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Abstract

Covariance matching techniques have recently grown in interest due to their good performances for object retrieval,
detection, and tracking. By mixing color and texture information in a compact representation, it can be applied to
various kinds of objects (textured or not, rigid or not). Unfortunately, the original version requires heavy computations
and is difficult to execute in real time on embedded systems. This article presents a review on different versions of the
algorithm and its various applications; our aim is to describe the most crucial challenges and particularities that
appeared when implementing and optimizing the covariance matching algorithm on a variety of desktop processors
and on low-power processors suitable for embedded systems. An application of texture classification is used to
compare different versions of the region descriptor. Then a comprehensive study is made to reach a higher level of
performance on multi-core CPU architectures by comparing different ways to structure the information, using single
instruction, multiple data (SIMD) instructions and advanced loop transformations. The execution time is reduced
significantly on two dual-core CPU architectures for embedded computing: ARM Cortex-A9 and Cortex-A15 and Intel
Penryn-M U9300 and Haswell-M 4650U. According to our experiments on covariance tracking, it is possible to reach a
speedup greater than ×2 on both ARM and Intel architectures, when compared to the original algorithm, leading to
real-time execution.
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1 Introduction
Tracking consists in estimating the evolution in state
(e.g., location, size, orientation) of a moving target over
time. This process is often subdivided into two other sub-
problems: detection and matching. Detection deals with
the difficulties of generic object recognition, i.e., finding
instances from a particular object class or semantic cat-
egory (e.g., humans, faces, vehicles) registered in digital
images and videos. On the other hand, matching meth-
ods provide the location which maximizes the similarity
with the objects previously detected in the sequence.
Generic object recognition requiresmodels that cope with
the diversity of instances’ appearances and shapes. This
is generally made by learning techniques and classifica-
tion. Conversely, matching algorithms analyze particular
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information and construct discriminative models that
allow to disambiguate different instances from the same
category and avoid confusions.
Themain difficulty of tracking is to trace target trajecto-

ries and adapt to changes of appearance, pose, orientation,
scale, and shape. Since the beginnings of computer vision,
a diversity of tracking methods have been proposed, some
of them construct path and state evolution estimations
using a Bayesian framework (e.g., particle filters, hidden
Markov models), others measure the perceived optical
flow in order to determine object displacements and scale
changes (median flow) [1]. Exhaustive appearance-based
methods compare a dense set of overlapping candidate
locations to detect the one that fits best with some kind
of template or model. When a priori information about
the target location and its dynamics (e.g., speed and accel-
eration) is available, the number of comparisons can be
reduced enormously by giving preference to the more
likely target regions. Other accelerations can be achieved
using local searches that are based on gradient-descent
algorithms able to handle small target displacements and
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geometrical changes. Among these approaches, feature
points tracking techniques are very popular [2] since
points can be extracted in most scenes, contrary to lines
or other geometric features. Because they represent very
local patterns, their motion models can be assumed as
rigid and be estimated in a very efficient way. This
method, as well as block matching, are raw-pixel meth-
ods, since the target is directly represented by its pixels
matrix.
In order to deal with non-rigid motion, kernel-based

methods such as mean-shift (MS) [3] and [4] use a repre-
sentation based on color or texture distribution.
Covariance tracking (CT) [5] is a very interesting and

elegant alternative which offers a compact target rep-
resentation based on the spatial correlation of different
features computed at each pixel in the target bound-
ing box. Very satisfying tracking performances have been
observed for diverse kinds of objects (e.g., with rigid
motion or not, with texture or not). CT has been studied
extensively, and many feature configurations and arrays
of covariance descriptors have been proposed to improve
its discrimination power [6-11]. Smoother trajectories
can be obtained by considering target dynamics; there-
fore, they increase tracking accuracy and reduce the
search space [12,13]. Genetic algorithms [14] can also
be used to accelerate the convergence towards the opti-
mal solution of the best candidate position, considering
a search in a large image. But, to our knowledge, lit-
tle work has been done to analyze the computational
demands of CT and its portability to embedded systems
[15]. The goal of this article is to fill this gap, ana-
lyze the algorithm’s computational behavior for different
implementations, and measure their load on embedded
architectures. A study is also made to compare differ-
ent sizes and configurations of the descriptors in terms
of discrimination power through a texture classification
application.
The article is structured as follows. The first section

introduces some of the basic principles of the CT algo-
rithm and provides a brief description of the different
searching and matching methods that can be associated
with C. Then various configurations of the covariance
matrix are evaluated. Finally, we provide an in-depth
description of implementation details and suitable accel-
eration techniques proposed to achieve a higher level
of performance. Experiments and details about the algo-
rithm implementation are presented in the final section
that comes followed by our conclusions.

2 Covariancematrices as image region
descriptors

Let I represent a luminance (grayscale) or a color image
with three channels and consider a rectangular region of
size n = W × H (it can be the bounding box of the target

to be tracked for example). Let F be the W × H × nF
dimensional feature image extracted from I

Fuv = F(puv) = φ(I,puv) with puv = (xu, yv) (1)

where φ is any nF-dimensional mapping forming a feature
vector for each pixel of the bounding box. The features
can be spatial coordinates puv, intensity, color (in any color
space), gradients, filter responses, or any possible set of
images obtained from I. Now, let {zk}k=1···n be a set of nF-
dimensional feature vectors inside the rectangular region
R ⊂ F of n pixels. Concerning notations, puv stands for
the pixel at uth row and vth column.
The region R is represented with the nF ×nF covariance

matrix

CR = 1
n − 1

n∑
k=1

(zk − μ)(zk − μ)T (2)

where μ is the mean feature vector computed on the n
points.
The covariance matrix is a nF × nF matrix which fuses

multiple features naturally by measuring their correla-
tions. The diagonal terms represent the variance of each
feature, while elements outside this diagonal are the cor-
relations. Thanks to the averaging in the covariance com-
putation, noisy pixels are largely filtered out, which is an
interesting advantage when compared to raw-pixel meth-
ods. Covariance matrices are more compact than most
classical object descriptors. Indeed, due to symmetry, CR
has only

(
n2F + nF

)
/2 different values whatever the size

of the target. To some extent, it is robust against scale
changes, because all values are normalized by the size of
the object, and against rotation when the locations coor-
dinates puv are replaced by the distance to the center of
the bounding box.
The covariance descriptor ceases to be rotationally

invariant when orientation information is introduced in
the feature vector such as the norm of gradients with
respect to x and y directions. The information consid-
ered by the covariance descriptor should be adapted to the
problem at hand, because they depend on the application,
as described in the next paragraph.

