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Abstract

Multiple sound source localization is a hot issue of concern in recent years. The Single Source Zone (SSZ) based
localization methods achieve good performance due to the detection and utilization of the Time-Frequency (T-F)
zone where only one source is dominant. However, some T-F points consisting of components from multiple
sources are also included in the detected SSZ sometimes. Once a T-F point in SSZ is contributed by multiple
components, this point is defined as an outlier. The existence of outliers within the detected SSZ is usually an
unavoidable problem for SSZ-based methods. To solve this problem, a multi-source localization by using offset
residual weight is proposed in this paper. In this method, an assumption is developed: the direction estimated by
all the T-F points within the detected SSZ has a difference along with the actual direction of sources. But this
difference is much smaller than the difference between the directions estimated by the outliers along with the
actual source localization. After verifying this assumption experimentally, Point Offset Residual Weight (PORW) and
Source Offset Residual Weight (SORW) are proposed to reduce the influence of outliers on the localization results.
Then, a composite weight is formed by combining PORW and SORW, which can effectively distinguish the outliers
and desired points. After that, the outliers are removed by composite weight. Finally, a statistical histogram of DOA
estimation with outliers removed is used for multi-source localization. The objective evaluation of the proposed
method is conducted in various simulated environments. The results show that the proposed method achieves a
better performance compared with the reference methods in sources localization.
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1 Introduction
Multiple sound source localization is a hot subject in
audio signal processing and has gained extensive attention
over decades for its vital role in various audio applications.
An accurate estimation of sound source location can be
applied in robotics [1], sound source separation [2, 3],
hearing aids [4], human-machine interaction [5], and so
on. The main task of multiple sound source localization is
to obtain the position of sources in the acoustic scene by
using observed signals from several sensors without know-
ing the information of sound sources and the generation
process of the received signals. Generally speaking, the
existing localization methods can be roughly divided into

four categories. The first ones are based on the time differ-
ence of arrival (TDOA) and its extensions [6–8]. Various
TDOA-based methods, including CC (cross-correlation),
GCC (generalized cross-correlation), and MCCC (multi-
channel cross-correlation), were developed to solve the
localization problem. However, these methods still suffer
from the accuracy decline caused by ambient noise and re-
verberation. The robustness of the TDOA-based methods
can be improved from three aspects [9]: incorporate priori
knowledge to ameliorate the performance, increase the
number of sensors to take advantage of the redundancy,
and take the reverberation into account in signal model to
improve the accuracy of TDOA. While limited by the
practical application scenarios, priori knowledge is not al-
ways available [10] and the number of microphones set up
in the space is usually restricted. Lots of the methods
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introduce reverberation in modeling while their perform-
ance still degrades inevitably when reverberation time
increases.
The spectral estimation techniques are also used in

multi-source localization, some of the representative
methods include multiple signal classification (MUSIC)
[11–13] and estimation of signal parameters via rota-
tional invariance (ESPRIT) [14] algorithms. MUSIC is
one of the famous subspace based methods for multi-
source direction of arrival (DOA) estimation under
super-deterministic conditions (i.e., the number of mi-
crophones is greater than the number of sound sources)
[15, 16]. The MUSIC algorithm exhibits high resolution
and is applicable for an array of arbitrary geometric
shapes. A direct path dominance (DPD) test [17] based
method is adopted to perform DOA estimation by cross-
spectrum matrices. In this method, a focusing process is
added to localize multiple sources using array with arbi-
trary configuration. Nevertheless, since the entire array
manifold needs to be searched to find the steering vec-
tors which are orthogonal to the noise subspace, most of
spectral estimation techniques has poor computational
efficiency [18]. Besides, the MUSIC-based methods need
to know the number of sources in advance. Due to the
sparseness of speech signals, the number of simultan-
eously active sources is not consistent in broadband,
which make them not suitable to deal with broadband
sources.
The third one is based on the independent component

analysis (ICA), which is usually used to deal with the
linear instantaneous mixtures. The convolutive blind
source separation problem can be solved by transform-
ing the problem into the frequency domain [19–22].
Recently, ICA-based methods have also been adopted to
conduct multi-source localization [23–25]. As men-
tioned in [26], the ICA-based methods can be used in
the Time-Frequency (T-F) domain to carry out the
multi-source localization task so long as the number of
dominant sources does not exceed the number of micro-
phones in each T-F zone, which means that the require-
ment for the number of microphones becomes more
relaxed.
For the last category, sparse components analysis

(SCA) is applied to locate multiple sound sources. Most
of the SCA-based methods rely on the w-disjoint
orthogonal assumption [27]. In this assumption, there
are usually some T-F zones, where only one source is ac-
tive or dominant, exist, even if multiple sources sound
simultaneously. These specific T-F zones are called
single source zone (SSZ). According to [26], it has been
proved that using T-F points within the detected SSZs
to conduct multi-source localization can obtain high
accuracy. Moreover, [28] proposed a DOA estimation
method using a sound field microphone to realize highly

accurate positioning. The SCA-based methods include
not only the detection of “zone” level sparse components
but also “point” level sparse components. These “point”
level sparse components are the T-F points, which are
called the single source point (SSP), where only one
source is active or dominant. The methods that use SSP
to perform multiple source localization are called the
SSP-based methods [29–33]. The SSP detection methods
include but are not limited to the coherent test based
method [29], the energy threshold based method [31],
and the energy decomposition based method in [32].
Recently, methods base on the phase feature of real and
imaginary parts of mixture TF vectors have also been
proposed. The method proposed in [33] falls into the
last category which detects the low-reverberant single-
source (LRSS) points to perform multi-source
localization and achieves localization results with high
accuracy. Different from these methods which focus on
the extraction of sparse components from recorded sig-
nals, other methods aim to find the model that fitting
the observed distribution [34]. All the methods men-
tioned above can achieve a good localization perform-
ance in simple acoustic scenarios (i.e., an acoustic
scenario with low reverberation time and a low number
of sound sources). However, as the number of sources
or the reverberation time increases, the localization per-
formance of both SSZ-based methods and SSP-based
methods declines. For SSP-based methods, there could
be many outliers, which contain the wrong localization
information, mixed in with the detected results. For
example, the outliers can be T-F points consist of
multiple components with the same phase which can-
not be discriminated by the phase-based SSP detec-
tion method. And the outliers can also be composed
of a single reflection component that cannot be iden-
tified by both energy-based and phase-based criteria.
As for the SSZ-based methods, in addition to the
same problem as SSP-based methods, there are always
some sources with relatively less DOA estimates in
the histogram which are hard to be detected through
peak searching. This kind of sources is called Statisti-
cally Weak Sources (SWS) and the other sources are
called statistically dominant sources (SDS) [35]. A
Statistically dominant source component removal
(SDSCR) algorithm is proposed in the same paper to
solve this problem. It has been proved that the SDSC
R method can always obtain better localization re-
sults. However, the increasing number of outliers
caused by multiple sources and high reverberation
time is still unsolved and could lead to a significant
decrease in localization accuracy.
In this paper, the problem of SSZ-based methods

