2) <D/n foralln > ng and for all g € I'* with 1 < |atg| < n¥.

Proof. Decompose I" into its SCCs, say I" = I'7U---UT%, and let the pBPA A; be obtained by restricting A to the I;-symbols.
For each i € {1,...,s}, Lemma 4.7 gives a vector ii; € Rf. W.l.o.g. we can assume for each i that the largest component
of ii; is equal to 1, because ii; can be multiplied with any positive scalar without changing the properties guaranteed by
Lemma 4.7. If the vectors ii; are assembled (in the obvious way) to the vector i € Rﬂ;. the assertions of Lemma 4.7 carry
over; i.e.,, we have Ap - <1 and Umaex = 1 and Uiy > perrL Let A’ be the u-progressive relaxed pBPA from Lemma 4.8, and
denote by P and p/ , its associated probability measure and least rule probability, respectively. Then we have:

P (To = n*F2/2) < P'(Toy = n***2/(21'|))  (by Lemma 4.8)

<171/ (Phin - Uyin - 1) (by Proposition 4.9)
<171/ (Prin - pfn‘lgl -n) (as argued above)
<17\r1/(p2!" - n) (bylemma48). O

Now we are ready to prove Proposition 4.4, which is restated here.

Proposition 4.4. Let A be an almost surely terminating pBPA with stack alphabet I". Assume that Xy dependsonall X € I \ {Xo}. Let

Pmin = min{p | X L oain A}. Let h denote the height of the DAG of SCCs. Then there is ng € N such that
3|1

18h|T"|/p2):
P(Tx, = 1) < [T/ D in

= W fOTalln 2 n().

Proof. Let D = 17|F|/p;‘£‘ be the D from Lemma 4.12. We will show:

hD
P(Tx, > nzhﬂ’z) =— for almost alln € N. (11)

oh

Eq. (11) implies the proposition. Indeed, assume that P (Tx, > m +1‘2) < %D holds for all m > mg for some mg € N. Let n

be large enough so that m2""' =2 <n < (m + 1)2""'~2 holds for some m > mo. Then we have:

hD hD 18 hD
<

P(Tx, >n) <P (Tx zmzhH*Z) < <———< = —
0 0 m — pl/@"1-2) _ 1 = 17 pl/@ht1-2)

where the last inequality holds for large enough n. Thus we have shown that (11) implies the proposition.

We prove (11) by induction on h. The case h =1 (induction base) is implied by Lemma 4.12. Let h > 2. Partition I
into I'high U Ijow such that Iy, contains the variables of the SCCs of depth h in the DAG of SCCs, and I, contains the
other variables (in “higher” SCCs). If Xo € I},,, then we can restrict A to the variables that are in the same SCC as Xp, and

Lemma 4.12 implies (11). So we can assume Xo € Ihign.

2h+1

Assume for a moment that P (Tx, >n —2) holds for a run w € Run(Xp); i.e., we have:

h1_
n2

< |{ieNo|w(i)err|
= |{i eNo | w(i) € ThgnI*}| + |{i € No | w(i) € TNowI"*}|.

It follows that one of the following events is true for w:
(a) At least n?' -2 steps in w have a Ijgq-symbol on top of the stack. More formally,

{i € No | w(i) € TygnI"*}| = n*"~2.

1_9 2h_

(b) Event (a) is not true, but at least n2"=2 _p2t-2 steps in w have a Ij,,-symbol on top of the stack. More formally,

[{i e No | w(i) € TygnI'*}| < n? =2 and

[{i e No | w(i) € NowI™*}| = n?"1=2 _p2'-2,



T. Brdzdil et al. / Journal of Computer and System Sciences 81 (2015) 288-310 305

In order to give bounds on the probabilities of events (a) and (b), it is convenient to “reshuffle” the execution order of runs
in the following way: Whenever a rule X < « is executed, we do not replace the X-symbol on top of the stack by «, but
instead we push only the I';g;-symbols in o on top of the stack, whereas the Il,,-symbols in « are added to the bottom of
the stack. Since A is a pBPA and thus does not have control states, the reshuffling of the execution order does not influence
the distribution of the termination time. The advantage of this execution order is that each run can be decomposed into
two phases:

(1) In the first phase, the symbol on the top of the stack is always a I;gr-symbol. When rules are executed, I7,,-symbols
may be produced, which are added to the bottom of the stack.

(2) In the second phase, the stack consists of Ij,,-symbols exclusively. Notice that by definition of Ij,,, no new
Thigh-symbols can be produced.

In terms of those phases, the events (a) and (b) above can be reformulated as follows:

(a) The first phase of w consists of at least 2" -2 steps. The probability of this event is equal to

h_
PAhigh (TXO e n’ 2)’
where Apjgn is the pBPA obtained from A by deleting all Ijo,-symbols from the right hand sides of the rules and
deleting all rules with I7,,-symbols on the left hand side, and P Apgy 1 its associated probability measure.