2.1 Covariance descriptor feature spaces
Covariance descriptors have been used in computer vision
for object detection [16], reidentification [10,11] and
tracking [5]. The recommended set of features to use
depends significantly on the application and the nature
of the object: tracking faces is different than track-
ing pedestrians because faces are somehow more rigid
than pedestrians which have more articulations. Color
is an important hint for pedestrian or vehicle track-
ing/reidentification because of their clothes or bodywork
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color. But color is less significant for reidentification or
tracking faces because the set of colors they exhibit is
relatively limited.
Table 1 displays a summary of themore common feature

combinations used by covariance descriptors in computer
vision. The most obvious ones are the components from
different color spaces such as RGB and HSV. Pixel bright-
ness in the grayscale image I and its local directional
gradients as absolute values |Ix| and |Iy|, gradient mag-
nitude

√
I2x + I2y , and its angle calculated as arctan |Ix||Iy| .

Foreground images G resulting from background sub-
traction methods and its gradients Gx and Gy. Features
g00(x, y) to g74(x, y) represent the 2D Gabor kernel as a
product of an elliptical Gaussian and a complex plane
wave [9].
Some texture analysis and tracking methods use local

binary patterns (LBP) in the place of Gabor filters and the
reason is that LBP operators are much more simple and
economical. Values VarLBP, LBPθ0 , and LBPθ1 in Table 1
represent local binary pattern variance (which is a classical
property of the LBP operator [19]) and the angles defined
by them, as detailed in [18]. This version of the feature
vector has shown very good performances for tracking,
both in terms of robustness and computation times, and

Table 1 Features considered by the covariance descriptor
depending on the application

Application Feature set φ(I,p)with p = (x, y)

Face tracking
and recognition
[9]

[
x y |Ix| |Iy| |Ixx| |Iyy|

]
[
x y I |Ix| |Iy| |Ixx| |Iyy| θ(x, y)

]
[
x y I g00(x, y) g01(x, y) · · · g74(x, y)

]

Pedestrian
detection
[16,17]

[
x y |Ix| |Iy|

√
I2x + I2y |Ixx| |Iyy| arctan |Ix ||Iy |

]
[
x y |Ix| |Iy|

√
I2x + I2y arctan |Ix ||Iy | G

√
G2
x + G2

y

]

Pedestrian
tracking
[5,10,11,16]
and [18]

[
x y R G B |Ix| |Iy|

]
[
x y R G B |Ix| |Iy| |Ixx| |Iyy|

]
[
x y H S V |Ix| |Iy|

]
[
x y R G B VarLBP

]
[
x y I sin(LBPθ0 ) cos(LBPθ0 ) sin(LBPθ1 ) cos(LBPθ1 )

]
[
x y R G B sin(LBPθ0 ) cos(LBPθ0 ) sin(LBPθ1 ) cos(LBPθ1 )

]

requires a far shorter vector (nF = 7) when compared to
Gabor filters (nF = 43). In the rest of the paper, for the
algorithmic optimization, a vector of five to nine features
is considered, but note that the proposed optimizations
can be applied to any matrix size.
Now, let us detail the computation of the covariance

descriptor.

2.2 Covariance descriptor computation
After some term expansions and rearrangements on
Equation 2, the (i, j)-th element of the covariance matrix
can be expressed as

CR(i, j) = 1
n − 1

[ n∑
k=1

zk(i)zk(j) − 1
n

n∑
k=1

zk(i)
n∑

k=1
zk(j)

]
.

(3)

Therefore, the covariance in a given region depends
on the sum of each feature dimension z(i)i=1···n, as well
as the sum of the multiplications of any pair of features
z(i)z(j)i,j=1···n, requiring in total nF+n2F/2 integral images,
one for each feature dimension z(i) and one for the
multiplication of any pair of feature dimensions z(i)z(j)
(the covariance matrix is symmetric).
Let A be a W × H × nF tensor of the integral images of

each feature dimension

Auv(i) =
∑

p∈R(11,uv)
Fuv(i) for i = i · · · nF , (4)

where R(11,uv) is the region bounded by the top-left
image corner p11 = (1, 1) and any other point in the image
puv = (xu, yv). In a general way, let R(uv,u′v′) be the rect-
angular region defined by the top-left point puv and the
right-bottom point pu′v′ . Similarly, the tensor containing
the feature product-pair integral images is denoted as

Buv(i, j) =
∑

p∈R(11,uv)
Fuv(i)Fuv(j) for i, j = i · · · nF . (5)

Now, for any point puv, let Auv be a nF-dimensional
vector and B a nF × nF dimensional matrix such as

Auv = [Auv(1) · · ·Auv(nF)]T and

Buv =
⎛
⎜⎝

Buv(1, 1) · · · Buv(1, nF)
...

Buv(nF , 1) · · · Buv(nF , nF)

⎞
⎟⎠ .