mentioned above has been proved by verification experi-
ments. This problem can be summarized as: there is an
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inevitable presence of outliers in detected SSZs which
leads to the decreasing accuracy of localization. To solve
to this problem, a new assumption has been proposed in
this paper: since the distribution of outlier within SSZ is
sparse and the DOA estimates of outliers are randomly
distributed, the average direction calculated by the T-F
points inside SSZ does not far away from the location of
sound source. Referring to this assumption, a residual
based weighting idea has been proposed and applied in
the SSZ-based method to realize a robust multi-source
localization method for the reverberation environment.
In the proposed method, two residual measurements are
introduced to weaken the adverse effect brought by out-
liers. Among them, the residual measurement used in
the outlier detection part aims to evaluate the angular
difference, which is also called the offset, between the
direction estimated by each T-F point and the average
direction estimated by their corresponding SSZ. This
measurement is named as “point offset residual meas-
urement.” The second proposed residual measurement,
which is called “source offset residual measurement,” is
mainly used to measure the offset between the DOA es-
timated by T-F point and the coarse localization of their
corresponding sound sources. Each of the residual
measurement corresponds to a weight that is applied in
the localization process. According to the residual meas-
urement, they derivate from, they are named as “Point
Offset Residual Weight” (PORW) and “Source Offset
Residual Weight” (SORW), respectively. Both two
weights have the characteristic that they give low values
to outliers while high values for desired T-F points.
Based on this characteristic, these false detections of
outliers would be weighted and suppressed. Different
from the traditional methods which give both outliers
and desired T-F points a weight of 1 in the statistical
histogram of DOA estimations, the proposed method
combines two weights mentioned above to produce the
histogram refer to the contribution of each T-F point in
the direction of their corresponding actual source. It
should be mentioned that the proposed method can be
applied to a variety of array setups. The PORW can be
applied to all the SSZ-based methods. The SORW can
be applied to the methods where histograms are plotted
to perform DOA estimation. At last, the advantages of
the proposed method over traditional methods and its
robustness in various environments are verified by
several sets of objective and subjective experiments.

2 Modeling and angular calculation
In this section, the basic model of signals received by
sound field microphone is introduced. Then, the SSZ
detection criterion for T-F zones and B-format transform-
ation, angular calculation for T-F points is reviewed.

2.1 The SSZ detection using sound field microphone
In this paper, the sound field microphone [28], which is
the array of directional microphones, is used to record
the sound signals. A sound field microphone consists of
four closely placed cardioid microphone capsules. Since
the distance between source and microphone is much
larger than that between different microphone capsules,
these microphone capsules can be regarded spatially co-
incident with respect to a sound source. Under this con-
dition, the recorded signals from different channels also
have no delay in time domain. The recorded signals of
four channels are represented as {s1, s2, s3, s4} which are
corresponding to the microphone capsules pointing at
front left up (FLU), front right down (FRD), back left
down (BLD), and back right up (BRU), respectively.
Assume an acoustic environment contains Q sources
with reverberation and noise, the signals recorded by
sound field microphone after short time Fourier
transform (STFT) are modeled as the formula below:

sp n; kð Þ ¼
XQ

i¼1
hi;p kð Þ∙xi n; kð Þ þ rev n; kð Þ þ vn n; kð Þ ð1Þ

where p ∈ {1, 2, 3, 4} is the index of the microphone
capsule. The signals from ith source in the frame n and
frequency number k are represented as xi(n, k). hi, p(k) is
the transfer function between ith source to the pth
microphone capsule. The signals received by pth micro-
phone capsule from sound field microphone are repre-
sented as sp(n, k). Since the reverberation components
consist of signals from different sound sources in various
of T-F points, this part of received signals is simplified
as rev(n, k). The noise components are represented as
vn(n, k). It should be mentioned that because of the
spatially coincident characteristic of the different micro-
phone capsules, the recorded signals from four capsules
of the sound field microphone have close-to-equal phase
while different amplitude. Following equation should
also be satisfied:

hi;p kð Þ
hi;p kð Þ�� �� ¼ hi;q kð Þ

hi;q kð Þ�� �� ð2Þ

Meanwhile, if T-F point (n, k) only consists of the dir-
ect component from a single source, the following equa-
tion should also be satisfied:

sp n; kð Þ
sp n; kð Þ�� �� ¼ sq n; kð Þ

sq n; kð Þ�� �� ð3Þ

Where p, q ∈ {1, 2, 3, 4} (p ≠ q) represent the index of
the sound field microphone channel. Since the signals
from different channels of sound field microphone
should have the same phase character, which means the
signal waveform within SSZ in different channels should
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have high similarity. A SSZ detection criterion [26] is
proposed based on this characteristic, which uses the
normalized cross-correlation (NCC) coefficient between
signal between channels to detect SSZ. The NCC coeffi-
cient between channel p and q in the T-F zone Z is de-
fined as follow:

rpq Zð Þ ¼ Rpq Zð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rpp Zð Þ∙Rqq Zð Þp ð4Þ

where p, q ∈ {1, 2, 3, 4} (p ≠ q) denotes the index of the
channel and Z denotes the T-F zone whose size is cus-
tomized by user. Rpq(Z) is cross-correlation coefficient
given as follow:

Rpq Zð Þ ¼
X

n;kð Þ∈Z sp n; kð Þ∙sq n; kð Þ�� �� ð5Þ

When there are no reverberation components or noise
components in the T-F zone used for analysis, all the T-
F points within the T-F zone consist of the signals from
the same source through the direct path, the result of
(4) should satisfy rpq(Z) = 1, while it is hard to realize in
the actual experimental environment so the criterion is
relaxed as below:

rpq Zð Þ > 1−ε ð6Þ

where ε is an empirical threshold set by user according
to the practical scenario. This threshold should guaran-
tee that enough T-F zones are detected to perform the
localization; meanwhile, most of the T-F zones contami-
nated by reverberation and interfere sources should be
removed.