(b) The first phase of w consists of fewer than n?' =2 steps (which implies that at most n?" =2 Tow-symbols are produced

during the first phase), and the second phase consists of at least n?"1-2 _p2'-2 steps. Therefore, the probability of the
event (b) is at most

max{Pay, (Tag =0 "2 = ) [a0 € I, 1 < Joro] 0”2},

where Ay, is the pBPA A restricted to the Ij,,-symbols, and Py, is its associated probability measure. Notice that

n?'=2 _p2"=2 > n2""'-2 15 for Jarge enough n. Furthermore, by the definition of Ijpy, the SCCs of Ajy, are all bottom
SCCs. Hence, by Lemma 4.12, the above maximum is at most D/n.

Summing up, we have for almost all n € N:

P(Tx, > n2h+1_2) <P (event (a)) + P(event (b))

<Py (Txo = n?' “2)+D/n (as argued above)
h—1)D D hD
< % + T (by the induction hypothesis).

This completes the induction proof. O
4.2. Proof of Proposition 4.5

The proof of Proposition 4.5 is similar to the proof of Proposition 4.4 from the previous subsection. Here is a restatement
of Proposition 4.5.

Proposition 4.5. Let A be an almost surely terminating pBPA with stack alphabet I". Assume that X depends on all X € I' \ {Xop}.
Assume E[Xg] = oo. Then there is ¢ > 0 such that

«/— <P(Tx,>n) forallneN.
Proof. For a square matrix M denote by p(M) the spectral radius of M, i.e., the greatest absolute value of its eigenvectors.
Let Ax be the matrix from the previous subsection. We claim:

p(An) =1. (12)

The assumption that A is almost surely terminating implies that p(Aa) <1, see, e.g., Section 8.1 of [19]. Assume for a
contradiction that p(A A) < 1. Using standard theory of nonnegative matrices (see, e.g., [1]), this implies that the matrix
inverse B := (I — AA) (here, I denotes the identity matrix) exists; i.e., B is finite in all components. It is shown in [15]
that E[Xo] = (B - 1)(X0) (here, 1 denotes the vector with 1(X) =1 for all X). This is a contradiction to our assumption that
E[Xo] = oco. Hence, (12) is proved.
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It follows from (12) and standard theory of nonnegative matrices [1] that Ax has a principal submatrix, say A’, which
is irreducible and satisfies p(A’) = 1. Let I"’ be the subset of I" such that A’ is obtained from A by deleting all rows and
columns which are not indexed by I'’. Let A’ be the pBPA with stack alphabet I’ such that A’ is obtained from A by
removing all rules with symbols from I" \ I"’ on the left hand side and removing all symbols from I" \ I"’ from all right
hand sides. Clearly, Axs = A’, so p(Aa’) =1 and A, is irreducible. Since A’ is a sub-pBPA of A and X depends on all
symbols in I/, it suffices to prove the proposition for A" and an arbitrary start symbol X{ € I'"".

Therefore, w.l.o.g. we can assume in the following that Ap = A is irreducible. Then it follows, using (12) and Perron-
Frobenius theory [1], that there is a positive vector i € ]Rfr such that A - i = u. W.lo.g. we assume 1(Xg) = 1. Using
Lemma 4.8 we can assume w.l.o.g. that A is ui-progressive. (The pBPA A may be relaxed.)

As in the proof of Proposition 4.9, for each X € I' we define a function gx : R — R by setting

gx(©):= Y p-exp(—0 - (—U(X) +#(@)*1)).
xSa

The following lemma states some properties of gx.

Lemma 4.13. The following holds for all X € I'":

(a) Forall® > 0we have 1 = gx(0) < gx(0).
(b) Forall 6 > 0 we have 0 = g’ (0) < gy ().
(c) Forall 6 > 0 we have 0 < g% (6).
(d) Thereis c; > 0 such that for all 0 < 6 <1 we have g\ (9) < c26.
(e) Thereis c3 > 1 such that for alln € N we have gx(1//n)" > cs.
. 1/n
(f) Thereis c4 > 0 such that for alln € N we have SN <ca.

Proof of the lemma. The proof of items (a)-(c) follows exactly the proof of Lemma 4.10 and is therefore omitted. (For the
equality 0 = g (0) in (b) one uses A - i =1i.)