(6)

The covariance of the region bounded by (1, 1) and
puv is

CR(11,uv) = 1
n − 1

[
Buv − 1

n
AuvAT

uv

]
, (7)
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where n is the number of pixels in the R under investi-
gation. Similarly, and after some algebraic manipulations,
the covariance of the region R(uv,u′v′) as it was presented
in [20] is

CR(uv,u′v′) = 1
n − 1

[
(Bu′v′ + Buv − Bu′v − Buv′)

− 1
n

(Au′v′ + Auv − Auv′ − Au′v)

· (Au′v′ + Auv − Auv′ − Au′v)
T
]
.

(8)

Once the integral images have been calculated, the
covariance of any rectangular region can be computed
in O

(
n2F

)
time regardless of the size of the region

R(uv,u′v′). The complete process is represented graphi-
cally in Figure 1, where different image-processing opera-
tors are applied to the initial image (top left) to calculate
the set of feature images (top right). Each feature com-
ponent i is used to generate the integral image Auv(i)
(bottom left) and the crossed product between features i
and j is used to calculate the second order integral images
Buv(i, j).
Next section explains the covariance matching process.

3 Searching andmatching
Covariance models and instances can be compared and
matched using a simple nearest neighbor approach, i.e.,

by finding the covariance descriptors that best resemble
a model. The problem is that covariance matrices and
symmetric positive definite (SPD) matrices in general is
that they do not lie on the Euclidean space andmany com-
mon and widely known operations in Euclidean spaces are
not applicable or require to be adapted (e.g., a SPD matrix
multiplied by a negative scalar is no longer a valid SPD
matrix). A nF×nF SPDmatrix only has nF×(nF+1)/2 dif-
ferent elements; while it is possible to vectorize them and
perform element-by-element subtraction, this approach
provides very poor results as it fails to analyze the corre-
lations between variables and the patterns stored in them.
A solution to this problem is proposed in [21] where a
dissimilarity measure between two covariance matrices is
given as

ρ(C1,C2) =
√√√√ nF∑

i=1
ln2 λi(C1,C2) (9)

where {λi(C1,C2)}i=1,··· ,nF are the generalized eigenvalues
of C1 and C2 computed from

λiC1xi − C2xi = 0i = 1, · · · , nF . (10)

The tracking starts in the first frame of the sequence,
by computing the covariance matrix C1 in the bounding
box of the target under consideration (i.e., the model).

Figure 1 Covariance descriptor computation. The image is first decomposed into an array of feature images (feature image tensor) applying the
feature map Fuv = φ(I,puv). Then the crossed-products of these features are computed; using these arrays, the tensor integral images Au′v′ (i) and
the second order integral images tensor Bu′v′ (i, j) are computed.
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The initial detection is not detailed in this paper since
it can be made in various ways, by object recognition or
background subtraction for example. The tracking pro-
cedure consists in determining the new target positions
for the successive frames by comparing the covariance
matrixC2 (i.e., the candidate position) andminimizing the
Riemannian distance (9).
Figure 2 depicts two possible searching strategies: the

exhaustive search approach (left) and a gradient-based
local search or steepest descent approach (right). Exhaus-
tive search methods uniformly sample a large number
of candidate positions scanning the whole image (or the
region surrounding the previous target position). Steep-
est descent methods look for the position which maxi-
mizes the appearance similarity when compared to the
target model. Gradient-based methods do not require a
large number of matrix comparisons; however, they do
require to run iteratively until convergence, causing their
computation time to be very unpredictable. Another lim-
itation (and probably the most important one) is that
contrary to exhaustive search approaches, local search
may fail for targets undergoing brutal motion or target
occlusions. The reason behind this problem is that local
search methods tend to fall into local minima. Due to
these limitations, the exhaustive search method was pre-
ferred for the tracking application implemented for this
research.

4 Feature vector evaluation
The objective of this section is to determine the most dis-
criminative vector combination and the ideal number of
features (nF ) to use. Multiple feature combinations were
tested using a texture classification method. The KTH-
Tips dataset [22] is composed of ten different texture
classes each one represented by 81 different samples of
size 200× 200 taken at different scales, illuminations, and
poses.
There are different approaches for texture classifica-

tion with covariance matrices. Most methods subdivide
the image in small overlapping subregions and compute
a descriptor associated to each one. The drawback with
this approach is that it increases the number of matrix

Figure 2 Illustration of two possible covariance tracking search
strategies. The exhaustive search approach (left) where a large number
of candidate bounding boxes is uniformly sampled and evaluated,
and the steepest descentmethod (right) where gradient-based local
search is launched looking for the position that minimizes the
Riemannian distance.

comparisons and the storage required. To avoid this prob-
lem, the local log-Euclidean covariance matrix (L2ECM)
[6] computes a single covariance matrix from the log-
Euclidean transformations of other (simpler) covariance
matrices calculated at every pixel neighborhood (typical
sizes are 15 × 15 or 30 × 30). While L2ECM pro-
vides high texture reidentification scores, its main draw-
back is that it considerably increases the number of
computations and the memory space that is required
during the computation phase. Therefore, L2ECM is
clearly not appropriate for embedded platforms; hence,
for the sake of simplicity, we were much more inclined
to use a very simple approach and compute a sin-
gle covariance descriptor for every sample and feature
combination.
Ten random images were selected for the training

of each texture class (from the set of 81 samples
that represents each one); the remaining samples were
used during the classification evaluation. The descrip-
tor obtained from each test image is compared against
all the covariance matrices inside the different train-
ing sets (ten samples for each texture class) using the
Riemannian metric proposed in [20]. A label is assigned
to each class using the KNNa algorithm counting the
number of votes of each texture class for the closest
k = 5 samples. The same procedure was repeated ten
times to summarize and avoid unstable or misguiding
results.
To evaluate the quality of our classification results, we

counted the number of true/false positives and negatives
and calculated their associated F1 score (this represents
the weighted average of the precision and recall) defined
as

F1 = 2 · precision · recall
precision + recall

, (11)

where

precision = #True positives
#True positives+#False positives

recall = #True positives
#True positives+#False negatives .