2.2 Angular calculation for T-F points
The signals received by the sound field microphone dir-
ectly are called the A-format signals. In previous work
[35], a simple and intuitive angular calculation method
has been proposed where A-format signals need to be
changed into B-format signals. The B-format signals
consist of four channels which are represented as {sw, sx,
sy, sz}, and the transformation operation can be

expressed as the formula below:

sw n; kð Þ ¼ s1 n; kð Þ þ s2 n; kð Þ þ s3 n; kð Þ þ s4 n; kð Þ
sx n; kð Þ ¼ s1 n; kð Þ þ s2 n; kð Þ−s3 n; kð Þ−s4 n; kð Þ
sy n; kð Þ ¼ s1 n; kð Þ−s2 n; kð Þ þ s3 n; kð Þ−s4 n; kð Þ
sz n; kð Þ ¼ s1 n; kð Þ−s2 n; kð Þ−s3 n; kð Þ þ s4 n; kð Þ

8>><>>:
ð7Þ

where sw is the signal received by the omnidirectional
channel, and {sx, sy, sz} are the signal received by three
channels correspond to the Cartesian coordinate.

As mentioned in [28], if a T-F point only consists of
the direct component from a single source i and no re-
verberation components are involved, the model of re-
ceived B-format signals from sound source i can be
represented as:

sw n; kð Þ ¼
ffiffiffi
2

p

2
xi n; kð Þ

sx n; kð Þ ¼ cosμi∙ cosγ i∙xi n; kð Þ
sy n; kð Þ ¼ sinμi∙ cosγ i∙xi n; kð Þ
sz n; kð Þ ¼ sinγ i∙xi n; kð Þ

8>>>><>>>>: ð8Þ

Where xi(n, k) represents the signals from source i in
the frame n and frequency number k, μi, and γi are the
azimuth and elevation of ith sound source, respectively.
And thus, the localization of sound source i can be cal-
culated. For simplicity, the formula below only calculates
the azimuth of source i:

μ̂ n; kð Þ ¼ tan−1
Re sw� n; kð Þ∙syðn; kÞ

� �
Re sw� n; kð Þ∙sxðn; kÞf g

� �
ð9Þ

where Re{∙} represents the operation of taking the real
part, and ∗ denotes conjugation. Since the azimuth
calculation process depends on the ratio of B-format sig-
nals from x, y channels, which means that for the T-F
points with a similar direction of the vector [sx,sy], the
DOA estimations should have similar results. This par-
ticular trait is applied afterward to calculate the weight.
It should be noted that both (8) and (9) assume only

one source is active in the T-F point (n, k) for simplicity.
However, there are many T-F points contain reverber-
ation components and\or multi-source components.
That means there are more parameters and the compo-
nents from multiple source in (8) which cannot be elimi-
nated by the division in (9), which causes the decline of
the localization accuracy.

3 Problem statement and the proposed point
offset residual weight
As mentioned in the last section, the degradation of
localization performance is mainly caused by the rever-
beration components and\or multi-source components.
Once the estimated direction μ̂ðn; kÞ for T-F point (n, k)
has a large difference to the directions of actual sources,
this specific T-F point is defined as an outlier. In this
section, the problem caused by the outlier is verified by
experiments. After analyzing the reason causes this
problem, a relaxed assumption is proposed to solve the
problem. In this assumption, the direction estimated by
all the T-F points in a detected SSZ is assumed to be
much closer to the actual sources’ direction than that
for the outliers. Refer to this assumption, the point offset
residual measurement is introduced to measure the
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angular difference between the direction estimated by all
the T-F points within the detected SSZ and the direction
estimated by each of them. Then, the point offset re-
sidual weight is calculated for the actual application.

3.1 Problem statement
In general, the SSZ-based methods use the relevance fea-
ture of the T-F zone to detect SSZ. Then, the T-F points
within detected SSZ are used to perform multi-source
localization. The SSZ-based methods could usually ob-
tain a good performance. However, with the increase of
reverberation time and\or the increase of the source
number, the localization accuracy of SSZ-based methods
is declining. This is mainly caused by the increasing ratio
of outliers mixed in the detected SSZ. As this ratio in-
creases, the wrongly counted number of sources could
lead to the significant decrease in localization accuracy.
To confirm the presence of outliers in the detected SSZ,
a group of experiments is conducted.
In these experiments, the statistical analysis of DOA

estimates for each T-F point within detected SSZ is per-
formed using 100 sound source segments with a length
of 8s from the NTT [36] database. The angle between
sources is settled as 60°. The experiments are divided
into two cases: changing the number of sound sources
and reverberation time. As for the experiments of
changing the number of sources, the source number is
selected as {2, 3, 4, 5} in an anechoic room. For the
experiments of the changing of reverberation time, two
sources are active simultaneously in the rooms with a re-
verberation time of 0 ms, 150 ms, 300 ms, and 450 ms,
respectively. In these experiments, the SSZ is detected
under four different thresholds of NCC, which means

that the parameter from formula 6 mentioned above is
chosen from {0.1, 0.25, 0.4, 0.55}. Among all the T-F
points in the selected SSZs, the outliers are defined as
the T-F points whose DOA estimations’ deviation from
the direction of the actual source by more than 20°. On
the contrary, the rest of the T-F points within the
detected SSZ are defined as the desired T-F points. The
threshold of 20° is an empirical threshold chosen accord-
ing to the informal experiments. The outlier ratio η is
calculated as follow:

η ¼
Pκ

τ¼1No Zτð ÞPκ
τ¼1Na Zτð Þ ð10Þ

where κ is the number of the detected SSZ, Zτ is the
τth detected SSZ. No is the outliers’ number in Zτ and
Na is the size of Zτ. The ratio of outliers in the different
condition is given in Fig. 1a and b.
From Fig. 1, a visible trend can be found that the pro-

portion of outlier is increasing with the number of
source and the reverberation time. Besides, the increase
in the outlier ratio caused by reverberation is much
greater than that caused by the increase in source
number. More specifically, we take the blue labeled (i.e.,
ε = 0.1) data in Fig. 1a as an example, when the room is
anechoic with two sources, only 14.3% of outliers are
mixed in the detected SSZ. When the number of sources
rises to five, the ratio of the outlier is 28.6%, which
means that despite the increase of the outlier ratio, most
of the detected T-F zones are still dominant by only one
source. However, the situation is quite different in the
presence of reverberation. We still take the blue labeled
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data for analysis, in Fig. 1b, compared with the outlier
ratio of 14.3% in the anechoic environment, the outlier
ratio increases to 44.1% with 150 ms of reverberation.
When the reverberation is 450 ms, the outlier is an ac-
count for 63.6% of the total T-F points within detected
T-F zone which means the components carry the direc-
tional information of actual sources are overwhelmed by
other components with a high possibility.
On the other hand, it can be found that the change of

threshold can hardly decrease the ratio of outliers sig-
nificantly. From both Fig. 1a and b, the red and green la-
beled data (i.e., ε = 0.4, ε = 0.55, respectively) always
obtained a higher ratio of outliers than blue and orange
labeled data (i.e., ε = 0.1, ε = 0.25, respectively), which
means that the increase of the threshold could increase
the ratio of outliers in the detect T-F zone. However,
even lower the thresholds means fewer outliers are in-
cluded in the detected T-F zone, the strict threshold also
makes fewer T-F zones can be detected, which could
lead to insufficient data for analysis. Above all, the
change of the SSZ detection threshold could not reduce
the number of outliers effectively, and the outliers are al-
ways existing in the detected SSZ.

3.2 The analysis for the cause of these outliers
From the description above, the outliers always exist in
the detected SSZs, and the reasons for the presence of
these outliers are analyzed as follows:

� The SSZ-based methods apply the zone-level char-
acteristics to discriminate T-F zones dominated by
only one sound source, and this leads to negligence
in the performance of the individual T-F points.
Even though the outliers may carry multiple sound
components, these redundant components could
hardly pull down the NCC of the whole T-F zone
and that specific T-F zone can still be recognized as
SSZ.

� In order to guarantee that enough SSZs are detected
for the localization, the SSZ detection threshold ε
should be relaxed. However, the relaxed threshold
could also mean a large ratio of outliers mixed in
with the detection result.

In conclusion, the existence of the outlier in the
detected T-F zone is an unavoidable problem for SSZ-
based methods and this problem gets worse as the rever-
beration time and source number increase.

3.3 The proposed point offset residual measurement
From the former section, we found that there are always
outliers exist in the detected SSZs and the change of the
SSZ detection threshold can hardly change the propor-
tion of outliers. To solve this problem, a new assumption

is proposed in this section: the DOA estimations using
outliers are far away from the direction of the actual
source. While the DOA estimations using all the T-F
points within detected SSZ are much closer to the direc-
tion of the actual source. A set of experiments are con-
ducted to verify this assumption. In this experiment, the
root mean squared error (RMSE) is used to measure the
error between estimate direction and true direction,
which is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm

i¼1
μ̂ ið Þ−μ j

� 	2
r

ð11Þ

where m represents the number of estimated direc-
tions. μ̂ðiÞ is the ith estimated direction and the direc-
tion of its corresponding source is μj, j ∈ {1, 2,…,Q}, Q is
an integer and presents the number of actual sources.
Three sets of directional estimation are used to calcu-

late RMSE; the first set consists of the directions esti-
mated by taking the average of all the T-F points within
each SSZ while the second set is the average of direc-
tions estimated by outliers. The third one is the direc-
tions estimated by each outlier. The same experimental
data and simulation environments as the experiments
performed above are used. The results are shown in
Fig. 2a and b.
In Fig. 2, the lines with blue and square marks are the

RMSE of directions estimated by each outlier, and the
line with green circle representing the RMSE corre-
sponding to the average direction of the outliers within
the detected T-F zone. The line with a label of orange
and triangle is the RMSE of the direction estimated by
all the T-F points from each SSZ. In both figures, the
direction estimated by each SSZ is the closest to the ac-
tual direction. While the direction estimated by each
outlier obtain the biggest RMSE. The same result can be
obtained in a variety of environments which proves the
proposed assumption.
Besides, the reason causes this phenomenon could also

be found in this figure. The reason for the low RMSE of
SSZ is not only because of the introduction of desired
points. From Fig. 2, it can be found that in the same
situation, the green line is lower than the blue line which
proves that taking average of outliers also contributes to
the decrease of RMSE.
Refer to the assumption mentioned above, a conclu-

sion can be obtained: once the offset between the direc-
tion estimated by a T-F point and the direction of its
corresponding SSZ is large; this specific T-F point has
little contribution to the localization. Based on this
conclusion, a measurement called point offset residual
measurement is introduced to evaluate the distance
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between the direction estimated by SSZ and every T-F
point. The point offset residual measurement is defined
as:

Mp n; kð Þ ¼ V Zð Þ∙V n; kð Þ
 �
V Zð Þ�� ��∙ V n; kð Þk k ð12Þ

where 〈∙〉 is the symbol of the inner product operator,
and ‖∙‖ denotes Euclidean norm. V(n, k) is a vector
formed by B-format signal in (n, k), V(n, k) = [sy(n, k),
sx(n, k)]

′, [∙]′ represents taking the transposition of the
vector. V ðZÞ is a vector formed by B-format signals in Z,
which is given as:

V Zð Þ ¼
X

n;kð Þ∈Z
V n; kð Þ

K ∙ V n; kð Þk k ð13Þ

where K represents the number of T-F points in the
detected SSZ. According to the description below (9),
the vector consists of B-format signals is corresponding
to the estimated direction. That is why these vectors are
introduced to measure the angular difference between
SSZ and the T-F points.
The reason that the vector projection is used as the

measurement is described as follows: In complex
acoustic environments, most of the T-F points contain
multiple components which can be seen as the super-
position of plane waves. From the perspective of spatial
geometry, if the microphone is recognized as a point in
the space, then each of the plane waves corresponds to a
vector. Thus, the signals received in a T-F point can be

recognized as the composite vector, and formula 12 can
be regarded as the projection of the vector. More specif-
ically, the vector of each T-F points is projected onto the
direction estimated by their corresponding SSZ to meas-
ure the contribution of each point in the direction of
their corresponding SSZ. On the other hand, outliers
could also contain the contribution of components from
the source directly which is overwhelmed by reverber-
ation components, and the proposed PORW is used to
measure this contribution.

