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Abstract

Cognitive radio (CR) is a promising technology that brings about remarkable improvement in spectrum utilization.
To tackle the hidden terminal problem, cooperative spectrum sensing (CSS) which benefits from the spatial
diversity has been studied extensively. Since CSS is vulnerable to the attacks initiated by malicious secondary users
(SUs), several secure CSS schemes based on Dempster-Shafer theory have been proposed. However, the existing
works only utilize the current difference of SUs, such as the difference in SNR or similarity degree, to evaluate the
trustworthiness of each SU. As the current difference is only one-sided and sometimes inaccurate, the statistical
information contained in each SU's historical behavior should not be overlooked. In this article, we propose a robust
CSS scheme based on Dempster-Shafer theory and trustworthiness degree calculation. It is carried out in four successive
steps, which are basic probability assignment (BPA), trustworthiness degree calculation, selection and adjustment of BPA,
and combination by Dempster-Shafer rule, respectively. Our proposed scheme evaluates the trustworthiness degree of
SUs from both current difference aspect and historical behavior aspect and exploits Dempster-Shafer theory's potential to
establish a ‘soft update’ approach for the reputation value maintenance. It can not only differentiate malicious SUs from
honest ones based on their historical behaviors but also reserve the current difference for each SU to achieve a better
real-time performance. Abundant simulation results have validated that the proposed scheme outperforms the existing
ones under the impact of different attack patterns and different number of malicious SUs.

Keywords: Cognitive radio networks; Cooperative spectrum sensing; Security; Dempster-Shafer theory; Trustworthiness
degree calculation
1. Introduction
Due to the static licensing and allocation strategies,
current spectrum regulation has resulted in extreme
scarcity of available spectrum, while plenty of radio fre-
quencies are actually unused temporally/geographically
[1]. Motivated by the need for flexible management and ef-
ficient utilization of spectrum resources, cognitive radio
(CR) is brought up and has been regarded as one of the
most promising technologies [2]. CR enables secondary
users (SUs) to access a spectrum band when it is not occu-
pied by the primary user (PU). Different from traditional
wireless networks, cognitive radio network (CRN) is able to
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(i) perceive and understand the surrounding environment,
(ii) make intelligent decisions to optimize operating pa-
rameters (such as carrier frequency, transmission power,
and network protocol), and (iii) reconfigure the network
according to the environment situations [3,4]. Therefore,
as a fundamental component in CR technology, reliable
and efficient spectrum sensing is very important for the
realization of CRN [5].
Among others, one crucial challenge in spectrum sensing

is the hidden terminal problem [6], which occurs when SU
is under deep shadowing or experiences multi-path fading.
To deal with this problem, cooperative spectrum sensing
(CSS) which makes benefit from the spatial diversity has
been extensively studied [7-9]. In CSS, each SU performs
the local spectrum sensing individually at first and forwards
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its measurements to the fusion center (FC). FC then fuses
those measurements to make the global decision about
PU's activity. There are rich literatures (see, e.g., [10-12]
and the references therein) that have established the opti-
mality of likelihood ratio test (LRT) in the detection prob-
lems. Quan et al. [13] have proposed an optimal linear CSS
scheme, which makes the global decision over a linear
combination of the local measurements. It has reduced the
computational complexity and can reach performance
comparable to LRT-based optimal fusion rules. Besides,
several CSS schemes based on Dempster-Shafer theory
have also been proposed in recent years [14-18]. In [14],
Dempster-Shafer theory is firstly adopted in the data fusion
of CSS. This scheme quantifies the channel condition
between PU and SUs with a parameter called credibility
and applies Dempster-Shafer theory to combine the local
measurements with its associated credibility. Nhan and
Insoo [15] propose an enhanced CSS scheme based on
Dempster-Shafer theory and reliability source evaluation.
Different from [14], it utilizes the signal-to-noise ratios
(SNRs) to evaluate the degree of reliability for SUs. The reli-
ability weight of each SU is then applied to adjust its mea-
surements before making the final decision.
Unfortunately, CSS is vulnerable to the attacks initi-

ated by malicious SUs. For example, malicious SUs may
falsify their local measurements to mislead FC, which
will degrade the performance of CSS significantly.
Therefore, effective secure mechanisms are essentially
required in a hostile wireless environment. Han et al.
[16] propose an enhanced Dempster-Shafer theory-based
CSS scheme that tackles the spectrum sensing data falsi-
fication (SSDF) attack. Based on the assumption that
malicious SUs' evidences are different from honest SUs',
this scheme uses the similarity degree to calculate the
reliability of evidences and removes the evidences with
low similarity degree from the combination. Nhan and
Insoo [17] propose another Dempster-Shafer theory-
based secure CSS scheme, which utilizes robust statistics
to estimate the distribution parameters of PU's activity
and evaluates the reliability of SUs with a simple count-
ing method. Besides, several detection thresholds are
adopted to eliminate different kinds of malicious SUs. In
[18], a trusted CSS scheme for mobile CRNs is proposed.
It utilizes the location reliability parameter to improve
PU detection and improves malicious SU detection using
both location reliability and Dempster-Shafer theory.
However, most of the existing Dempster-Shafer theory-

