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Knowledge-aided space-time adaptive processing (KASTAP) using multiple coherent processing interval (CPI) radar data is de-
scribed. The approach is based on forming earth-based clutter reflectivity maps to provide improved knowledge of clutter statistics
in nonhomogeneous terrain environments. The maps are utilized to calculate predicted clutter covariance matrices as a function
of range. Using a data set provided under the DARPA knowledge-aided sensor signal processing and expert reasoning (KASSPER)
Program, predicted distributed clutter statistics are compared to measured statistics to verify the accuracy of the approach. Robust
STAP weight vectors are calculated using a technique that combines covariance tapering, adaptive estimation of gain and phase
corrections, knowledge-aided prewhitening, and eigenvalue rescaling. Techniques to suppress large discrete returns, expected in ur-
ban areas, are also described. Several performance metrics are presented, including signal-to-interference-plus-noise ratio (SINR)
loss, target detections and false alarms, receiver operating characteristic (ROC) curves, and tracking performance. The results show
more than an order of magnitude reduction in false alarm density when compared to standard STAP processing.
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1. INTRODUCTION

The lack of training data in nonhomogeneous clutter envi-
ronments can cause severe degradation in the performance of
space-timeadaptive processing (STAP) algorithms (see [1, 2]
and references therein). Surveillance radars typically perform
STAP processing [3] on a limited number of pulses of data,
which are referred to as a coherent processing interval (CPI).
Each CPI is divided into a number of time samples which
correspond to the radar range gates. In each range gate, the
return signal in each antenna channel and on each pulse in
the CPI is digitized into in-phase and quadrature compo-
nents. The radar returns can thus be represented as complex
numbers, whose real parts are the corresponding in-phase
components, and whose imaginary parts are the quadra-
ture components. Thus, in each range gate the returns from
each channel and pulse can be represented as an NM by
1 complex column vector, where N is the number of an-
tenna channels and M the number of pulses per CPI. Co-
variance estimation for STAP is usually performed by aver-
aging the outer products of these return vectors with them-
selves over a number of training range gates from a single
CPI. As was shown by Reed et al. [4], this is a maximum like-
lihood estimate of the clutter covariance matrix, assuming

zero-mean complex Gaussian and homogeneous (i.e., range-
independent) statistics.

Due to varying terrain conditions, the covariance esti-
mation just described may result in poor estimates, due to
an inadequate amount of training data matching the range
gate under test. Two possible consequences of this are under-
nulling or overnulling of clutter. Undernulling may occur if
the test range gate contains strong clutter due to, say, steeply
sloped terrain, while the training window surrounding the
test cell contains less severe clutter. This may lead to an exces-
sive number of false alarms or, if the threshold is increased to
reduce false alarms, loss of target detections. Overnulling of
clutter may occur when the training window contains steeply
sloped terrain or windblown clutter that is not present in the
target range cell. Overnulling leads to the loss of target detec-
tions.

The motivation for the study described here is the fact
that in surveillance radar scenarios, a given area on the
ground may contribute to clutter returns overmultiple CPIs.
The data cubes from these CPIs contain potential training
data for estimating covariance matrices which, if exploited
properly, can reduce the degradation caused by range-
varying terrain. Due to the fact that the platform geometry is
changing from CPI to CPI, however, the space-time response
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of clutter scattered from a given point on the ground will
also be changing. Moreover, the area of intersection between
the radar resolution cells and the earth’s surface will also be
changing with platform geometry. Thus, simply averaging
outer products of complex returns from additional CPI data
cubes to augment standard covariance estimation is not ef-
fective (and may in fact cause STAP performance to degrade
rather than improve).

Additionally, in actual ground moving target indication
(GMTI) surveillance systems there are a number of real-
world effects that can degrade the performance of knowl-
edge-aided STAP techniques. Unknown antenna pattern
mismatch and internal clutter motion can cause model er-
rors and undernulled residual clutter. High ground target
densities produce target contamination of the STAP training
data, thus producing filter nulls at the locations of the de-
sired targets. Returns from large discretes, such as buildings
in urban areas, are spatially localized and can be much larger
than the returns from distributed clutter. These returns can
cause numerous false alarms that are spread over a wide area
due to sidelobe effects. Effective suppression of such discrete
returns may require specialized techniques in addition to
those used for distributed nohomogeneous clutter.

In order to exploit multilook radar data, an effective
knowledge-aided STAP approach must be able to extract in-
formation from each CPI on clutter statistics, correct for
CPI-to-CPI differences in the statistics, and calculate STAP
weight vectors that are robust under real-world GMTI condi-
tions. Our approach to accomplish these objectives combines
a number of different techniques, which are listed below:

(1) formation of earth-referenced clutter reflectivity maps
using multiple CPIs,

(2) covariance tapering to model internal clutter motion
[5],

(3) extended-factored (or “adjacent bin”) post-Doppler
processing [6],

(4) adaptive estimation and correction for channel and
Doppler-dependent gain and phase errors,

(5) knowledge-aided prewhitening using the colored load-
ing technique of [7, 8],

(6) eigenvalue rescaling of the knowledge-aided covari-
ance matrix,

(7) masking of STAP training data using a two-pass proce-
dure to reduce the effects of targets on the covariance
estimates,

(8) specialized processing to detect and remove returns
from large discretes such as buildings.

We have listed where appropriate references by other au-
thors that are employed in each technique. Covariance ta-
pering is described in [5] and is applied to the covariance
matrices derived from the clutter reflectivity map. This mod-
els the effects of internal clutter motion (ICM), which is an
important real-world phenomenon. We used post-Doppler
STAP degrees of freedom known as extended-factored or
adjacent-bin post-Doppler STAP [6]. The knowledge-aided
prewhitening algorithm developed by Bergin et al. [7, 8] is
also an important part of the approach. However, we have

also found the nonreferenced algorithm components listed
above that we developed (i.e., techniques (1), (4), (6), (7),
(8)) to improve STAP performance significantly. In addition,
we consider a performance metric not normally shown in
the literature. In addition to the usual signal-to-interference-
plus-noise ratio (SINR) loss metric, we also study the resid-
ual clutter-to-noise ratio (CNR) after STAP processing. The
latter is especially important, as it determines the number of
false alarms that will be observed after constant false alarm
rate (CFAR) processing is performed. To further quantify
the benefits of our approach we also show receiver operating
characteristic (ROC) curves of detection probability versus
false alarm density.

An outline of the paper is as follows. We describe in
Section 2 techniques (1)–(6) in detail. In Section 3, we con-
sider target contamination effects (technique (7)) and show
the results of processing the KASSPER Data Set 2 [9]. The
results obtained indicate that significant improvements in
STAP performance may indeed be achieved by incorporating
multiple CPI data cubes into knowledge-aided STAP process-
ing using the approach we describe. In Section 4, we show
the degrading effects of strong clutter discretes on GMTI
KASTAP performance.We describe additional KASTAP tech-
niques for suppressing these discretes and show results that
indicate these techniques are effective in eliminating the
degradation caused by large discretes. Finally, Section 5 sum-
marizes our results.