3.4 The proposed point offset residual weight
This proposed measurement calculates the orthogonal
projection of each T-F point signal vector on SSZ aver-
age signal vector which aims to describe the offset be-
tween the direction of SSZ and the direction estimated
by each T-F point. However, this measurement only de-
scribes the offset between the direction of SSZ and the
directions of the points within it, which can be used to
measure the contribution but not represent it. Therefore,
a normalization step is necessary to change the angular
difference into weight, which could represent the contri-
bution of a T-F point and be directly assigned to a point.
The point offset residual weight (PORW) is defined as:

Wp n; kð Þ ¼ 1−
cos−1 Mp n; kð Þ �

π
ð14Þ

It should be noted that the higher PORW is given to
the T-F points who have a higher contribution to the
direction estimated by SSZ.
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Since the direction estimated by SSZ is much closer to
the direction of the actual source than the direction esti-
mated by outliers. The proposed PORW should have a
characteristic that a higher value for desired points,
while a lower value for outliers. A set of experiments are
conducted to verify this characteristic. The experimental
data and simulation environment are the same as the ex-
periment mentioned above. In this experiment, the aver-
age weights of four kinds of T-F points are calculated.
These four categories are named as: Desired points in
the desired SSZ (DPDS), desired points in falsely
detected SSZ (DPFS), outliers in falsely detected SSZ
(OFDS), and outliers in desired SSZ (ODS). The specific
name of points and SSZs in the categories is explained
as follows, the desired point is the same as the desired
T-F point mentioned above. The desired SSZ represents
a detected SSZ whose direction error is less than 20°,
while the falsely detected SSZ does not meet this condi-
tion. More specifically, we take DPDS as an example: the
DPDS collects all the desired T-F points in the SSZ with
a direction error less than 20° and then, the average of
their given PORW is calculated. The results are given in
Fig. 3.
In Fig. 3, it can be found that desired points obtain

higher weights than the outliers in all the situations. As
the reverberation time increase, the difference of PORW
for outliers and desired points is decreased. More specif-
ically, in the environment with a reverberation time of
150 ms, the average PORWs for DPDS and DPFS are
0.96 and 0.87, respectively. While for the ODS and
OFDS, the average PORWs in the same situation are just
0.81 and 0.80, respectively. As the reverberation time

increase, it can be found that the PORW of DPDS holds
steady and the PORW of DPFS has declined while the
average PORW of the desired TF point is still higher
than that of outliers, which shows the robustness of the
proposed PORW.
It should be mentioned that the DPFS represents the

desired T-F point in falsely detected SSZ. The reason
DPFS gets a higher weight than outlier is that the falsely
detected SSZ contains outliers with different directions
which could also far away from their corresponding
SSZ’s direction. On the other perspective, the SSZ’s dir-
ection has a feature that it does not far away from the
actual source’s azimuth. Even the falsely detected SSZ
has a direction whose offset larger than the threshold, it
still relatively closes to the true direction which brings a
relatively high weight to the desired T-F points.
In summary, the proposed PORW can be used to at-

tenuate the undesirable effects of outliers in SSZ-based
methods. However, even the outliers’ effect can be weak-
ened; the outliers themselves are hard to be removed by
using a single weight. To remove the outliers, the second
kind of weight is proposed in the following process and
more details are described in the next section.

4 Proposed method
Based on the proposed PORW, a multi-source localization
method is proposed and the flowchart is presented in
Fig. 4. The whole method is described below:
Firstly, the SSZ detection is operated for the received

A-format signals. Secondly, all T-F points in detected
SSZ are converted into B-format to form the signal vec-
tor and calculate PORW for every T-F points. Thirdly,

Fig. 3 PORW of four kinds of points with different reverberation time
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the PORWs are used to weight the B-format signal vectors
to weaken the effect of outliers. A more accurate DOA esti-
mation of SSZ after weighing can be obtained. Then, based
on these DOA estimations, the statistical source compo-
nent equalization (SSCE) [37] is conducted to obtain the
rough localization of sources. Later, the SORW is proposed
for further reducing the effect of outliers. Follow by that,
the SORW and PORW are combined as a composite
weight which is used to remove the outliers and draw the
histogram of DOA estimation. Finally, post-processing
applied in [35] including KDE and peak searching is
conducted to complete the multi-source localization.
Since the directional analysis of B-format signals can

be performed relatively simply based on an energetic
analysis of the sound field, the activity intensity [38]
which shows the direction of the flow of energy is intro-
duced to replace the vector formed by B-format signals.
The corresponding formula is shown as follow:

Ix n; kð Þ ¼
ffiffiffi
2

p

ρc
Re s�w n; kð Þ∙sx n; kð Þ� �� �

Iy n; kð Þ ¼
ffiffiffi
2

p

ρc
Re s�w n; kð Þ∙sy n; kð Þ� �� �

Iz n; kð Þ ¼
ffiffiffi
2

p

ρc
Re s�w n; kð Þ∙sz n; kð Þ� �� �

8>>>>>>><>>>>>>>:
ð15Þ

where ρ and c are represented as the density of the
medium and the speed of sound respectively and they
are both constant. The representation of active intensity
vector in the horizontal plane is I(n, k) = [Ix(n, k), Iy(n, k)].
More details of the proposed method are described below:

4.1 The blind weighting of T-F points
Based on the description of the active intensity mentioned
above, the proposed assumption can be changed to:

� There are always outliers in the detected SSZ whose
directions far away from the actual source.

� The SSZ’s direction is close to the direction
calculated by the active intensity vector which
contains the actual sources’ azimuth information
while the directions calculated by using the outliers’
active intensity vectors have a big difference with
the actual source’s direction.

Therefore, the direction estimated by SSZ and the activ-
ity intensity vector of all the T-F points within SSZ is used
to obtain the PORW. Then, the obtained PORWs are
combined with the active intensity vector to weaken the
impact of outliers. A more accurate direction estimated by
taking the average of the weighted active intensity vector
in each SSZ can be obtained by the following formula:

b�μ Zð Þ ¼ tan−1
Re

P
n;kð Þ∈ZWp n; kð Þ∙Iy n; kð Þ

n o
Re

P
n;kð Þ∈ZWp n; kð Þ∙Ix n; kð Þ

n o
0@ 1A

ð16Þ
The estimated direction of the SSZ can be used as

guidance for statistical source component equalization.