(12)

Multiple feature combinations were evaluated based on
the spatial coordinates (x and y), the luminance (I) and
color channels (R, G, and B), the first and second order
gradient magnitudes (|Ix|, |Iy|, |Ixx|, |Ixy| and |Iyy|), and
the enhanced local binary covariance matrices (ELBCM)
features proposed in [18].
Figure 3 depicts the set of feature combinations that

were evaluated and their associated F1 scores. Each
combination has a set of points representing the score
associated to each one of the different texture classes.
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Figure 3 F1-scores measuring the texture classification accuracy for the KTH-TIPS dataset using multiple feature combinations. Boxplots
are used to highlight the concentration of F1 scores and their median.
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Boxplots are used to highlight their concentration and
their median (depicted by the horizontal bars in pink
inside the boxes). The figure is divided in two rows for
grayscale and color-based configurations. Each row is
further divided into two parts: firstly, the feature combi-
nations including gradient components only (on the left),
and secondly, all feature combinations based on the
ELBCM descriptor (on the right). Within each cell, the
different feature combinations are sorted by their number
of features (nF ) in increasing order and by their F1 scores
median.
Three observations can be made from Figure 3: (1)

that ELBCM-based combinations tend to have slightly
higher scores than gradient-based ones (i.e., their F1
scores are higher and more concentrated), (2) that
color plays a crucial role to improve the discriminative
power (purely gradient and ELBCM-based configurations
both improve their scores when color information is
included), and (3) the relevance of the spatial coordinates
(x and y) seems to be small for the texture recognition
problem.
According to Figure 3, the ideal number of features

(among the set of feature combinations evaluated here)
is between nF = 7 and nF = 9 given that most
of the smaller configurations produce less accurate
results. However, for such as size of covariance matrix,
real-time execution (40 ms for 25 frames per second)
as required for visual tracking is impossible without
optimizations.

5 Covariance tracking algorithm analysis and
optimizations

Three strategies are studied to optimize the CT on multi-
core CPUs. The first one is based on the structure of arrays
(SoA) towards array of structures (AoS) transformation:
SoA→AoS. The second one consists in architectural opti-
mizations: either multi-threading the SoA version with
open multi-processing (OpenMP) middleware or using
single instruction, multiple data (SIMD) instructions (SSE
and AVX for Intel, Neon on ARM) for the AoS ver-
sion. The third and final strategy consists of using loop-
fusion transformations. In-depth information about the
transformations employed in this article can be found
in [23].
Let us introduce a set of notations for describing the

algorithms and theirs optimizations (Table 2).
In the baseline version of the algorithm, the complete

set of feature images F is stored separately using a cube
data structure (referred to as fmat[k][i][j]) which
can be regarded as an instance of a SoA data struc-
ture. The index k is used here to select one of the nF
feature images while the pair (i,j) is used to select
the spatial coordinates. Image cubes are straightforward

Table 2 Covariance descriptor algorithm notations

Notation Meaning

I Input image

h and w Height and width of I

nF Number of features used to build the descriptor

nP Number of crossed-products of features nP = nF
(nF + 1)/2

F A data structure that contains all the features images

P A data structure containing all the feature image
products

IF and IP The summed area tables (integral images) computed
from F or P

card The cardinal of SIMD register: 4 for SSE and Neon,
8 for AVX

vnF Number SIMD registers to hold nF features:
vnF = �nF/card�

vnP Number SIMD registers to hold nP products:
vnP = �nP/card� (see Table 3)

to implement, the required arithmetic to compute the
memory of an address using a table of 3D pointers only
demands three integer additions; still, the latency time of a
memory access is extremely dependent on the data access
pattern.

5.1 SoA to AoS transform
The goal of SoA→AoS transform consists of transforming
a set of independent arrays into one array, where each cell
is a structure combining the elements of each independent
array. The contribution of such a transform is to leverage
the cache performance by enforcing spatial and temporal
cache locality. Table 2 introduces the notations we will use
from now on.
The first aspect we want to optimize is the locality of

the features for a given point of coordinates (i, j). In the
SoA version, we have two cubes: one that stores all the
pixel features FSoA (fmat) which size is nF × h × w and a
different cube PSoA (prmat) of size nP × h×w that stores
the feature crossed-products. In the AoS data layout, these
cubes are transformed into two 2D arrays FAoS and PAoS
of size h × (w · nF) and h × (w · nP).
The SoA→AoS transform swaps the loop nests and

changes the addressing computations from a 3D-form
cube[k] [i] [j] into a 2D-form likematrix[i] [j×n+k], where
n is the structure cardinal (here nF or nP). The lack of spa-
tial locality within the features in the SoA representation
is illustrated in Figure 4; here, the SoA layout (on the left)
stores pixels features in discontiguous 2D arrays (distant
inmemory) while for the AoS representation (on the right)
features belonging to the same pixel are gathered together
in contiguous memory addresses.
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{
Figure 4 Layout of SoA cube and the AoS feature matrix.

The covariance tracking algorithm is composed of three
stages:

1. point-to-point product computation of all features,
2. the integral image computation of features,
3. the integral image computation of products.

The product of features and its transformation are
described in Algorithms 1 and 2. Thanks to commutativ-
ity of the multiplication, only half of the products have
to be computed (the loop on k2 starts at k1, line 3). As
the two last stages are similar, we only present a generic
version of integral image computation (Algorithm 3) and
its transformation (Algorithm 4).