2. ALGORITHMDESCRIPTION FOR DISTRIBUTED
CLUTTERMITIGATION

2.1. Formation of clutter reflectivitymaps

The first aspect of our KASTAP approach using multilook
radar data is to form earth-referenced clutter reflectivity
maps. The goal of this step is to extract estimates of clut-
ter return strength as a function of spatial location on each
CPI and to incorporate these estimates into a clutter map
defined in a single common coordinate system. This com-
pensates for the differences in the radar coordinate systems
on each CPI and allows information on clutter statistics de-
rived from multiple CPI looks to be utilized in determining
the STAP filter weights on subsequent CPIs. By incorporat-
ing estimates from multiple CPIs over an extended time pe-
riod, the effects of random estimation errors and target con-
tamination effects on the clutter return estimates are reduced
through the averaging process.

As illustrated in Figure 1, there are four basic steps in-
volved in forming a clutter reflectivity map from multiple
CPI data cubes. These steps are described individually below.

2.1.1. Definition of clutter scatterers

The first step in extracting information on clutter statistics
on a given CPI is to define a clutter environment model.
The model we developed was tailored to distributed clut-
ter returns from terrain over an extended area on the earth.
The effects of localized discrete returns, such as those due to
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Figure 1: Illustration of procedure for forming an earth-based clutter reflectivity map.

Table 1: KASSPER Data Set 2 parameters [9].

Quantity Value

Radar frequency 10GHz
Radar bandwidth 10MHz
Peak power 10 kW
System losses 7 dB
Antenna size 1.43m (horizontal) by .285m

(vertical)
Transmit antenna pattern Spoiled to 10-degree beamwidth
Receive antenna
configuration

12 nonoverlapping subarrays,
spaced by 4 wavelengths per
subarray

Number of pulses per CPI 38
Number of CPIs per dwell 3 with PRFs of 2081, 1800, and

1518Hz
Time separation of dwells 10 s
Number of dwells
in scenario

30

Platform motion 150m/s, heading west
Crab angle 3◦

Standoff range to targets Approximately 45 km
Target clusters 3 clusters, 60 vehicles each
Background traffic 1000 vehicles
Target motion Move along roads, speed 2–25m/s

depending on road type, decelerate
when approaching intersections

Earth model Spherical, radius 6 378 388m, mod-
ulated by DTED

large buildings in urban areas, will be considered separately
in Section 4. To motivate the distributed clutter environment
model, we first discuss the characteristics of the KASSPER
Data Set 2 that was processed. The parameters for this data
set are given in Table 1.

The antenna elements of the KASSPER Data Set are
formed using 12 nonoverlapped subarrays spaced by 4 wave-
lengths per subarray. The subarrays are presteered to a partic-
ular direction on each CPI. The azimuth and elevation angle
of this presteering direction are supplied along with the data

cube for each CPI. Each CPI contains 38 pulses, and a dwell
consisting of three consecutive CPIs at different pulse rep-
etition frequencies (PRFs) occurs every 10 seconds. During
this time interval, the platform moves 1.5 km. This is signif-
icant relative to the 40 km standoff range to the targets, as
small CPI-to-CPI changes in aspect angle can produce large
changes in the space-time response of clutter scatterers.

With the parameters shown in Table 1, a Doppler reso-
lution cell located broadside to the platform spans approxi-
mately 0.3 degrees in azimuth. This is a factor of 4 finer than
the antenna beamwidth of 1.2 degrees. Thus, the Doppler fil-
ter spacing is about 1/4 of the antenna beamwidth (as one
moves off broadside, the Doppler filter width and antenna
beamwidth are both inversely proportional to the cosine
of the azimuth steering angle). Consequently, modeling the
clutter environment as a set of point scatterers spaced apart
by nomore than one Doppler filter should result in oversam-
pling of the radar azimuth resolution. The bandwidth of the
system shown in Table 1 leads to a range resolution of 15m,
which is much smaller than the size of the antenna beams or
Doppler filters on the ground. Thus, one scatterer per range
cell should suffice to give accurate clutter statistics.

The Doppler extent of the scatterers assumed in each
range gate is limited by the fact that the spatial response
across the antenna subarrays has grating lobes due to the 4
wavelength spacing. If the extent is selected to be too large,
the space-time response of two different clutter scatterers can
become nearly the same due to the simultaneous presence of
a temporal (Doppler) and spatial ambiguity. This would pre-
vent accurate estimation of the relative scattering strengths of
the two scatterers. In order to avoid this problem while sim-
ulating the effects of sidelobe clutter, scatterers were selected
to span the main Doppler ambiguity plus 30% of each of the
Doppler ambiguities on either side of the main ambiguity.

2.1.2. Georegistration of clutter scatterers

The clutter environment model described above is tied to a
radar coordinate system, which is the natural coordinate sys-
tem to use when estimating clutter parameters on a given
CPI look. As mentioned above, in order to combine clutter
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estimates from multiple CPIs, we define a common earth-
based coordinate system. The process by which the location
of the model clutter scatterers from a given CPI on the earth
is determined is referred to as georegistration. The ground
location of a clutter scatterer is defined by the intersection of
three surfaces:

(a) a range sphere centered on the platform location, hav-
ing a radius equal to the slant range Rs of the scatterer,

(b) a cone about the platform velocity vector, correspond-
ing to the Doppler frequency of the scatterer. Neglect-
ing internal clutter motion, the cosine of the cone an-
gle relative to the platform velocity vector is given by

cos θc =
λ fdop
2Vp

, (1)

where λ is the radar wavelength, fdop the scatterer
Doppler frequency, and Vp the radar platform speed,

(c) the earth’s surface. This is defined by digital terrain el-
evation data (DTED).

The height of the earth’s surface at a scatterer location de-
pends on its latitude and longitude, and these are unknown.
An iterative approach using an initial estimate of the terrain
height h above the reference spherical earth model of radius
Re was employed. Let the unknown position of the scatterer
in earth-centered coordinates be denoted by rsc. The plat-
form position vector is known and is denoted by rp. The
scatterer position is then determined by solving the follow-
ing three equations:

∣
∣rsc − rp

∣
∣
2 = Rs

2 (range sphere),
(

rsc − rp
) • vp = Rs ·Vp · cos θc (Doppler cone),
∣
∣rsc

∣
∣
2 = (Re + h

)2
(earth sphere).

(2)

The above equations constitute a set of three equations and
three unknowns, which are the three components of the scat-
terer position vector rsc. To refine the value of h, the earth-
centered position vector rsc is converted to latitude and longi-
tude using spherical earth geometry. The new terrain height
is then obtained by accessing the DTED database at this lo-
cation. Several iterations of this procedure were employed
to reduce the geolocation error to a small fraction of a res-
olution cell. For the study described in this paper, a level 1
database indexed by latitude and longitude having a post-
ing of 90m was employed (note from Table 1 that in the
KASSPER Data Set these height variations occur on a refer-
ence spherical rather than ellipsoidal earth).