based CSS schemes only utilize SUs' current difference,
such as the difference in SNR or similarity degree, to evalu-
ate the trustworthiness of each SU. Although this current
difference can reflect SU's reliability to some extent, it is
only one-sided and not always accurate, due to the dynamic
character of wireless environment. Apart from the real-
time information, the statistical information about SUs'
historical behavior which reflects their past credibility
should also be considered in the evaluation of trustworthi-
ness. To the best of our knowledge, none of the existing
works has studied the trustworthiness of SUs from both
current difference and historical behavior at the same time.
None of these works has exploited Dempster-Shafer theo-
ry's ability for reflecting uncertainty in the utilization of his-
torical behavior, either.
Therefore, in this article, we propose a robust CSS

scheme based on Dempster-Shafer theory and trustworthi-
ness degree calculation. It is carried out in four successive
steps, which are basic probability assignment (BPA), trust-
worthiness degree calculation, selection and adjustment of
BPA, and combination by Dempster-Shafer rule, respect-
ively. The main contributions of this article can be summa-
rized as follows:

1. We propose to evaluate the trustworthiness degree
of SUs from both current difference aspect and
historical behavior aspect. Our proposed scheme not
only differentiates malicious SUs from honest ones
effectively based on their historical behaviors but
also reserves the current difference for each SU to
achieve a better real-time performance.

2. We establish a ‘soft update’ approach for each SU's
reputation value maintenance by exploiting Dempster-
Shafer theory's ability for reflecting uncertainty, based
on each SU's historical reports. Besides, we consider a
more general situation where the final decision is im-
perfect and thus adjust the relative status of decisions
made by FC and SUs in the soft update process.

3. Our proposed scheme is easy for implementation.
The reputation value maintenance can be performed
in an iterative manner, which causes no additional
computational complexity or storage cost. In
addition, no prior knowledge such as the average
SNR of each SU is needed at FC, which will reduce
the communication overhead as well.

The rest of this article is organized as follows: Section
2 describes the system model. Section 3 proposes the ro-
bust CSS scheme based on Dempster-Shafer theory and
trustworthiness degree calculation and discusses the four
steps of this scheme in detail. In Section 4, numerical
simulation results are presented. Finally, the conclusions
are drawn in Section 5.

2. System model
In this section, we describe the scenario of CSS in CRNs
and introduce two attack patterns considered in this article.

2.1 Cooperative spectrum sensing
As illustrated in Figure 1, we consider a CRN that con-
sists of one PU, n SUs, and one FC. At first, each SU



Figure 1 Cooperative spectrum sensing in cognitive radio networks.
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independently performs local spectrum sensing, which
can be formulated as a binary hypothesis testing [6]:

xi tð Þ ¼ ni tð Þ; H0

hi tð Þs tð Þ þ ni tð Þ; H1

�
ð1Þ

where xi(t) is the received signal at SUi, ni(t) is the
additive white Gaussian noise (AWGN), hi(t) is the
amplitude gain of the sensing channel, and s(t) is the
signal transmitted by PU, respectively. H0 represents
that PU is inactive, and H1 represents that PU is active.
Without loss of generality, s(t) and ni(t) are assumed to
be independent.
We also make an assumption that energy detection

method is employed by every SU in the local spectrum
sensing phase. By applying a band-pass filter, the re-
ceived energy at SUi can be measured by [19]

xEi ¼
XN
j¼1

xij
�� ��2 ð2Þ

where xij is the jth sample of the received signal at SUi.
Besides, N = 2TW, and TW is the time-bandwidth prod-
uct. When N is large enough (e.g., N ≥ 10), xEi can be ap-
proximated as a Gaussian random variable under both
hypotheses H0 and H1 and denoted as [20]

xEi∼N μ0i; σ
2
0i

� �
; H0

xEi∼N μ1i; σ
2
1i

� �
; H1

�
ð3Þ

Here, μ0i, μ1i and σ20i , σ
2
1i are the means and variances

under hypotheses H0 and H1, respectively.