Algorithm 1: Product of features - SoA version
1 k ← 0
2 foreach k1 ∈ [0..nF − 1] do
3 foreach k2 ∈ [k1..nF − 1] do
4 foreach i ∈ [0..h − 1] do
5 foreach j ∈ [0..w − 1] do
6 P[k] [i] [j]← F[k1] [i] [j]×F[k2] [i] [j]
7 k ← k + 1

Algorithm 2: Product of features - AoS version
1 foreach i ∈ [0..h − 1] do
2 foreach j ∈ [0..w − 1] do
3 k ← 0
4 foreach k1 ∈ [0..nF − 1] do
5 foreach k2 ∈ [k1..nF − 1] do
6 P[i] [j×nP+k]← F[i] [j×nP+k1]×F[i] [j×nP+k2]
7 k ← k + 1

Algorithm 3: Integral image - SoA version, n ∈ {nF , nP}
1 foreach k ∈ [0..n − 1] do
2 foreach i ∈ [0..h − 1] do
3 foreach j ∈ [0..w − 1] do
4 I[k] [i] [j]←

I[k] [i] [j]+I[k] [i] [j−1]+I[k] [i−1] [j]−I[k] [i−1] [j−1]

Algorithm 4: Integral image - AoS version, n ∈ {nF , nP}
1 foreach i ∈ [0..h − 1] do
2 foreach j ∈ [0..w − 1] do
3 foreach k ∈ [0..n − 1] do
4 I[i] [ j × n + k]← I[i] [j × n + k]+I[i] [(j − 1) × n + k]+

I[i − 1] [j × n + k]−I[k] [i − 1] [ (j − 1) × n + k]

Concerning the index k of Algorithms 1 and 2, the incre-
ment k ← k+1 can be replaced by k = k1nF −k1(k1+1)/
n + k2 for direct access to the product of feature k1 by
feature k2.

5.2 SIMD or OpenMP parallelization?
Once this transform is done, one can also apply SIMD
to the different parts of the algorithm. For the prod-
uct part, the two internal loops on k1 and k2 are fully
unrolled in order to show the list of all multiplications
and the list of vectors to construct through permutation
instructions (e.g., _mm_shuffle_ps in streaming SIMD
extensions (SSE)). For example, for a typical value of nF =
7, there are nP = 28 products. The associated vectors are
(the numbers are the feature indexes) as follows:

[P0,P1,P2,P3] = [F0, F0, F0, F0] × [F0, F1, F2, F3]
[P4,P5,P6,P7] = [F0, F0, F0, F1] × [F4, F5, F6, F1]

[P8,P9,P10,P11] = [F1, F1, F1, F1] × [F2, F3, F4, F5]
[P12,P13,P14,P15] = [F1, F2, F2, F2] × [F6, F2, F3, F4]
[P16,P17,P18,P19] = [F2, F2, F3, F3] × [F5, F6, F3, F4]
[P20,P21,P22,P23] = [F3, F3, F4, F4] × [F5, F6, F4, F5]
[P24,P25,P26,P27] = [F4, F5, F5, F6] × [F6, F5, F6, F6]

In that case, the 7th vector is 100% filled, but it will
become suboptimal if nP is not divisible by the cardi-
nal of the SIMD register (4 with SSE and Neon). In
SSE, some permutations can be achieved using only
one _mm_shuffle_ps instruction while others need
a maximum of two. Because some permutations can
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be reused to perform other permutations, it is possi-
ble to achieve a factorization over all the required per-
mutations. For example with nF = 7, 15 shuffles are
required.
In advanced vector extensions (AVX)2, there is a

new instruction (compared to AVX) that greatly sim-
plifies permutations: _mm256_permutevar8x32_ps.
This instruction implements a full cross-bar, so we need
exactly one AVX2 permutation per register that is a total 8
(for nF = 7).
In Neon it is more complex. If some permutations

can be done into 128-bits registers - that is with a
parallelism of 4 - other permutations require instruc-
tions only available with 64-bit registers, like the look-
up table instruction named vtbl. So in Neon, 128-bit
float registers should be: 1) split into 64-bit registers
with vget_low_f32 and vget_high_f32 instruc-
tions, 2) type-casted into 64-bit integer registers with
vreinterpret_u8_f32 – no latency, just for the com-
piler –, 3) permuted with vtbl1_u8 and vtbl2_u8
instructions, 4) type-casted into 64-bit float registers with
vreinterpret_f32_u8, and 5) combined into 128-bit
float registers with vcombine_f32. Finally it requires 31
SIMDNeon instructions to create the seven pairs of prod-
ucts (and 17 extra instructions for the castings). Table 3
gives the values of vnF and vnP depending on nF ∈ {7, 8}
and card, the number of block within an SIMD register.
For the same values of vnF , Table 4 provides the number
of permutations for SSE, AVX and Neon.
The first part of Table 5 provides the algorithmic com-

plexity and the amount of memory accesses for scalar
version. Just replace nF and nP with vnF and vnP from
Table 3 to get the SIMD value. This table also provides
the arithmetic intensity (AI) - popularized by Nvidia - that
is the ratio between the number of operations and the
number of memory accesses. Table 6 provides numerical
results from Table 5 for scalar, SSE, AVX, and Neon ver-
sion; for 3-loop version; and for the 1-loop version with
loop-fusion transform.
Concerning OpenMP, the point is to evaluate SOA +

OpenMP versus AoS + SIMD. Indeed, for a common
4-core General Purpose Processor (GPP), the degree of
parallelism with a multi-threaded version and with a
SIMDized version is the same, i.e., four. Results are pro-
vided in cycles per point (cpp) versus the data amount

Table 3 Parameters values for scalar, 128-bit (SSE and
Neon), and 256-bit (AVX) SIMD

Scalar 128-bit SIMD 256-bit SIMD

nF nP vnF vnP vnF vnP

7 28 2 7 1 4

8 36 2 9 1 5

Table 4 Permutation instructions for SSE, AVX, and Neon
(permutation + cast) instruction set

nF SSE AVX Neon

7 15 8 31

8 17 10 35

(image size). The cpp is a normalized metric thats help to
detect cache overflow (when data do not fit in the cache):
the curve of cpp increases significantly.
The three versions (SoA + OpenMP, AoS, AoS + SIMD)

have been benchmarked on three generations of Intel
processors: Penryn, Nehalem, and SandyBridge for image
sizes varying from 128×128 up to 1024×1024. It appears
(Figure 5) that a 4-threaded version is always slower than
a 1-threaded SIMD version. Eight threads are required
on the Nehalem to be faster. The reason is the low AI
inducing a high stress on the architecture’s buses and also
because manipulating SoA requires nP = 28 active ref-
erences in the cache; that is more than the usual L2 or
L3 associativity (24 on the Intel processor). In the next
steps of this article, SIMDization is the only architectural
optimization being considered as realistic.