2.1.3. Estimation of scatterer strengths

Once the scatterer locations on the ground are determined,
their contributions to the received radar amplitudes must be
estimated. This first requires defining the space-time steering
vectors to each scatterer. Assuming identical antenna chan-
nels, the elements of a steering vector are a known function of
the look direction to the scatterer and its Doppler frequency.
The magnitude of the steering vector elements is also scaled

by the overall (channel-independent) subarray azimuth an-
tenna gain on the scatterer. This is done in order to correct
for known CPI-to-CPI changes in this antenna pattern, and
it is important for clutter scatterers that are near the edge of
the mainlobe region of the subarray pattern. As the platform
geometry changes, such scatterers can move into the main-
lobe and produce a significantly larger return, or move into
the sidelobe region and produce a weaker return. (We only
assume that the overall pattern is known and is the same
for all the antenna channels; to account for channel mis-
match we have an adaptive procedure that will be described
in Section 2.3.3.)

Let the steering vector to the scatterer i in a given range
gate of a given data cube be denoted by si. Also let x be the
measured data vector in the range gate. We desire an approx-
imation to x in the form

x =
∑

i

αi · si. (3)

The complex return strengths αi are selected in order to min-
imize the squared error

ε =
∣
∣
∣
∣x −

∑

i

αi · si
∣
∣
∣
∣

2

. (4)

The solution of this problem can be shown to be

αi =
∑

j

[

S−1
]

i j · s jHx, [S]i j ≡ siHs j . (5)

In general, the matrix S will not be diagonal, due to the
fact that the steering vectors will not be orthogonal. This
is true even if the scatterer spacing is selected to be one
Doppler filter, due to the fact that multiple Doppler ambi-
guities are modeled. The complex numbers αi represent the
return strengths and phases of the scatterers in a given range
gate of a given data cube. Each of the scatterers represents
clutter in one range-Doppler cell, which in turn corresponds
to a particular area on the ground. The procedure described
here is repeated for all the processed range gates in each of
the CPI data cubes used to form a clutter reflectivity map.

2.1.4. Normalization of clutter reflectivity

Since the complex clutter estimates described in Section 2.1.3
are derived from measured data, they implicitly include all
the effects of parameters appearing in the radar range equa-
tion (i.e., transmit antenna patterns, clutter radar cross sec-
tion, etc.). The cell areas of range-Doppler resolution cells
on the ground are different on each CPI, due to the differ-
ent pulse repetition frequencies (PRFs), as well as the chang-
ing geometry as the platform moves. Because the areas are
changing from CPI to CPI, it is important to build the clutter
reflectivity map using reflectivity, which normalizes the clut-
ter return power by the cell area. Define Δrrng(i) as the vector
on the ground spanning the range dimension of scatterer i,
and Δrdop(i) as the vector spanning the Doppler dimension.
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The area of the corresponding ground cell is then given by

Ai =
∣
∣
∣Δrrng(i) × Δrdop(i)

∣
∣
∣. (6)

The clutter reflectivity of the scatterer is then defined as
the estimated clutter power |αi|2 divided by the area on the
ground Ai represented by that scatterer.

2.1.5. Formation of clutter reflectivity maps

The reflectivity maps are built by first determining, for each
cell of the map, the range and Doppler indices of the clut-
ter scatterer that encompasses the center of the cell on each
CPI. This is accomplished using a straightforward conver-
sion from earth-centered coordinates to radar-centered co-
ordinates. The clutter reflectivity of the cell is then calcu-
lated by averaging the estimated reflectivities of the corre-
sponding scatterers over many CPIs. To improve the fidelity
of the reflectivity map, reflectivity estimates from the cur-
rent CPI are incorporated adaptively. It is important to in-
clude current-CPI data, since as the platform moves new ar-
eas on the ground may contribute significantly to the clut-
ter interference. Additionally, large changes in clutter reflec-
tivity will occur when a ground patch first becomes visible
to the radar (producing an increase) or shadowed from the
radar by terrain (producing a large decrease in reflectivity).
To improve the clutter reflectivity estimates under these con-
ditions, a metric was formulated to detect such changes.

Assume that we have individual clutter reflectivity esti-
mates in a given cell of a ground-based reflectivity map on L
past CPIs. These estimates are denoted as rl, l = 1, 2, . . . ,L.
We also have a reflectivity estimate rL+1 on the current CPI.
We assume that each rl is a random variable with an expo-
nential probability distribution. This is justified by the fact
that these estimates are derived as thesquared magnitude of a
linear combination of complex Gaussian random variables.
To detect reflectivity changes, we define two hypotheses:

H0 : rL+1 has the same mean as r1,2,...,L,
H1 : rL+1 has a different mean than r1,2,...,L.

The generalized likelihood ratio test (GLRT) for deciding be-
tween the two hypotheses (see [10] for a good description of
this technique) can be easily shown to have the form

(L + 1) · ln
∑L+1

l=1 rl
L + 1

− L · ln
∑L

l=1 rl
L

− ln rL+1 > TG. (7)

Here, TG is the GLRT threshold setting. Normally, the reflec-
tivity map cell value is set equal to the average

∑L+1
l=1 rl/(L + 1)

of the estimated reflectivities over all the CPIs processed.
When the GLRT threshold is exceeded, however, the map
reflectivity is set equal to the current-CPI estimate rL+1. In
this manner, the reflectivity map responds more rapidly as
a function of time (CPI) to rapid changes in clutter return
strength. A similar approach has been used in [11] to per-
form SAR change detection.
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Figure 2: Clutter reflectivity map formed frommultiple CPIs of the
KASSPER Data Set 2.

Figure 2 shows a clutter reflectivity map that was calcu-
lated using CPI #s 17–22 of the KASSPER Data Set 2, with
adaptive GLRT processing on CPI #22. The resolution of the
map was selected as 25m, which is slightly larger than the
15m range resolution. The boundaries of the map corre-
spond to the range limits processed on each CPI. The re-
flectivity map is seen to predict regions of very strong clut-
ter, which are produced by steeply sloped terrain. In addition
there are areas where the reflectivity is much weaker, which
includes regions that are shadowed from the radar (i.e., not
visible). The knowledge gained from the reflectivity map al-
lows these areas to be identified. The STAP processor can in-
corporate this knowledge into the adaptive weight vector and
reduce the magnitude of over-/undernulling that occurs with
standard range-averaged covariance estimation.

2.2. Prediction of current-CPI statistics

In order to be useful in improving STAP detection of slowly
moving ground targets, the multi-CPI clutter reflectivity
map described above must be employed to calculate clutter
statistics for the CPI under test. The procedure used here is to
define a grid of model clutter scatterers in each range gate of
the data cube, as described in Section 2.1.1. The extent and
spacing used for prediction of the statistics can be different
than that used for estimation of clutter reflectivity. For the
results shown below, scatterers spanning three Doppler am-
biguities about the look direction were defined (recall that
for estimation, only 1.6 ambiguities were modeled). To re-
duce interpolation errors, the Doppler spacing of the scatter-
ers was taken to be half a Doppler filter rather than one filter.