μ0i ¼ N ; σ20i ¼ 2N
μ1i ¼ N γi þ 1

� �
; σ21i ¼ 2N 2γ i þ 1

� ��
ð4Þ

where γi is the average SNR at SUi. To perform CSS,
SUs will then send their reports of the local spectrum
sensing to FC for further processing. These reports can
either be the received energy xEi or a function of it (such
as 1-bit hard decision), depending on the specific fusion
rule adopted by FC.
At the Lth sensing slot, the report of SUi can be de-

noted as uLi . Then, all the reports received by FC can be
denoted as

⇀u L ¼ uL1; u
L
2 ;…; uLn

� � ð5Þ

based on which the final decision uL0 about PU's activity
is made.

2.2 Attack patterns
Figure 1 also indicates that among all the SUs, there
may be several malicious ones (which are less than the
honest ones generally). The malicious SUs send falsified
reports to FC and hope incorrect final decision uL0 will
be made under the misleading. There are many ways to
falsify reports for malicious SUs. In this article, we con-
sider that each malicious SU falsifies its received energy
at first and then reports a function of the falsified energy
to the FC.
Two attack patterns, false alarm (FA) attack and false

alarm & miss detection (FAMD) attack [21], are adopted
and generalized in this article. Both of them can be char-
acterized by three parameters, which are the attack
threshold, the attack strength factor, and the attack
probability. Specifically, the FA and FAMD attack pat-
terns can be modeled as follows:

1. FA attack: At the Lth sensing slot, if the received
energy xEi of FA attacker SUi is higher than the
attack threshold δ1, it will not initiate an attack and



Wang et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:35 Page 4 of 12
http://asp.eurasipjournals.com/content/2014/1/35
hold xEi . Otherwise, it will choose whether to attack
with the attack probability pa1. Moreover, if it
chooses to attack, the received energy xEi will be
multiplied by the attack strength factor η1 (η1 > 1).
Therefore, the FA attack pattern can be denoted as

x′Ei
¼ xEi ⋅η1; if xEi≤δ1 and SUi chooses to attack pa1ð Þ

xEi ; otherwise

�

ð6Þ
This attack pattern will increase the false alarm

probability and result in the underutilization of
available spectrum or the exclusive usage of it by FA
attackers.
2. FAMD attack: At the Lth sensing slot, if the
received energy xEi of FAMD attacker SUi is higher
than the attack threshold δ2, it will choose whether
to attack with the attack probability pa2 and multiply
xEi by the attack strength factor η2 (η2 < 1) if it
chooses to attack. On the contrary, if xEi is lower
than the attack threshold δ2, it will choose whether
to attack with the attack probability pa3 and multiply
xEi by the attack strength factor η3 (η3 > 1) if it
chooses to attack. Therefore, the FAMD attack
pattern can be denoted as

x′Ei
¼

xEi ⋅η2; if xEi > δ2 and SUi chooses to attack pa2ð Þ
xEi ⋅η3; if xEi≤ δ2 and SUi chooses to attack pa3ð Þ
xEi ; otherwise

8<
:

ð7Þ
This attack pattern will increase both the false alarm

probability and the miss detection probability, which
not only leads to the unfair utilization of available
spectrum but also causes more harmful
interferences to the PU.
Under each of the two attack patterns, the falsified
energy x′Ei

is used to create local reports, which are
then forwarded to FC. For simplicity in
representation, we denote the energy used by SUi to
create reports at the Lth sensing slot as xLEi

, which is
either the original xEi (for honest SUs) or the
falsified x′Ei

(for malicious SUs). That is,
xLEi
¼ xEi ; if SUi is honest

x′Ei
; if SUi is malicious

�
ð8Þ

3. Robust cooperative spectrum sensing scheme based
on Dempster-Shafer theory and trustworthiness degree
calculation
In this section, we propose a robust CSS scheme based
on Dempster-Shafer theory and trustworthiness degree
calculation in CRNs. Dempster-Shafer theory is a
mathematical theory of evidence [22], which can be
viewed as an effective method for reasoning and making
decisions. Since Dempster-Shafer theory is capable of
combining reports from different SUs under the influence
of uncertainty, it is well-suited for the CSS in CRN.
As shown in Figure 2, the proposed robust CSS scheme

is carried out in four successive steps, which are basic prob-
ability assignment (BPA), trustworthiness degree calcula-
tion, selection and adjustment of BPA, and combination by
Dempster-Shafer rule, respectively. The detailed discussions
are given as follows.