5.3 Loop fusion
We have tested three versions with loop-fusion in order to
increase the AI ratio by reducing the amount of memory
accesses. But for that, we first have to rewrite the inte-
gral image computation. As integral image computation
is known as being memory bound, but also a very sim-
ple algorithm (3 LOADs, 1 STORE, and 3 ADDs), it is
quite impossible to reduce its complexity. Nevertheless,
one can remove 2 LOADs by using a register that holds the
accumulation along a line. Algorithm 5 implements this
optimization for basic integral image computation.

Algorithm 5: Integral image - computation in place
with an accumulator

1 x ← I[0] [0] , s ← x
2 foreach j ∈[1..w − 1] do
3 x ← I[0] [j] , s ← s + x, I[0] [j]← s
4 foreach i ∈[0..h − 1] do
5 x ← I[i] [0] , s ← x
6 foreach j ∈[1..w − 1] do
7 x ← I[i] [0] , s ← s + x, I[i] [j]← s + I[i − 1] [j]

The first one is a scalar parametric version (with nF )
that fuses the external i-loop and keeps the three j-loops
unchanged. The second one is a specialized version with
nF = 7 where the three internal loops are fused together.
The third one is the SIMDized version of the second one.
The internal loop fusion allows to save the LOAD/STORE
instructions in order to write a product of features into



Romero et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:175 Page 10 of 15
http://asp.eurasipjournals.com/content/2014/1/175

Table 5 Complexity, memory accesses, and arithmetic intensity of AoS versions with/without loop-fusion

Instructions MUL ADD LOAD STORE AI

AoS version with 3 loops

Product of features nP 0 2nP nP -

Integral of features 0 3nF 4nF nF -

Integral of products 0 3nP 4nP nP -

Total nP 3(nP + nF) 6nP + 4nF 2nP + nF -

Total with nP = nF(nF + 1)/2 2n2F + 5nF 4n2F + 9nF ∼ 0.5

AoS version + loop fusion with 1 loop

Integral of features 0 2nF 2nF nF -

Integral product of features nP 2nP nP nP -

Total nP 2(nP + nF) nP + 2nF nP + nF -

Total with nP = nF(nF + 1)/2 1.5n2F + 3.5nF n2F + 4nF ∼ 1.5

memory and to read it afterwards to compute the inte-
gral image of products. The loop-fusion has been done
by hand, but some tools like PIPS [24] can do such a
kind of transformation automatically [25]. The complex-
ity of scalar and SIMD versions are provided in Table 5.
The numerical value of these expressions is given in
Table 6.
To be efficient loop-fusion is combined to full loop-

unwinding (on k1 and k2) and scalarisation (to store tem-
porary results within a register instead of a memory cell of
an array). The behavior of the code is the following, for a
given pixel (i, j):

• all the features associated to point (i, j) are loaded
into nF registers: f0, f1, · · · fnF−1,

• the integral image computation of features is done on
the fly and in place with Algorithm 5 with nF
accumulators sf0, sf1 · · · sfnF−1. The point

Table 6 Complexity, memory accesses, and arithmetic
intensity of scalar/SIMD versions with/without
loop-fusion: numerical results for nF = 7 and nF = 8

Version Without loop-fusion With loop-fusion

SIMD nF Arith Mem AI Arith Mem AI

Scalar 7 133 259 0.51 98 105 0.93

Scalar 8 168 328 0.51 124 132 0.94

SSE 7 49 66 0.74 40 27 1.48

SSE 8 59 82 0.72 48 33 1.45

Neon 7 65 66 0.98 56 27 2.07

Neon 8 77 82 0.94 66 33 2.00

AVX 7 27 37 0.73 22 15 1.47

AVX 8 33 45 0.73 27 18 1.50

For a given version, loop-fusion divides the complexity by 1.2 and memory
accesses by 2.5.

fmat(i,j,k) that previously holds nF features is
replaced by the sums stored in the nF accumulator,

• the nP products are then calculated in nP registers:
p00, p01, . . . pk1k2, · · · pnF−1nF−1

• the integral image computation of the product of
features is done in the same way, with nP
accumulators. The point prmat(i,j,k) is filled
with the nP accumulators of products.

The code is quite big (as internal loops are unwound)
but very efficient (see next section), but it can be easily
generated automatically by a C program, as it is very sys-
tematic: load features do accumulation of features, store
accumulations, and compute products and do accumula-
tion of products and store accumulations. It is relevant for
a bigger value of nF to avoid bugs. The complexity of these
new versions are given in the second part of Tables 5 and 6.
We can observe that without loop-fusion has the lowest

AI of 0.5. We can notice that, for a given version, loop-
fusion divides the complexity by a factor 1.2 (by rewriting
image integral steps) and memory accesses by a factor 2.5
by avoiding LOADs and STOREs of temporary results.