Once the scatterer range and Doppler locations used for
prediction of current-CPI clutter statistics are defined, reg-
istration to geodetic coordinates is performed as described
in Section 2.1.2. The steering vectors and cell areas of each
scatterer are then calculated as specified in Sections 2.1.3 and
2.1.4. The reflectivity of a particular scatterer on the current-
CPI data cube is next determined by using its calculated lat-
itude and longitude and indexing into the clutter reflectivity
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Figure 3: Comparison of (a) measured range-Doppler spectrum for CPI #22 with (b) prediction of clutter reflectivity map.

map. To obtain the estimated power pi of scatterer i, the re-
flectivity is multiplied by its cell area Ai. The overall antenna
subarray azimuth gain is then applied, which corrects for the
changing power of scatterers that may have been in the main-
lobe on previous CPIs but have moved into the antenna side-
lobes on the current CPI (or vice versa). A covariance matrix
for each range gate is then calculated by summing the indi-
vidual contributions of the scatterers in the range gate:

Qcalc =
∑

i

pi · sisiH . (8)

(Note that we use the symbol Q to denote a full-degree-of-
freedom (DOF) covariance matrix across all the antenna el-
ements and pulses. In Section 2.3.2 we will use the symbol
R to denote a reduced-DOF post-Doppler covariance matrix
for a given target Doppler index. The reduced DOF set will
consist of all antenna elements but a limited number of adja-
cent Doppler filters surrounding the target filter. If we restrict
attention to the center adjacent filter only (i.e., the target fil-
ter), the resulting N-by-N spatial covariance matrix will be
denoted by the symbol U. To denote the elements of a co-
variance matrix we use the lower case, nonbold symbols qi, j ,
ri, j , ui, j for the full DOF, post-Doppler, and spatial covariance
matrices, resp., where i is a row index and j a column index.)

To test the accuracy of the algorithm, a plot of the mean
power in each range gate and Doppler filter was calculated.
This was done by employing a single spatial weight vector
corresponding to the radar look direction and a bank of tem-
poral weight vectors corresponding to a temporal FFT across
the CPI. Chebychev weighting (60 dB sidelobes) was applied
across the pulses prior to applying the weight vectors in order
to reduce the effects of Doppler sidelobes. Figure 3 compares
the measured range/Doppler spectrum for CPI #22 with the
mean spectrum corresponding to the covariance matrices
calculated using the reflectivity map shown in Figure 2.

The clutter in Figure 3 is somewhat confined in Doppler
(vertical dimension). This is due to the Doppler extent of the

area covered by the antenna beamwidth. The total Doppler
extent of the plots is equal to the pulse repetition frequency
(equal to 2081.3Hz for CPI #22). The Doppler interval is
oversampled so that the number of Doppler frequencies at
which the spectrum is evaluated is equal to two times the
number of pulses in the CPI. Note the strong range varia-
tion of the clutter (the range extent of the plots is 2.7 km).
This is due to the occurrence of varying terrain slopes and
shadowing.

Observe that the clutter location in Doppler and its vari-
ation with range is correctly predicted, showing that the reg-
istration procedure was effective. The returns in the middle
of the plots are due to near-sidelobe clutter and are also cor-
rectly predicted. The clutter predictions can be expected to
produce significant improvements over standard STAP train-
ing, which essentially averages the features over the entire
range interval.

2.3. STAPweight vector calculation

The approach taken to compute robust STAP weight vectors
has several aspects which we now describe.

2.3.1. Covariance tapering

To account for internal clutter motion, the calculated covari-
ance matrices shown in (8) are modified before Doppler pro-
cessing. Reference [5] shows that the effect of internal clut-
ter motion (ICM) on the covariance matrix is to taper the
elements of that matrix. To model a two-sided exponential
velocity distribution, a tapering function with a Lorentzian
shape is applied to the elements of the covariance matrices
calculated from the reflectivity map

qn+(m−1)·N ,n′+(m′−1)·N

−→ qn+(m−1)·N ,n′+(m′−1)·N · 1
1 + γ|m−m′|2 .

(9)

Note that the row index is defined so that as one moves down
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the row, the spatial DOF index (n) is changing more rapidly
than the temporal DOF index (m). Similarly, as one moves
across a column, the spatial DOF index n′ is changing more
rapidly than the temporal DOF index m′. The total number
of spatial elements is equal to the number of antenna chan-
nelsN , the number of temporal DOFs is equal to the number
of pulsesM, and the number of rows or columns is NM.

For the results shown in the next section, the constant γ
was selected to correspond to a 0.17m/s standard deviation
of the distribution of clutter internal velocity. This value was
selected empirically based upon observations of the data cor-
relation characteristics.

2.3.2. Post-Doppler processing

Once the covariance tapers are applied to the calculated co-
variance matrices, Doppler preprocessing of the covariance
matrices is next performed. To obtain the results shown
in the next section, extended-factored [6] (also known as
“adjacent-bin” or “multi-bin”) post-Doppler processing was
implemented in order to reduce the number of adaptive
degrees of freedom and required training window sizes.
This algorithm calculates a separate STAP weight vector in
each Doppler filter, allowing tailoring the adaptive filter to
the clutter present in each Doppler filter. This is advan-
tageous when the clutter is strongly varying with Doppler
(as was seen in Figure 3). The Doppler preprocessing trans-
formation for a given Doppler filter index idop is described
by a matrix D(idop). This matrix has dimensions Fadj by
M, where Fadj is the number of adjacent filters forming
the temporal degrees of freedom for target Doppler filter
idop, and M is the number of pulses in the CPI. The el-
ements of D(idop) are denoted by d f ,m(idop), where f is
the adjacent filter row index and m the pulse column in-
dex.

The elements of a reduced-DOF post-Doppler data vec-
tor y(k, idop) in range gate k and Doppler filter idop are ob-
tained from those of the full-DOF data vector x(k) in the
range gate using the equation

y(k, idop)n+( f−1)·N =
M
∑

m=1
d f ,m

(

idop
) · x(k)n+(m−1)·N ,

n = 1, 2, . . . ,N , f = 1, 2, . . . ,Fadj.

(10)

For the reduced-DOF data vector, the row indices are again
defined so that as one moves down a row, the spatial DOF
(n) is changing more rapidly than the temporal DOF ( f ).
No spatial DOF reduction has been performed, so the spa-
tial DOFs consist of the N = 12 antenna subarrays. We se-
lected Fadj = 3 temporal DOFs, corresponding to 3 adjacent
Doppler filters surrounding the target Doppler filter (or filter
under test).

Correspondingly, the elements of a reduced-DOF cova-
riance matrix R(k, idop) in the range gate k and the tar-
get Doppler filter idop are given in terms of the elements

q(k)n+(m−1)·N ,n′+(m′−1)·N of the full-DOF covariance matrix
Q(k) as

r
(

k, idop
)

n+( f−1)·N ,n′+( f ′−1)·N

=
M
∑

m=1

M
∑

m′=1
d f ,m

(

idop
) · q(k)n+(m−1)·N ,n′+(m′−1)·N

· d f ′,m′
(

idop
)∗
,

n = 1, 2, . . . ,N , n′ = 1, 2, . . . ,N ,

f = 1, 2, . . . ,Fadj, f ′ = 1, 2, . . . ,Fadj.
(11)

2.3.3. Adaptive correction for channel mismatch

To compensate for angle- and channel-dependent antenna
patternmismatch, an adaptive estimation of complex correc-
tion terms is next performed in eachDoppler filter. This is ac-
complished using a linearized maximum likelihood method
to estimate channel-dependent gain and phase error terms.
In each Doppler filter, a spatial N-by-N covariance matrix
Ucalc is first obtained by extracting the spatial covariance cor-
responding to the center adjacent filter ( fc) of the reduced-
DOF post-Doppler covariance matrix Rcalc calculated from
the reflectivity map. The elements of the spatial covariance
are given in terms of those of the reduced-DOF post-Doppler
covariance as

ucalc
(

k, idop
)

n,n′

= rcalc
(

k, idop
)

n+( fc−1)·N ,n′+( fc−1)·N , n,n′ = 1, 2, . . . ,N.