4.2 Statistical sound source component equalization
The statistical sound source component equalization
[37] aims to deal with the masking phenomenon caused

Fig. 4 The block diagram for the proposed multi-source localization framework
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by the excessive disparity in the number of T-F points
each sound source belongs to. The sound sources are di-
vided into two categories, the statistically weak sources
(SWS) and the statistically dominant sources (SDS). The
former is likely to be masked by the latter in the DOA
statistical histogram because of their few corresponding
T-F points. Four thresholds are set to distinguish the T-
F points belong to the SDS and remove a part of them
to make the SWS sufficiently obvious to be retrieved by
post-processing. Although this step solves the problem
of the masked SWS, the effect of outliers on the
localization is instead amplified after this step because
the removal of components from sound sources is equal
to the enhancement of the outliers’ components.

4.3 The weighting of outliers under rough localization
guidance
To solve the problem caused by the removal of SDS
components, the source offset residual measurement is pro-
posed. The peaks formed by outliers, which are called the
pseudo-peaks, have some characteristics different from the
peaks formed by actual sources’ components, which are
called the true peaks. These characteristics can be summa-
rized in two aspects: Firstly, the pseudo-peaks usually lower
than the true peaks. Secondly, the pseudo-peaks locate dif-
ferently in the histogram before and after smoothing due to
the randomly distributed outliers. While the true peaks al-
ways have the same location in the histogram before and
after smoothing. Based on these characteristics, the SORW
is introduced to deal with the problem caused by pseudo-
peaks, the formula is shown below:

Ms n; kð Þ ¼ min
~I i∙I n; kð Þ
 �

~I i
�� ��∙ I n; kð Þk k

( )
ð17Þ

where i∈½1; ~Q� is the index of the estimated source, ~Q
is the estimated number of sources (i.e., the pseudo-
peaks are included). ~I i is the active intensity vector of
the T-F point that carries the azimuth information clos-
est to the ith estimated azimuth.
Like the PORW, a normalization step is also necessary

to the source offset residual measurement. Therefore,
the source offset residual weight (SORW) is proposed to
lower the pseudo-peaks in the statistical histogram
which is defined as:

Ws n; kð Þ ¼ 1−
cos−1 Ms n; kð Þð Þ

π
ð18Þ

Since the pseudo-peaks in smoothed histogram hardly
correspond to local maximums formed by outliers in the
DOA statistical histogram, the outliers who form the

local maximum in DOA statistical histogram can hardly
be given the highest SORW. While the T-F points with
the accurate azimuth information could obtain a higher
SORW due to the peaks formed by them have the same
localization before and after the smoothing. Like the
previous description, an experiment is conducted to ver-
ify the proposed SORW in different reverberation time
using the same group of data, the average of SORW cal-
culated by outliers and desired points is shown in Fig. 5:
It can be found that the SORWs which are given to the

desired points are higher than that given to the outliers in
different reverberation time. With these experimental re-
sults, SORW can be proven effective to distinguish the
outliers and desired T-F points. Although the SORW can
be easily integrated into other localization frameworks, it
should be noted that the SORW is based on the rough
localization using PORW. That means the calculation of
PORW is a necessary step for the obtaining of SORW. A
detailed explanation would be given in the next section
combining with the experiments.

4.4 The composite weight based post-processing
In this section, the proposed PORW and SORW are
combined into one composite weight, the formula is
shown below:

Wc n; kð Þ ¼ Wp n; kð Þ∙Ws n; kð Þ ð19Þ

The experiment is also conducted to evaluate the com-
posite weight and Fig. 6 shows the results:
Experimental results show that both outliers and desired

points have lower composite weights compared with the
results of SORW but the outliers still get weights much
lower than desired points. According to the analysis
above, both PORW and SORW can distinguish the de-
sired points and outliers by giving a lower weight to out-
liers which means that the composite weight should have
a better performance. To verify this conclusion, the differ-
ence between the weights given to outliers and desired
points are calculated by using PORW, SORW, and com-
posite weight. The results are shown in Fig. 7.
It can be found that the composite weight has the highest

difference between outliers and desired points in all the
simulation environments and the conclusion mentioned
above is proved. Due to its high efficiency to discriminate
outliers, the composite weight is used to remove the out-
liers and draw the histogram for the final localization. The
desired points should satisfy the equation given as follow:

Wc n; kð Þ≥1−δ ð20Þ
where δ is an empirical threshold set by uses according

to the application scenario and the T-F points that do
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Fig. 6 Composite weight of desired points and outliers with different reverberation time

Fig. 5 SORW of desired points and outliers with different reverberation time
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not satisfy this equation are recognized as outliers and
their weights are assigned a value of 0. The histogram is
drawn using the following formula:

Y μð Þ ¼ μ̂ n; kð Þ½ � ¼ μj
X

Wc n; kð Þ
n o

ð21Þ

where μ ∈ [1,360], (n, k) ∈ ℤ is the angle in the histo-
gram and ℤ represents the set of all the detected SSZ
after equalization. The composite weight can be inte-
grated into the histograms of SSZ-based methods. After
that, the post-processing applied in [35] is used to per-
form the localization by KDE and peak searching.

5 Results and discussion
In this section, experiments are conducted to evaluate
the performance of the proposed method. The experi-
mental validation includes two aspects: the comparison
between the localization results using different proposed
weights and the comparison between different methods.
The experiments are conducted in both simulation and
actual environments, the experimental environments
and reference methods is introduced as follows:

5.1 Experimental environments and reference methods
The simulation experiments were realized by using
ROOMSIM package [39]. The simulation room used for
experiments is uniformly set as a cube with a length of 6
m, a width of 3 m, and a height of 2 m. The sound field
microphone is set in the center of the simulated room
and the sources are set around the microphone with a

distance of 1 m. It is noted that the elevation angle and
the azimuth have the same calculation process except
for the different channels of B format signals are se-
lected. For the convenience of explanation and calcula-
tion, the elevation is set as 0° and not involved in the
localization. It also means that the height of the sources
is the same as that of the microphone. The original
speech signals are chosen from the Chinese sub-
database from the NTT database [36]. The other param-
eters include but are not limited to the thresholds for
STFT or SDSCR algorithm is shown in Table 1.
It should be noted that εp is the threshold for the peak

searching on post-processing. The different values for
the minimum difference threshold εa are set based on
the prediction of the minimum possible distance be-
tween sound sources, in the experiments of changing
separation of sources, the minimum difference threshold
is changing with the separation of sources. As for the