5.4 Embedded systems
Let us now focus on more embedded processors like the
Intel ULV (ultra low voltage) family and ARM proces-
sors. In order to observe the performance evolution for
each family, two processors were benchmarked: Penryn-
M U9300 (1.2 GHz, 10 W, SSSE3), Haswell-M 4650U
(1.7 GHz, 15W, AVX2), ARM Cortex A9 (1.2 GHz, 1.2 W,
Neon), and ARM Cortex A15 (1.7 GHz, 1.7 W, Neon).
For Penryn-M and Haswell-M, the power consumption is
the thermal dissipation power (TDP) provided by Intel;
for ARM, these processors are part of SoC (Pandaboard
OMAP4 from Texas Instruments and Samsung Chrome-
book with Exynos5 from Samsung) and it is very difficult
to find out any figures from ARM or Samsung. So these
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Figure 5 Performance in cpp of a 1 × 4-core Penryn (top),
2 × 4-core Nehalem (middle), 1 × 4-core SandyBridge (bottom)
for image sizes ∈ [128..1024].

figures were collected on the internet and cross-validated
on trustable websites.
Figures 6 and 7 provide the cpp of the processor for

image size varying from 64 to 1024 for Intel processors
and from 64 to 512 for ARM processors.
Firstly, for all processors, the SoA version is very inef-

ficient compared to the best one (AoS+T+SIMD). The
SIMDization alone is also inefficient: around ×1.5 instead
of ×4 the ideal speedup for 128-bit SIMD and ×2.5
instead of ×8 for 256-bit SIMD. The reason is that
SIMD is really efficient only (a speedup close to the
SIMD register cardinal) when data fit in the cache
[23]. Here the cache overflow appears for image size
around 150 × 150 for ARM and 200 × 200 for Intel.
As a matter of fact, a 512 × 512 image requires a cache of
size of 36MB, while a 640×480 needs 43MB. If the biggest
server processors just start to have such large cache (IBM
Power7+, Intel Xeon Ivy bridge), such an amount of cache
is far from the embedded ARM and Intel laptop processor

Figure 6 Performance of Penryn-M and Haswell-M.
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Figure 7 Performance of Cortex-A9 and Cortex-A15.

(from 1 to 4 MB). The important fact, also common to the
four processors, is that the cpp of AoS + T version remains
constant, unlike SoA and AoS versions. So the execution
time can be predicted.
Secondly, there is one big difference between them: the

cpp values. The Intel cpp’s are up to ×4.5 smaller than
ARM ones that comes from higher latency instructions.
Cortex-A15 is faster than A9 for two reasons: a faster

cache and a faster external memory (same for Haswell-
M versus Penryn-M) and because A15 can execute one
Neon instruction every cycle instead of every two cycles:
the SIMD throughput has been multiplied by two.
Regarding the impact of loop-fusion, Table 7 shows that

the speedup with AoS version is from ×1.6 up to ×1.7 for
ARM and Intel processor and for scalar and SIMD version,
respectively. So the loop-fusion is as efficient as SIMDiza-
tion. The total speedup is from ×3.8 up to ×4.9 for ARM
and Penryn-M processor, respectively, but reaches ×7.9
for Haswell-M (with SSE instructions).

Table 7 Impact of memory layout and loop-fusion
transform

Penryn-M Haswell-M Cortex-A9 Cortex-A15

cpp

SoA 447 300 830 646

AoS 207 178 836 520

AoS + T 126 66 503 238

AoS + SIMD 165 69 476 325

AoS + T SIMD 92 38 201 169

speedups

SoA/AoS ×2.2 ×1.7 ×1.0 ×1.2

AoS/AoS + T ×1.6 ×2.7 ×1.7 ×2.2

SIMD/SIMD + T ×1.8 ×1.8 ×2.4 ×1.9

SoA/AoS+SIMD + T ×4.9 ×7.9 ×4.1 ×3.8

Execution time (ms) for 512 × 512 images

AoS+T SIMD 20.1 6.1 43.9 26.1

Estimated energy consumption (mJ) for 512 × 512 images

AoS+T SIMD 201 91.4 52.7 44.3

cpp and speedups, execution time, and energy consumption for Penryn-M,
Haswell-M, Cortex-A9 and Cortex-A15.

Concerning execution time, the Penryn-M and the
Haswell-M are, respectively, ×4.3 and ×2.2 faster than
the A9 and the A15. If we compare the estimation energy
consumption (based on approximative TDP as previously
said), the A9 and the A15 are, respectively, ×3.8 and ×2.1
more efficient than the Penryn-M and the Haswell-M.
ARM embedded processors are still more efficient than
Intel ones.

5.5 Impact of other parameters: SIMDwidth and nF value
The impact of a twice wider SIMD - 256 bits for AVX2
instead of 128 for SSE - has been evaluated on a Haswell-
M processor. It appears that there is quite no difference
in performance between SSE and AVX2. First, AVX (and
AVX2) processors can pair two SSE instructions within
one AVX instruction, thanks to the out-of-order capabil-
ities of these processors. Once the SIMD are fetched and
decoded into the pipeline, they are put in the ‘instructions
ready’ window before being dispatched to an execute unit
(named port in Intel vocabulary). If the processor can find
two SSE data-independent instructions that are ready to
be executed, it pairs them together and sends the new
instruction to an execute unit.
The impact of nF has been also evaluated for the four

processors. The two specialized scalar and SIMD versions
AoS + T and AoS + T + SIMD have been instanced for
nF = 8 SSE, AVX, and Neon. It makes sense for AVX
architecture as eight features 100% fills one AVX register
(see Table 3). The cpp ratio (cpp(nF = 8)/cpp(nF = 7))
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varies from 1.11 up to 1.35 for ARM processors and 1.21
up to 1.27 for Intel processors. These values are very close
to the theoretical ratios (1.27 and 1.25) of the complex-
ity and memory access amounts of Table 5. It means that
the execution time of that part of the global algorithm is
predictable until we run out of register and generate spill
code.