(12)

Phase error terms on each element are first estimated us-
ing a maximum likelihood criterion. The effect of the phase
errors on the spatial covariance is to produce a corrected co-
variance Ũcalc(k, idop), whose elements are given by the fol-
lowing equation:

ũcalc
(

k, idop
)

n,n′

=exp
{

jεn
(

idop
)}·ucalc

(

k, idop
)

n,n′ ·exp
{− jεn′

(

idop
)}

.

(13)

Note that the phase errors are assumed to depend on element
index but not on range. The likelihood function is given by

ln
{

p(idop
)}

= −
K
∑

k=1

{

z
(

k, idop
)H

Ũcalc
(

k, idop
)−1

z
(

k, idop
)

+ ln
∣
∣Ũcalc

(

k, idop
)∣
∣
}

.

(14)

Here, z(k, idop) is the spatial data vector obtained by extract-
ing the N complex amplitudes from the center adjacent filter
of the reduced DOF data vector in range cell k and Doppler
filter idop, and K is the number of range gates in the estima-
tion training window.

In order to estimate the phase errors, a prior distribution
on the εn terms is added, and the derivative of the likelihood
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function with respect to the phase error terms is set to zero:

∂

∂εn
(

idop
)

⎧

⎨

⎩
ln
{

p
(

idop
)}−

∣
∣εn
(

idop
)∣
∣
2

σε2

⎫

⎬

⎭
= 0. (15)

The above equation is then linearized in εn(idop), and a set
of linear equations is obtained. Note that a separate set of
equations is solved for each Doppler filter idop.

Amplitude errors an(idop) are estimated in a similar man-
ner. Their effect on the spatial covariance elements is mod-
eled as

˜ũcalc
(

k, idop
)

n,n′

= exp
{

an
(

idop
)} · ũcalc

(

k, idop
)

n,n′ · exp
{

an′
(

idop
)}

,
(16)

where the double tilde shows that we are operating on the
spatial covariance after phase error correction. Maximum
likelihood estimation with a prior distribution, followed by
linearization, is again employed.

Complex correction coefficients are defined in terms of
the gain and phase corrections as

cn
(

idop
) = exp

[

an
(

idop
)

+ j · εn
(

idop
)]

. (17)

The post-Doppler calculated covariance matrices in a given
Doppler filter are then corrected using

rcalc
(

k, idop
)

n+( f−1)·N ,n′+( f ′−1)·N

−→ cn
(

idop
)·rcalc

(

k, idop
)

n+( f−1)·N ,n′+( f ′−1)·N ·cn′
(

idop
)∗
.

(18)

Note that we assume that the phase and amplitude errors do
not affect the cross covariance among adjacent Doppler fil-
ters. This assumption is of course not exactly true, since the
actual errors do depend on azimuth and hence Doppler fre-
quency.

2.3.4. Knowledge-aided prewhitening

Even after performing the adaptive gain/phase corrections
described above, due to such effects as unknown internal
clutter motion, residual antenna element mismatch, and
aspect-dependent reflectivity, there will be errors in the clut-
ter covariance matrices calculated from the reflectivity map.
In order to combine the calculated covariance matrices with
current-CPI training data, we apply an algorithm that was
presented by Bergin [7] at the 2003 Adaptive Array Sensor
Processing (ASAP) Conference. This algorithm fuses a calcu-
lated covariance matrix with an estimated covariance to cal-
culate a robust STAP weight vector. The STAP weight vector
is given by

w = κ · RCL
−1s, RCL ≡ Rcurr + βl · I + βd · Rcalc. (19)

This procedure is also known as “colored loading.” Here
Rcurr is the conventional or sample covariance estimate de-
rived from the current-CPI data cube, using the Reed-
Mallett-Brennan result [4]. A range training window equal to

5 times the number of DOFs (180 range gates, correspond-
ing to a 2.7 km range extent for the KASSPER Data Set) was
used to calculate Rcurr. Rcalc is the covariance matrix calcu-
lated from the reflectivity map (after applying the corrections
described in last sub-section), s is the target steering vector,
βl is the conventional diagonal loading scale factor, and βd is
a “colored loading” scale factor.

It was also shown in [7] that the above STAP weight vec-
tor could be implemented using a prewhitening approach.
In this approach, the data vector and the diagonally loaded
range-averaged covariance estimate are prewhitened using
the calculated covariance matrix. To obtain the results shown
in the next section, the diagonal scale factor βl was selected
to produce diagonal loading at the noise floor. The colored
loading scale factor βd was selected so that the mean power
of the βd · Rcalc term matched that of the measured covari-
ance Rcurr. Note that all quantities (matrices and vectors) are
defined in the reduced post-Doppler DOF space described in
Section 2.3.2.

2.3.5. Eigenvalue rescaling

To produce further improvements in residual clutter ampli-
tude and SINR, an eigenvalue scaling technique was formu-
lated. It involves first finding the eigenvectors and eigenvalues
of the colored loading covariance:

RCLên = λnên. (20)

A new set of eigenvalues and a modified covariance is then
computed using

λ̃n = ênHRcalcên, R̃CL =
∑

n

λ̃n · ênênH. (21)

The final KASTAP weight vector is then computed using

w̃ = κ · R̃CL
−1s. (22)

The rationale for eigenvalue rescaling is as follows. There
are two important sources of error in the KASTAP covari-
ance estimate: errors in the assumed clutter return amplitude
and errors in the assumed space-time response across the an-
tenna channels. We expect the normalized eigenvectors of the
covariance matrix to be insensitive to errors in clutter return
amplitude: an overall scaling of the clutter reflectivity in a
given range gate will not affect the eigenvectors of the clutter
covariance matrix. An amplitude scaling will, however, have
a direct effect on the eigenvalues of the covariance matrix.
Conversely, errors in the assumed space-time response are
expected to have a large effect on the eigenvectors but little
effect on the eigenvalues.

Now, we have seen (Figure 3) that the calculated covari-
ance derived from the clutter reflectivity map produces a
much better prediction of the spatial variation of clutter am-
plitude than the range-averaged sample covariance matrix.
Since the colored loading covariance is a linear combination
of the range-averaged sample covariance and the covariance
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Figure 4: (a) SINR loss as a function of Doppler filter (vertical) and range gate (horizontal) for standard STAP processing and (b) KASTAP
processing without gain/phase corrections or eigenvalue rescaling.

calculated from the clutter reflectivity map, we also expect
the calculated covariance to provide a better prediction of
clutter amplitude, or eigenvalues of the clutter covariance,
than the colored loading covariance.