Fig. 7 The difference between weight given to the outliers and desired points

Table 1 Experimental parameters

Parameter Value

Sampling frequency of speech source 44.1kHz

Overlapping in frequency 50%

T-F zone width 32

SSZ detection threshold 0.25

STFT length 2048

Minimum difference threshold (εa) 50\40\30\20

Peak searching threshold (εp) 0.001

Outliers’ removal threshold (δ) 0.6
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outliers’ removal threshold (δ), which is introduced in
this paper, is set according to the results of statistical ex-
periments. Combing with the results in Fig. 6, it can be
found that the threshold of 0.6 can distinguish the out-
liers and the desired points in most of the experiment
settings.
As for the experiments using actual recorded signals,

the signals are recorded in an acoustic chamber with a
dimension of 4.5 m × 3.5 m × 2.8 m. The reverberation
time and background noise are estimated to be 400 ms
and 28 dB, respectively. A Sennheiser Ambeo VR Mic
was selected to record the signals. During the recording
process, the microphone was set at the center of the
room with a height of 1.8 m. Two male speakers were
located 1.6 m away from the microphone.
The reference methods are selected from the represen-

tative methods of SSZ-based method [28], SDSCR algo-
rithm [35], DPD [17] test based method and SSP-based
method [33].

5.2 The statistical analysis for outliers’ ratio with different
source number
Before calculating the accuracy of the localization under
different experimental environments, a group of experi-
ments is performed to verify the effectiveness of the pro-
posed method in terms of outlier removal. In these
experiments, the reverberation time is set as 150 ms and
the separation between sources is set as 60°, and the
minimum difference threshold is set as 50°. The number
of sources is chosen from {2, 3, 4, 5}. The results are
shown in Fig. 8:

It should be noted that the way to select outliers and
calculate outlier’s ratio are the same as experiment
shown by Fig. 1, which means that the DOA estimation
is conducted for the points selected by the methods,
once the DOA of a selected point has a deviation from
the direction of the actual source by more than 20°, this
point is recognized as an outlier. The outlier’s ratio is
obtained by calculating the proportion of outlier within
selected points. From Fig. 8, it can be found that as the
number of source increases, the outlier’s ratio of all the
methods increases. Among the points selected by all the
methods, the points selected by proposed methods have
the lowest outliers’ ratio, which proves the effectiveness
of the proposed method in terms of outlier removal.

5.3 The evaluation of the proposed method in different
reverberation time
In this section, the proposed method is evaluated in the
environment with different reverberation times. Four
kinds of room with different reverberation times are set
by the adjustment of the absorption of the walls inside
the room and the experiments are conducted in these
room with the reverberation time of {150 ms, 300 ms,
450 ms, 600 ms}. Three sound sources with a separation
of 60° are active simultaneously and the RMSE of the es-
timated localization of sources are calculated. The mini-
mum difference threshold is set as 50° in this group of
experiments. The results are shown in Fig. 9:
In addition to the obvious trends of increasing RMSE

with increasing reverberation time, the proposed method
using composite weight can usually obtain the lowest

Fig. 8 Statistical analysis for outliers’ ratio with different number of sources, RT60 = 150 ms, separation between adjacent sources is 60°
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RMSE. As Fig. 9a shows, when the reverberation time is
set as 150 ms, the difference of RMSE between the pro-
posed method and SSP is only 1.1 while this difference
widens to 6.58 when the reverberation time increases to
600 ms which demonstrates the advantage of the proposed
method against reverberation environments. Comparing to
that, the difference in localization accuracy between the
proposed method and SSZ is even larger, especially in the
environment with high reverberation time. In the room
with a reverberation time of 600 ms, the RMSE of SSZ is
up to 34.1, which is 20.2 higher than the RMSE of the pro-
posed method. This severe decline in the localization ac-
curacy is mainly due to the incorrect counting of source
number. It should be noted that the data used to evaluate
the localization performance is selected only if at least one
method has its sound source counting correct. More spe-
cifically, the correct counting of sources’ number means
that the number of detected sources is equal to the number
of actual sources. But in the complex acoustic environ-
ments, this criterion is too hard to realize for some
methods, so this criterion has been relaxed. As long as all
of the actual sources in the scenario have a corresponding
localization estimation, and the error is not higher than the
minimum difference threshold set above, the source count-
ing is considered as a correct source counting result.
Since the traditional SSZ-based methods have poor ro-

bustness to the increase of reverberation time compared
with SSP-based methods and the proposed method. In
the scenario with severe reverberation interference, the
SSZ-based method usually has the source counting
problem more often than the proposed method which
brings a huge difference in the localization accuracy.

Figure 9b aims to indicate that each step of the pro-
posed method is necessary. It can be found that in this
figure, the data with red mark always has a higher RMSE
than the data with orange mark which means that the
removal of PORW from the proposed method leads to a
greater negative influence than removing SORW from
the proposed method. As previously mentioned, the
SORW is used to remove the pseudo-peaks consist of
outliers based on the guidance of PORW. Once the
PORW is not involved in the rough localization, the
difference between pseudo-peaks and peaks consist of
desired T-F points is shortened and it is possible that
the peaks are wrongly removed. While the PORW is
used in the blind weighing process which means that it
can be used without the SORW. When the reverberation
time is set as 150 ms and 300 ms, it only has little differ-
ence between the data marked yellow and the data
marked orange because of the rare occurrence of
pseudo-peaks in these scenarios. However, the absence
of PORW does cause the localization accuracy decline in
high reverberation scenarios. In the scenario with a re-
verberation time of 450 ms, the removal of SORW in
the proposed method leads to the RMSE increase by
9.22, which means that the false detection of pseudo-
peaks can cause a sharp decline of localization perform-
ance. It should be noted that when the reverberation
time is 600 ms, this difference caused by removing
SORW is 5.32, which is lower than that in the reverber-
ation time of 450 ms. This phenomenon is caused by the
increase in the error of the estimated directions when
the reverberation time is 600 ms. The offset increase in
the results with wrongly counted source number is not
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Fig. 9 RMSE of localization results in different reverberation conditions, three sources, separation between adjacent sources is 60°. a The RMSE of
localization results using different methods. b The RMSE of localization results using different proposed weights
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significant compare to the offset increase in the results
with the source number counting correctly. In conclusion,
the SORW is based on the PORW which means that
without PORW, the proposed method is hard to be
established. Even the PORW can exist only by itself, the
problem of pseudo-peaks still leads to a dramatic increase
of error in high reverberation situations. Both SORW and
PORW play necessary roles in the proposed method.