(d) It suffices to prove that g/ (0)/6 is bounded for 6 — 0. Using I'Hopital’s rule we have limg_.¢ g% (6)/6 = g% (0) > 0.
(e) Clearly, we have gx(1/4/n)" > 1 for all n. Furthermore, we have:

| ~1/2
lim In gx(1/v/A)" = lim 18XM "7
n—oo n—oo

1/n
1. ghn™'/?) N
=5 nlg]go e (I'Hopital’s rule)
/!
0
= ng() (I'Hopital’s rule)
>0 (by (c))

Hence the claim follows.
(f) The claim follows again from I'Hopital’s rule:

lim 1/n = lim —1/r?
n—oo1—1/gx(n=1/2)  n—co (1/gx(n=1/2))2 . g\ (n=1/2) . (=1/2)n=3/2
) 2n~1/2 2
m =
noo g (n12) — gh(0) -

This completes the proof of the lemma. O

Let in the following 6 > 0. As in the proof of Proposition 4.9, given a run w € Run(Xg) and i > 0, we write X® (w) for
the symbol X € I" for which w(i) = X«. Define

4 exp(—0 - #(w(@)et) - [[2) —L— ifi=0orw(i—1)#£¢
) = I-)(l w10 5w (i—1)#
mg* )(w) otherwise
As in Lemma 4.11, one can show that the sequence méo), mél), ... is a martingale. As in the proof of Proposition 4.9, Doob’s

Optional-Stopping Theorem implies exp(—0) = méo) = E[m;TXO)]. Hence we have for each n e N (writing T for Ty, ):



T. Brdzdil et al. / Journal of Computer and System Sciences 81 (2015) 288-310 307

exp(—0) = E[méT)] (by optional-stopping)

T-1 1
6-0
[exp( a ngu>(9)j|
T-1 1
=E
[E, gx(j)(g):|

We show that by taking, on both sides, the derivative with respect to 6 we get

g 40
g6 (@)1

exp(—0) <Y i-P(T=i)-

i=1

where go ¢ = gx and g1, = gy for some X,Y € I" possibly depending on 6. Indeed, we have:

d_ [ 1
exp(— 9)_—£E|:1_[ —:|
j

-0 gxi (0)
T(w)—1
d 1
= 1‘[ - dP
deé C o 8xU(w) @)

weRun(Xg) 470

T(w)-1 g;(z‘)(w) @)

- [ X R i

; 2
weRin(xg) =0 gxa)(w)(O) ..... TW)—17\ (i) gX“’(W)(@)
< T(w)ﬂ
B 80,0(6)TW+1
weRun(Xg) ’
g1 0(0)
_Zl P(T=i)- OS]

The integral in this computation could in fact be replaced by a countable sum over terminating runs, because A is almost
surely terminating. This justifies the exchange of the derivative and the integral in the third line of the previous computation.
Thus (13) follows.

The following lemma bounds an “upper” subseries of the right-hand-side of (13).

Lemma 4.14. For all ¢ > 0 there is a € N such that for alln € N and 8 = 1/+/n we have

o0 /
©)
> i«P(T:i)‘%SS
i=an+1 g(),é)( )

Proof of the lemma. By rearranging the series we get for all n € N and 8 = 1/4/n:

oo / 9
Z i~P(T=i)~L(.)

i+1
i=an+1 80.6 (0)

i P> a0 51,0) | &5 PT=D-51,)

—~ Zos(0)™F? = ZoeO)F?
- an-P(T > an) - g’w(e) N i PT=>i)- gg'qe(e)
8o,0(O)™" = 80,6(0)'
o =2

We bound q; and g, separately. By Proposition 4.4 there is ¢; > 0 such that P(T > k) < c1/\/lz. Hence we have, using
Lemma 4.13 (d), (e):
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_van-ci-c/vn _ C1sz

3 A

and similarly,

C1 C2 1
DR —F" —
an J/n g;: 80.0(0)!

_ C1C2
Va-n-goe©)-(1—1/g06(0))
< jaCzCCzé (by Lemma 4.13 (e), (f)).

These bounds on q; and g, can be made arbitrarily small by choosing a large enough. This completes the proof of the
lemma. O

This lemma implies a first lower bound on the distribution of T:

Lemma 4.15. For any ¢ > 0 there is s € N such that for alln € N we have:

Zi-P(T:i)zcﬁ.

i=1

Proof of the lemma. Let a € N be the number from Lemma 4.14 for & = exp(—1)/2. For all n € N and # = 1/./n we have:

g0 i-P(T=i)

i=1

g1 0(0)
z Zl PT=i)- (9)1+1
> exp(—@) —€ (by (13) and Lemma 4.14)
>exp(—1)—¢e=¢ (by the choice of ¢),

so, with Lemma 4.13 (d) we have for all n € N:
an g
Y i-P(T=i)>—n
‘ %)
=1
For the given number ¢ > 0, choose s :=a[ccy/€]2. Then it follows for all m € N:
sm
Y iPT=i)=cym,

i=1

which proves the lemma. O

Now we can complete the proof of the proposition. By Proposition 4.4 there is ¢ > 0 such that P(T > n) < c¢q/+/n for all
n e N. By Lemma 4.15, there is s € N such that

sn

Y i-P(T=i)>Qc +2)v/n forallneN.
i=1
We have for all n € N:

YiPp@=i=Yi-P@=i)-) i-PT=i)
i=n i=1 i=1

n
> (2c1 +2)v/n — Z P(T > i) (by the choice of s above)
i=0

n
>Qc+2)vn—1-— Z C—l (by the choice of ¢ above)
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a1 .
Z(2C1+l)\/ﬁ—/—.dl
) Vi

=(2c1 + Dv/n—2c14/n
—n

It follows:

siP(T=n)>sny PT=i)>Y i-P(T=i)

i=n i=n
>/n (by the computation above)
Hence we have
P(T=>n)> E
T n

which completes the proof of the proposition. O
4.3. Proof of Proposition 4.6
Here is a restatement of Proposition 4.6.

Proposition 4.6. Let Ay, be the pBPA with I', = {Xq, ..., Xp} and the following rules:

1/2 1/2 1/2 1/2 1/2 1/2
Xh —> XhXh, Xh —> Xh—l’ ey Xz —> XzXz, Xz —> X1, X] —> X]X1, X] —> &
Then [Xp] =1, E[Xy] = o0, and there is ¢, > 0 with
Ch

Y <P(Tx,>n) forallneN.

Proof. Observe that the third statement implies the second statement, since

o0 o o
E[Xnl =Y PMx,zm =Y c-n"* =Y cp/n=o0.
n=1 n=1 n=1
We proceed by induction on h. Let h = 1. The pBPA A is equivalent to a random walk on {0, 1,2, ...}, started at 1, with
an absorbing barrier at 0. It is well-known (see, e.g., [10]) that the probability that the random walk finally reaches 0 is 1,
but that there is ¢; > 0 such that the probability that the random has not reached 0 after n steps is at least c1/+/n. Hence
[X11=1and P(Tx, =n) > ¢1//n=cy -n"1/2
Let h > 1. The behavior of A, can be described in terms of a random walk W} whose states correspond to the number
of Xp-symbols in the stack. Whenever an Xp-symbol is on top of the stack, the total number of X;-symbols in the stack
increases by 1 with probability 1/2, or decreases by 1 with probability 1/2, very much like the random walk equivalent

1/2

to Ajp. In the second case (i.e., the rule Xj fi> Xp_1 is taken), the random walk W} resumes only after a run of Ap_ 4
(started with a single Xj_;-symbol) has terminated. By the induction hypothesis, [X;_1] = 1, so with probability 1 all
spawned “sub-runs” of Ap_; terminate. Since W}, also terminates with probability 1, it follows [X;] = 1.

It remains to show that there is ¢, > 0 with P (Tx, >n) >y ~n*1/2}1 for all n > 1. Consider, for any n > 1 and any ¢ > 0,
the event A, that W}, needs at least ¢ steps to terminate (not counting the steps of the spawned sub-runs) and that at least
one of the spawned sub-runs needs at least n steps to terminate. Clearly, Tx, (w) > n holds for all w € Ay, so it suffices to

find ¢, > 0 so that for all n > 1 there is £ > 0 with P(Ay) > ¢y .n=1/2", At least half of the steps of Wy, are steps down, so
whenever Wj, needs at least 2¢ steps to terminate, it spawns at least ¢ sub-runs. It follows:

P(A¢) = P(Wj, needs at least 2¢steps) - (1 — (P(Tx,_, < n))z)
1 —1/2h=1\¢ . . .
>—— - (1—(1—cp_1-n (by induction hypothesis)
Now we fix ¢ :=n"/2"". Then the second factor of the product above converges to 1 —e -1 for n — oo, so for large
enough n

C
P(A) > 31 S(1—emr).p 12,

Hence, we can choose c; < % - (1 —e~%-1) such that P(Ay) > ¢y -n=1/2" holds for all n >1. O
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5. Conclusions and future work

We have provided a reduction from stateful to stateless pPDAs which gives new insights into the theory of pPDAs and at
the same time simplifies it substantially. We have used this reduction and martingale theory to exhibit a dichotomy result
that precisely characterizes the distribution of the termination time in terms of its expected value.

Although the bounds presented in this paper are asymptotically optimal, there is still space for improvements. We
conjecture that our results can be extended to more general reward-based models, where each configuration is assigned
a nonnegative reward and the total reward accumulated in a given service is considered instead of its length. This is
particularly challenging if the rewards are unbounded (for example, the reward assigned to a given configuration may
correspond to the total memory allocated by the procedures in the current call stack). Full answers to these questions
would generalize some of the existing deep results about simpler models, and probably reveal an even richer underlying
theory of pPDAs which is still undiscovered.
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