On the other hand, we have observed improvement in
SINR loss using the colored loading covariance. This suggests
that the space-time responses of clutter scatterers, and by im-
plication, the clutter covariance eigenvectors, are better de-
scribed by the colored loading covariance matrix. This is not
so hard to believe if we realize that estimates of the space-time
response are not degraded by range-averaging the way that
estimates of clutter amplitude are. The space-time response
of clutter at a given azimuth angle or Doppler frequency is ex-
pected to be nearly independent of range, even if the clutter
amplitude is changing with range. By rescaling the eigenval-
ues of the colored loading covariance in the manner shown
above, we are incorporating into the knowledge-aided co-
variance estimate improved knowledge of clutter amplitude
variations provided by the clutter reflectivity map. Moreover,
because we do not change the eigenvectors, we maintain the
improved knowledge of clutter space-time response provided
by the colored loading covariance.

3. RESULTS OF PROCESSING THE
KASSPER DATA SET 2

3.1. SINR loss

Performance was first evaluated by calculating SINR loss for
CPI #22 of the KASSPER Data Set 2. Figure 4 compares the
SINR loss for standard STAP processing versus knowledge-
aided STAP processing using the algorithm described in
Section 2 without the gain/phase correction and eigenvalue
rescaling steps. The loss is shown as a function of Doppler
index (vertical) and range gate (horizontal) over the same
region as in Figure 3. To obtain the results shown in Figure 4,
data cubes without targets were processed in order to isolate
the benefits on clutter suppression produced by the past CPI

reflectivity map. Note from the plots that the SINR loss is
degraded over a significant portion of the Doppler interval.
This portion corresponds to the Doppler frequency of clut-
ter over the antenna beamwidth. The region in which SINR
loss is degraded can be compared to the areas of strong clut-
ter return in Figure 3. Note that with knowledge-aided pro-
cessing the “clutter null” is significantly narrower in certain
areas. This is due to improved knowledge of the local clutter
statistics that is gained from the clutter reflectivity map. Note
however that the middle of the clutter null is actually deeper
with KASTAP than with standard STAP processing.

Figure 5 shows the phase and log-amplitude errors as a
function of Doppler filter and antenna channel that were
calculated using the procedure described in the last section.
Figure 6 shows the effects of incorporating these corrections
on the residual clutter-to-noise ratio (CNR) after KASTAP
processing. This result shows that performing the adaptive
gain/phase correction significantly reduces the amount of
undernulled clutter, which in turn should reduce false alarms
and improve detection performance. Figure 7 shows that
performing eigenvalue rescaling further reduces the residual
CNR after KASTAP processing.

Figure 8 compares the SINR loss for standard STAP
processing with that of KASTAP processing using multiple
CPI reflectivity maps with adaptive gain and phase correc-
tions, knowledge-aided prewhitening, and eigenvalue rescal-
ing. Note that the middle of the clutter null after KASTAP
processing is much shallower than was seen in Figure 4. This
is a consequence of the reduced residual clutter levels pro-
duced by performing the adaptive gain and phase correc-
tion and eigenvalue rescaling steps. In addition, the width
of the clutter null is noticeably narrower in spots than was
seen in the right half of Figure 4. This is a consequence of the
improved knowledge of clutter amplitude produced by per-
forming the eigenvalue rescaling prior to STAP weight cal-
culation. This narrowing should produce better detection of
low velocity targets, which are located close to the clutter null
in Doppler frequency.
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Figure 5: (a) Estimated phase and (b) long-amplitude errors as a function of Doppler filter (vertical) and antenna channel (horizontal).
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Figure 6: Residual CNR after KASTAP processing (a) without and (b) with corrections for channel- and Doppler-dependent gain and phase
errors.

3.2. Detection/false alarm performance

In addition to SINR loss and residual CNR, performance was
evaluated by processing the KASSPER data cubes with sim-
ulated targets in them and comparing threshold crossings to
the known target range/Doppler locations. Strong discretes
and targets contaminate the training data and can cause se-
vere nulling of target returns, thus reducing target detection
performance. This contamination of the range-averaged co-
variance estimates was reduced by performing separate range
masking in eachDoppler filter. To accomplish this, a two-step
procedure was employed.

(1) Calculate the STAP detection statistic in each range/
Doppler cell without any masking of the training data (the
detection statistic is determined by normalizing the output
amplitudes so that the mean output noise power is at 0 dB
and then performing a range-only CFAR in each Doppler fil-
ter).

(2) Mask range/Doppler cells whose statistic exceeds a
certain threshold (15 dB) from the training data. Recompute
the detection statistic using the remaining training data and
determine the resulting threshold crossings.

Figures 9, 10, and 11 compare the range/Doppler loca-
tions of threshold crossings in the same portion of CPI #22 as
in Figures 4–8. The locations of known targets are shown as
diamonds for mainlobe targets and squares for sidelobe tar-
gets. Threshold crossings due to targets are shown as light tri-
angles, while false alarms are shown as light crosses. Observe
that KASTAP produces fewer false alarms and more targets
detections than standard STAP processing, especially when
the adaptive gain/phase corrections and eigenvalue rescaling
are performed (Figure 11).

Receiver operating characteristic (ROC) curves were gen-
erated by varying the detection threshold and counting the
number of target detections and false alarms for each thresh-
old. Probability of detection was computed by calculating the
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Figure 7: Residual CNR and KASTAP processing (with gain/phase correction) (a) without and (b) with eigenvalue rescaling.
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Figure 8: (a) SINR loss as a function of Doppler filter and range gate for standard STAP processing and (b) KASTAP processing with
gain/phase correction and eigenvalue rescaling applied.

fraction of mainlobe targets that were detected within the
range window processed. Multiple targets lying within the
same range/Doppler cell were counted as a single target. For
each threshold setting, the detection probability and false
alarm density (number of alarms per square kilometer on the
ground) were calculated. The range and azimuth extent pro-
cessed corresponded to an area on the ground of 3 square
kilometers per CPI.

Figure 12 shows the ROC curves representing perfor-
mance over 29 CPIs of the KASSPER Data Set 2. A signifi-
cant number of closely spaced, nonmoving targets were ac-
tually present in the scenes. Since these targets are not mov-
ing, their returns cannot be distinguished from those of clut-
ter using Doppler frequency. Thus, even with KASTAP pro-
cessing we cannot expect to achieve 100% detection proba-
bility. A consistent benefit in detection performance is seen
from KASTAP processing. For example, at a detection prob-
ability of 60%, the false alarm density decreases from about
55 alarms per square kilometer for standard STAP process-
ing to 1.5 per square kilometer for KASTAP processing (with

corrections and eigenvalue rescaling), a factor of more than
30 reduction. If the nonmovers were removed from the data
set, the detection probability values obtained would be ex-
pected to increase accordingly.