5.4 The evaluation of proposed method with different
separation of sources
In order to validate the proposed method under multiple
conditions, experiments are conducted in the scenario of
changing sources’ separation. The reverberation time is
set as 150 ms and the number of sources is three. The
separations between sources are selected as {30°, 40°,
50°, 60°}. It should be noted that in this section, the
minimum difference threshold used in SDSCR and post-
processing changes with the separation of sources to
simulate the changing of the pre-estimated minimum
angle spacing between sources. The minimum difference
threshold is set 10° lower than the separation between
sources which means that the minimum difference
threshold is select from {20°, 30°, 40°, 50°} corresponding
to the separation between sources. The results are
shown in Fig. 10:
From both figures in Fig. 10, the proposed method still

has the lowest RMSE in all the scenarios. Apart from
that, another trend in Fig. 10 is that in complex acoustic
environments, the difference of RMSE for the proposed
method and the reference methods is lower than that in
Fig. 9. For example, in the room with a reverberation

time of 600 ms, the difference of RMSE for the proposed
method and the SSP is 6.58 while in the scenario that
the separation between sources is 30°, the difference be-
tween the proposed method and the SSP is just 0.25. It
should be noted that the reduction of separation be-
tween sources does not boost the reverberation compo-
nents as the operation of increasing reverberation time
does. The problem caused by the reduction of separation
mainly lies in the difficultly in the peak searching part
where the distance between adjacent peaks is too close
and hard to be detected. That means a reasonable pre-
estimated minimum angle spacing can help with this
problem. Since peak searching is a necessary part of the
post-processing, both the proposed method and refer-
ence method could benefit from the suitable minimum
difference threshold setting. That lowers the RMSE dif-
ference between the proposed method and reference
methods. Even so, the proposed method still has the
lowest RMSE compared with both reference methods
and the proposed method with one proposed weight re-
moved, which demonstrates the validity of the proposed
method in a variety of situations.

5.5 The evaluation of proposed method using noisy
signals and actual recorded signals
The proposed method is further verified by using noisy
signals and signals recorded in real environments.
For the experiments using noisy signals, the reverber-

ation time is set as 450 ms. Three sources with a separ-
ation of 90° sound simultaneously in the simulated room
and the minimum difference threshold is set as 70°. Ac-
cording to the setup of experiments, white Gaussian
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Fig. 10 RMSE of localization results with different separation among sources, three sources, RT60 = 150 ms. a The RMSE of localization results
using different methods. b The RMSE of localization results using different proposed weights
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noise is added to all the channels of the sound field
microphone to create signals with different signal to
noise ratio (SNR). In this set of experiments, the SNR is
chosen from {15dB, 25 dB, 35 dB} to evaluate the
performance of proposed method for different recorded
signals. The results are shown in Fig. 11 below:
It can be found from Fig. 11 that with the increase of

SNR, the RMSE of all the methods decline, while their
decline rate varies. Figure 11a shows that when the SNR
increase from 15 to 25 dB, the RMSE of the proposed
method declines sharply from 10.9 to 6.8. Then the
RMSE remains relatively stable when the SNR increases
from 25 to 35 dB, which means that when the SNR is
equal or lower than 25 dB, noise has little effect on the
localization results. While for the other methods, it can
be observed that their RMSE decreases constantly with
the increase of the SNR, which indicates that among all
the experimental situations, noise always has a great im-
pact on the localization accuracy of the reference
methods. A similar conclusion can be also obtained from
Fig. 11b. In summary, the proposed method can achieve
a better performance in processing noisy signals. More
specifically, when the noise is moderately added into the
signals (i.e., when SNR = 25 dB or 35 dB), the proposed
method can effectively reduce the impact of noise, even
the localization accuracy of the proposed method is de-
graded by the harsh effects of lower SNR (i.e., SNR = 15
dB), it still achieves better performance than the refer-
ence methods.
To further evaluate the performance of the proposed

method, a series of experiments using actual recorded

signals are conducted. The information about the acous-
tic chamber used in these experiments is given in the
first part of the section. The locations of the speakers
are set in advance, and the angle difference between
sources is chosen from {60°, 90°, 120°, 150°, 180°}. The
results are shown in Fig. 12:
Similar to the experiments conducted using simulation

signals, the RMSE of all the methods increases with the
decline of separation between sources. The proposed
method also achieves better performance in all the ex-
perimental situations compared with reference methods
and incomplete versions of the proposed method. It
should be noted that the RMSE of all the methods using
actual recorded signals is much larger than that using
simulation signals. This is not only because both noise
components and reverberation components exist in the
actual recorded signals but also due to the unpredictable
noise caused by the incomplete sound insulation of
acoustic chamber or the stronger reflections from the
objects such as devices in the room. Even so, the pro-
posed method still has the lowest RMSE, which demon-
strates the validity of the proposed method in actual
environments.

6 Conclusions
In this paper, the unavoidable problem of outliers’ exist-
ence in the detected SSZs has been explained and veri-
fied. To solve this problem, an assumption based on the
characteristic of the whole SSZ has been proposed. Refer
to this assumption, each T-F point within SSZ is
weighted by the PORW and SORW proposed in this
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Fig. 11 RMSE of localization results by using signals with different SNR, RT60 = 450ms, three sources, separation between adjacent sources is 60°.
a The RMSE of localization results using different methods. b The RMSE of localization results using different proposed weights
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paper to weaken the effect of outliers. Finally, the pro-
posed PORW and SORW are combined as a composite
weight to maximize the difference between the weight
applied to the outliers and desired points, then the
outliers are removed by an empirical threshold. The
proposed method has been proved to achieve better
performance over various experimental environments
compared with the reference methods. Besides, the pro-
posed method can be integrated into other localization
frameworks making use of DOA histograms plotted by
SSZ-based methods. The future work lies in the scien-
tific selection of thresholds instead of using empirical
thresholds.
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