6 Algorithm implementation
Two sequences have been used to evaluate the global per-
formance on the four processors. Panda and Pedxing for
which the robustness of the algorithm have been evalu-
ated in [11] and [18]. For both of them, the execution times
are given in cpp for each version of the algorithm: SoA is
the basic version, and AoS++ stands for AoS transform +
SIMDization + loop-fusion transform.
Two counter-intuitive results can be noticed. The first

one is the features computation cpp: it is lower for
SoA. The reason is obviously the memory layout of SoA
(versus AoS) when computing the features and storing
them into a cube or a matrix. The second counter-
intuitive result is even more interesting: it concerns
the tracking part of the algorithm which is based on

Table 8 cpp and execution time for Intel Penryn-M and
Haswell-M

Sequence Panda Pedxing

Size 312 × 233 640 × 480

Intel Penryn-M

Algorithm version SoA AoS++ SoA AoS++

Features computation (cpp) 128 150 128 150

Kernel computation (cpp) 599 87 618 91

Tracking (cpp) 23 23 11 11

Total (cpp) 738 248 769 264

Kernel/total 81% 35% 80% 34%

Total speedup ×2.9 ×2.8

1-C execution time (ms) 45 15 197 68

2-C execution time (ms) 36 9 158 38

Intel Haswell-M

Algorithm version SoA AoS++ SoA AoS++

Features computation (cpp) 78 79 88 72

Kernel computation (cpp) 190 36 207 40

Tracking (cpp) 13 23 2 3

Total (cpp) 281 138 297 115

Kernel/total 67% 26% 69% 34%

Total speedup ×2.0 ×2.6

1-C execution time (ms) 12 5 54 21

2-C execution time (ms) 8 3 37 13

the computation of a similarity criterion that requires
the computation of the generalized eigenvalues, inver-
sions, and matrix logarithms (9). In order to have the
same behavior, we use GNU Scientific Library to per-
form these computations on both platforms, but we can
also use Intel MKL or Eigen libraries. The future posi-
tion is chosen by evaluating 40 (in our case, but it is
parameterizable) random positions in a research win-
dow, so matrix operations represent a high percentage of
the tracking part. It appears that the features used for
tracking lead to a ‘more’ ill-conditioned matrix requir-
ing more computations for Panda than for the Pedxing-3
sequence.
Concerning the acceleration, Tables 8 and 9 show that

the optimization of the kernel provides a speedup of ×2.8
to ×2.9 for Intel processors and ×2.0 to ×2.6 for ARM
ones that assets the need of all the optimizations.
As both processors have two cores, all the processing

parts can be done either on one core (the execution time is
the sum of all parts) or on two cores (the biggest part is on
one core and the two other parts are on the second core).
With such a coarse grain thread distribution, the Penryn-
M and the Haswell-M can track targets in real time for

Table 9 cpp and execution time for ARM Cortex-A9 and
Cortex-A15

Sequence Panda Pedxing

Size 312 × 233 640 × 480

ARM Cortex-A9

Algorithm version SoA AoS++ SoA AoS++

Features computation (cpp) 461 461 486 486

Kernel computation (cpp) 1491 395 1600 415

Tracking (cpp) 96 96 19 19

Total (cpp) 2048 952 2106 921

Kernel/total 73% 42% 73% 45%

Total speedup ×2.2 ×2.3

1-C execution time (ms) 149 69 647 283

2-C execution time (ms) 108 36 492 149

ARM Cortex-A15

Algorithm version SoA AoS++ SoA AoS++

Features computation (cpp) 207 207 205 205

Kernel computation (cpp) 562 170 582 177

Tracking (cpp) 28 52 4 7

Total (cpp) 797 429 791 389

Kernel/total 70% 39% 73% 45%

Total speedup ×1.9 ×2.0

1-C execution time (ms) 38 20 161 79

2-C execution time (ms) 27 10 119 42
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640 × 480 images. The Haswell-M is even real time with
only one core. The Cortex-A9 can do it for image sizes
up to 320 × 240 and the Cortex-A15 is close to real
time for 640 × 480 images. Once the kernel computation
has been optimized, the biggest processing part becomes
the features computation. With the optimization of this
part, the Cortex-A15 should be able to reach real-time
execution.
The performance ratio of the whole algorithm is close

to the performance ratio of the kernel: the Penryn-M
and the Haswell-M are, respectively, ×4.0 and ×3.3 faster
than the Cortex-A9 and the Cortex-A15. We can also
observe that the image size has quite no impact on the
performance ratio. From an energy point of view, the
Cortex-A9 and the Cortex-A15 are, respectively, ×2.1
and ×2.7 more energy efficient than the Penryn-M and
the Haswell-M.

7 Conclusions
We have presented the implementation of a robust covari-
ance tracking algorithm, with a parameterizable complex-
ity that can be adapted to trade-off between robustness
and execution time. A study has been made to qualita-
tively compare different covariance matrices in terms of
number and nature of visual features. Classical software
and hardware optimizations have been applied: SIMDiza-
tion and loop-fusion transform combined with AoS-SoA
transform to accelerate the kernel of the algorithm. These
optimizations allow a real-time execution (25 fps or about
40ms per image) for 320×240 image size onARMCortex-
A9 and for 640 × 480 on Intel Penryn-M and Haswell.
ARM Cortex-A15 should also reach real-time execution
for such image size, once the other parts of the algorithm
will be optimized.
Our future work will focus on (1) the optimization of

the features computation and (2) the multi-threading of
the tracking in order to performmulti-target tracking with
load balancing on the available core. A more thorough
study should also be made concerning the impact of the
ill-conditioning of the matrix on the execution time.
To the best of our knowledge, our implementation of

the covariance tracking algorithm is the first real-time
implementation for embedded systems, while perfectly
maintaining the quality of the tracking.

Endnote
aK-Nearest Neighbours.
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