The effect of incorporating multi-CPI clutter reflectiv-
ity maps into knowledge-aided STAP processing on tracking
performance was also evaluated using our multiple hypoth-
esis tracking (MHT) testbed. The KASSPER Data Set 2 was
again used; however only four of the targets from the data
set were present in the scenario. Figure 13 shows the loca-
tion of the targets on the testbed display and lists the track-
ing results over 23 dwells (220 seconds). For target #3, with
KASTAP two tracks were actually formed. This was due to
the fact that target #4 was very close to target #3, and the im-
proved detection produced by KASTAP caused the track on
target #3 to skip to target #4 near the end of the dwell se-
quence. The results show that with KASTAP processing, bet-
ter detection performance was observed, the tracker was able
to give improved time in track, and fewer false alarms were
present than for standard STAP processing.
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Figure 9: Range-Doppler locations of target truth (mainlobe and
sidelobe targets), target threshold crossings, and false alarms for
standard STAP processing on CPI #22 of the KASSPER Data Set 2.
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Figure 10: Range-Doppler locations of target truth (mainlobe
sidelobe targets), target threshold crossings, and false alarms for
KASTAP processing (without gain/phase correction or eigenvalue
rescaling) on CPI #22 of the KASSPER Data Set 2.

4. MITIGATION OF LARGE DISCRETE RETURNS

The KASTAP techniques described in Sections 2 and 3 were
developed for a radar interference environment consisting of
strong, nonhomogeneous distributed clutter returns as well
as numerous target returns. Real-world GMTI surveillance
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Figure 11: Range-Doppler locations of target truth (mainlobe and
sidelobe targets), target threshold crossings, and false alarms for
KASTAP processing (with gain/phase correction and eigenvalue re-
scaling) on CPI #22 of the KASSPER Data Set 2.
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eigenvalue rescaling over 29 CPIs of the KASSPER Data Set 2.

conditions will also include urban areas. Such areas contain
large buildings, which can produce extremely large radar re-
turns. These returns will be much more localized than the
distributed clutter returns, and are very sensitive to aspect
angle. As such, they may be present on only a single CPI
data cube. When they occur, the large amplitude may cause
numerous false alarms to be produced in many Doppler fil-
ters. The KASTAP approach we have outlined thus far may
not be sufficient to mitigate the effects of such discretes.
In Section 4.1, we first show results indicating the effect of
large discretes on KASTAP performance. In Section 4.2, we
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Figure 13: (a) Target locations on our DM++ display and (b) tracking results for standard-versus-KASTAP processing.
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Figure 14: (a) Effects of multiple discretes on CPI #22 clutter reflectivity estimates and (b) KASTAP ROC curves.

describe a set of techniques that we developed and incor-
porated into our KASTAP processing to mitigate the effects
of large clutter discretes. Finally, in Section 4.3 we show the
results of applying these techniques to the KASSPER Data
Set 2.

4.1. Effect of large discretes on KASTAP performance

Though discrete returns from buildings and towers were sim-
ulated in the KASSPER Data Set 2, the radar cross section
(RCS) of these scatterers was limited by a fairly small build-
ing size [9]. In urban regions, buildings can have an RCS as
high as 106 m2 [12]. In order to simulate the effects of mul-
tiple large discretes, we used the routines supplied with the
KASSPER Data Set 2 [9] to add plane wave responses from
5 point scatterers located on visible terrain to the CPI #22
data cube. We set the radar cross section of the discretes to
be 40 dB m2 to represent the returns from moderately large
buildings.

Figure 14(a) shows that the effects of these discretes are
clearly visible in the clutter reflectivity map estimates. Due to
the fact that the discretes are not exactly located on one of the

point scattering locations in our distributed clutter model,
they corrupt reflectivity estimates over a wide area through
sidelobe effects. The covariance matrices derived from the
clutter reflectivity map also rely on a point scattering model.
In addition, the model errors estimated for distributed clut-
ter may be inadequate for suppressing the discrete. Thus,
while there will be some suppression of the discretes by the
KASTAP filter weights, undernulling can be expected to oc-
cur. With KASTAP processing, the discretes are found to pro-
duce false alarms inmany Doppler filters. Figure 14(b) shows
that the KASTAP ROC curves for CPI #22 are highly de-
graded by the presence of the discretes.

4.2. Suppression of discrete returns

We studied a number of different approaches for suppressing
the effects of discretes on STAP performance. The technique
we found to be most effective for suppressing the discrete re-
turns comprises of 5 steps.

(1) Perform a thresholding of estimated clutter reflectivi-
ties in each range gate during formation of the clutter reflec-
tivity map.
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(2) Estimate the complex amplitude and azimuth angle
of a discrete in each range gate containing threshold crossings
from Step 1.

(3) Subtract the estimated discrete contributions to clut-
ter reflectivity estimates.

(4) Estimate channel-dependent gain and phase errors to
apply to the space-time steering vectors at the discrete loca-
tions using a maximum likelihood approach.

(5) Add an additional constraint on the STAP weight vec-
tor to place a deterministic null on each discrete.

We describe each of these steps individually below.

Step 1 (discrete detection). In this step, we detect the pres-
ence of discretes on a given CPI using the clutter reflectivity
estimates. These estimates are first computed as described in
Section 2.1.3. As discussed there, space-time steering vectors
si to the clutter scatterers i in each range gate of a CPI data
cube are first defined. The complex return strengths αi are
then calculated as shown in (5). The thresholding process in
a given range gate of a CPI data cube is then specified by

max
i

{∣
∣αi
∣
∣
2
}

> T. (23)

If the threshold is crossed, we proceed to Step 2 which
estimates the complex amplitude and azimuth angle of the
discrete. In addition, we exclude range gates in which dis-
cretes are detected from the training data for the estimation
of the distributed clutter gain and phase errors described in
Section 2.3.3. This prevents the discretes from contaminating
the model error terms applied to distributed clutter.

Step 2 (discrete azimuth and amplitude estimation). In this
step, to prepare for removing the effects of the discrete de-
tected in Step 1, we perform a fine estimation of the discrete
azimuth angle and its complex amplitude. A bank of space-
time steering vectors si, j is defined corresponding to a fine az-
imuth spacing along the clutter ridge. Here, i labels the clut-
ter cell as in Step 1, and j is an oversample index specifying
the azimuth angle within the clutter cell. We then determine
the indices that maximize the following quantity:

{

id, jd
}

: max
{i, j}

∣
∣si, jHx

∣
∣ = ∣∣sid , jd Hx

∣
∣. (24)

These indices define a maximum likelihood estimate of the
discrete azimuth angle, assuming that the data vector con-
tains only a single discrete return and additive noise. This as-
sumption is based on the largeness of the discrete amplitude
compared to distributed clutter returns. Under this model,
the maximum likelihood estimate of the complex amplitude
of the discrete is given by

αd =
sid , jd

Hx

sid , jd Hsid , jd
. (25)

Step 3 (clutter reflectivity map correction). In order to elim-
inate contamination of the clutter reflectivity estimates, dur-
ing estimation of clutter reflectivity we modify the radar data
vector as follows:

x −→ x − αd · sid , jd . (26)

The complex amplitudes of each clutter scatterer are then re-
estimated using (5). This effectively removes the contribu-
tion of the discrete to the clutter reflectivity map. Rather than
being incorporated into the knowledge-aided covariance, a
deterministic nulling of the discrete will be performed as de-
scribed in Step 5.

Step 4 (discrete channel-dependent gain/phase error estima-
tion). Though estimation of channel-dependent gain and
phase errors in each Doppler filter is already being performed
in our KASTAP processing, these terms will be incorrect
when applied to the return from the discrete. This is due to
the fact that the location of the strongest distributed clut-
ter in each Doppler filter is different from the location of
the discrete (due to the largeness of the discrete, it affects all
Doppler filters through sidelobe effects). Thus, the channel-
and angle-dependent antenna errors on the discrete will be
different from that on distributed clutter. If we are in the
Doppler filter in which the strongest distributed clutter is
coming from the clutter cell containing the discrete, the dif-
ferences will be much smaller. However, they will still be
present and due to the strength of the discrete return, more
accurate knowledge of the gain and phase errors at the dis-
crete location is required to provide sufficient nulling.

To perform this step it was found beneficial to first
perform KASTAP processing and obtain a KASTAP covari-
ance estimate R̃CL using the KASTAP approach we have de-
scribed in previous sections. This estimate is calculated for
the Doppler filter containing the maximum amplitude from
the discrete (determined by applying Doppler filter weights
to sid , jd and looking for the filter with the maximum am-
plitude). It describes the statistics of the distributed clutter
returns in the range gate and Doppler filter containing the
discrete. The adjacent-bin Doppler preprocessing matrix for
this filter is then applied to the full-DOF data vector x and the
discrete steering vector sid , jd , yielding a reduced-DOF data
vector y and a reduced-DOF discrete steering vector sd, re-
spectively.

A set of N complex errors en, n = 1, 2, . . . ,N , is next
defined. These error terms define a modified, reduced-DOF
discrete space-time steering vector whose elements are given
by

[

s(corr.)d

]

n+( f−1)·N =
(

1 + en
) · [sd

]

n+( f−1)·N . (27)

Here, n is the antenna channel index and f is the adja-
cent filter index for the adjacent-bin post-Doppler degrees
algorithm. To determine the error terms, we model the
reduced-DOF data vector y in the range gate containing
the discrete as

y = αd · s(corr.)d + yc, (28)

where yc is a complex Gaussian random vector with covari-
ance matrix R̃CL (representing the distributed clutter). The
complex error terms en, n = 1, 2, . . . ,N , are next selected to
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Figure 15: (a) Effects of discrete suppression processing on CPI #22 clutter reflectivity estimates and (b) KASTAP ROC curves.

maximize the log-likelihood function

ln p
(

y | e) = −
(

y − αd · s(corr.)d

)H
R̃CL

−1
(

y − αd · s(corr.)d

)

−
N
∑

n=1

∣
∣en
∣
∣
2

σe2
+ const .

(29)

Note that we have added a complex Gaussian prior distribu-
tion on en with variance σe2. The variance is selected to be
�1 in order to force the constraint that the errors are small.
We next vary the log-likelihood function with respect to the
real and imaginary parts of en (or, equivalently, with respect

to en and en∗). Remembering that s(corr.)d depends on en as
shown above, equating the coefficients of δe and δe∗ to zero
gives a linear set of equations for the error terms en which are
readily solved.

Note that we have used a particular Doppler filter, the
filter with the largest discrete amplitude contribution, to es-
timate the channel-dependent gain error terms on the dis-
crete. In Step 5 we want to use this information to improve
STAP performance in all the Doppler filters. In order to do
this, once the error terms are obtained, the corrected full-
DOF space-time steering vector for the discrete is calculated
as

[

s(corr.)id , jd

]

n+(m−1)·N =
(

1 + en
) · [sid , jd

]

n+(m−1)·N . (30)

(Here, m is the pulse index ranging from 1 to the number
of pulsesM.) In Step 5, we compute corrected reduced-DOF
discrete steering vectors in eachDoppler filter by applying the
appropriate Doppler preprocessing matrix to the corrected
full-DOF steering vector shown above.

Step 5 (KASTAP filter weights with deterministic null on
discrete). Given an estimated covariance R̃CL, the “stan-
dard” KASTAP weight vector wKA is computed by minimiz-
ing wKA

H R̃CLwKA subject to a gain constraint on the target

steering vector st. This gives the familiar expression

wKA = β · R̃CL
−1st . (31)

We modified this to apply, in addition to the target gain
constraint, a null constraint on the corrected, reduced-DOF
discrete steering vector. This is repeated in each Doppler fil-
ter, not just the filter containing the maximum discrete am-
plitude, so that the sidelobe effects of the discrete can also
be removed. In a given Doppler filter q, we define a cor-

rected reduced-DOF steering vector s
(q,corr.)
d by applying the

adjacent-bin preprocessing matrix for filter q to the vector

s(corr.)id , jd shown in (30).
Next, we solve the constrained minimization problem

min
wKA

wKA
H R̃CLwKA s.t. wKA

Hst = 1, wKA
Hs

(q,corr.)
d = 0.

(32)

This can be solved using Lagrange multipliers, yielding

wKA = β · R̃CL
−1
(

st − γ · s(q,corr.)d

)

,

γ = s
(q,corr.)H

d R̃CL
−1st

s
(q,corr.)H

d R̃CL
−1s(q,corr.)d

.
(33)

It is easily verified that this weight vector satisfies the null

constraint wKA
Hs

(q,corr.)
d = 0. The constant β is selected to

satisfy the target gain constraint (however, since it is only an
overall scale factor, β has no effect on the output SINR or
CNR).

4.3. KASTAP results with discrete
suppression processing

The 5-step approach described in the last section was applied
to the 5-discrete scenario that was discussed in Section 4.1.
The threshold level was set to T = 35 dB. Figure 15 shows
the results corresponding to Figure 14 for KASTAP process-
ing with discrete suppression added. Figure 15(a) shows that
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the “cleaning” procedure (Step 3 of the procedure described
in the last section) was effective in removing the large am-
plitude contributions of the discrete to the clutter reflectiv-
ity map. Figure 15(b) shows that all of the degradation in
the ROC curve caused by the discretes has been eliminated
through use of the discrete suppression algorithm described
in the last section.

5. SUMMARY

We have described in this paper knowledge-aided STAP pro-
cessing usingmultilook GMTI radar data. The algorithm reg-
isters the data to an earth-based coordinate system and forms
clutter reflectivity maps, which are used to calculate pre-
dicted distributed clutter statistics. Adaptive incorporation of
current-CPI data into the reflectivity maps is also performed
to improve local reflectivity estimates when large changes oc-
cur as the platform geometry evolves. The clutter reflectiv-
ity map predictions are incorporated into robust STAP pro-
cessing using a procedure that combines covariance taper-
ing to account for ICM, adaptive correction for Doppler and
channel-dependent gain and phase mismatch, knowledge-
aided prewhitening, and eigenvalue rescaling. The effects of
target contamination of the STAP training data are sup-
pressed from the covariance estimates in each Doppler filter
usingmasking of detections in a two-pass procedure. The ap-
proach was applied to the KASSPER Data Set 2 and KASTAP
performance characterized in terms of SINR loss, resid-
ual CNR, target detections and false alarms, ROC curves,
and track life. The results show improved detection of low-
velocity targets and more than an order of magnitude reduc-
tion in false alarm density compared to standard STAP pro-
cessing. Additional techniques to detect and suppress large
clutter discretes have been defined and shown to be effective
in reducing the degradation in KASTAP performance caused
by these discretes.
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