3.1 Basic probability assignment
Since the detection of PU's activity is a binary hypothesis
testing essentially, the framework of discernment for
Dempster-Shafer theory is defined as Ω = {H1, H0}. The
BPA refers to a function m, which maps the power set of
Ω (i.e., ℜ(Ω)) to the interval of [0, 1] and can be de-
noted as [22]

m : ℜ Ωð Þ→ 0; 1½ � ð9Þ
such that

m ∅ð Þ ¼ 0 ð10Þ
Xℜ Ωð Þj j

k¼1

m Akð Þ ¼ 1 ð11Þ

where Ak ∈ℜ(Ω), ℜ(Ω) = {∅,H0,H1,Ω}, and |ℜ(Ω)| is
the cardinality of ℜ(Ω).
For each Ak, the value m(Ak) expresses the proportion

to which all available and relevant evidence supports the
claim that a particular element of Ω belongs to set Ak

[23]. In other words, m(Ak) represents the belief that
one is willing to commit exactly to set Ak, given a certain
piece of evidence. Each set Ak that satisfies m(Ak) > 0 is
called a focal set. Besides, in Dempster-Shafer theory,
the belief function Bel and the plausibility function Pl
are defined as

Bel Bð Þ ¼
X

Ak Ak⊆Bj
m Akð Þ ð12Þ

Pl Bð Þ ¼
X

Ak Ak∩B≠∅j
m Akð Þ ð13Þ

where B ∈ℜ(Ω). Bel(B) measures the minimum or ne-
cessary support for hypothesis B, while Pl(B) measures
the maximum or potential support that could be placed
in hypothesis B if more evidence became available.
Due to the fact that Bel(H0) =m(H0) and Bel(H1) =m

(H1) in the binary detection problem of CSS, we consist-
ently use BPA function m to represent the belief of hy-
potheses H0 and H1 in the following discussion.



Figure 2 Procedure illustration of robust cooperative spectrum sensing scheme based on Dempster-Shafer theory and trustworthiness
degree calculation.
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After the energy detection, SUi estimates its own BPAs
based on xLEi

according to the following formulation [19]:

mL
i H0ð Þ ¼

Z þ∞

xLEi

1ffiffiffiffiffiffi
2π

p
σ0i

exp −
x−μ0ið Þ2
2σ20i

 !
dx ð14Þ

mL
i H1ð Þ ¼

Z xLEi

−∞

1ffiffiffiffiffiffi
2π

p
σ1i

exp −
x−μ1ið Þ2
2σ2

1i

 !
dx ð15Þ

and then sends the BPAs to FC. That is to say, the report
of SUi at the Lth sensing slot is uLi ¼ mL

i H0ð Þ;mL
i H1ð Þ� �

.

3.2 Trustworthiness degree calculation
To eliminate or alleviate the performance deterioration
caused by attack behaviors, the reports from different
SUs should be treated discriminatingly. In the proposed
scheme, the trustworthiness of each SU is evaluated by
its trustworthiness degree, which involves two variables,
i.e., the current reliability and the historical reputation.
Specifically, the current reliability of SUi reflects the
credibility of BPAs from SUi at the Lth sensing slot,
while the historical reputation of SUi reflects the cred-
ibility of previous reports from SUi. By merging these
two variables, both real-time and statistical information
about the trustworthiness of SUi are well utilized.
3.2.1 Current reliability
Since the reports from a malicious SU are falsified at
some sensing slots, they are not always consistent with
the reports from other SUs. Therefore, we can evaluate
the current reliability of SUi based on its reports' similar-
ity with other SUs at each sensing slot. Specifically, the
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similarity degree of reported BPAs between SUi and SUj

can be expressed by the following formulation [16]

simL
ij ¼

Xℜ Ωð Þj j

k¼1

min mL
i Akð Þ;mL

j Akð Þ
	 


Xℜ Ωð Þj j

k¼1

max mL
i Akð Þ;mL

j Akð Þ
	 
 ð16Þ

Note that mL
i Ωð Þ within can be obtained by

mL
i Ωð Þ ¼ 1−mL

i H0ð Þ−mL
i H1ð Þ ð17Þ

according to (11). Then, the similarity degree matrix can
be expressed as

SimL ¼

1 ⋯ simL
1j ⋯ simL

1n
⋮ 1 ⋮ ⋮ ⋮

simL
i1 ⋯ 1 ⋯ simL

in
⋮ ⋮ ⋮ 1 ⋮

simL
n1 ⋯ simL

nj ⋯ 1

2
66664

3
77775 ð18Þ

By adding up the total similarity degree of SUi with re-
spect to other SUs, the support to the BPAs from SUi at
the Lth sensing slot is denoted as

SupLi ¼
Xn
j¼1

simL
ij; j≠i; i; j ¼ 1; 2;…; n ð19Þ

Thus, the current reliability of SUi can be obtained by
normalizing the support and written as

RelLi ¼
SupLi

maxi SupLi
� � ð20Þ

However, due to the open and dynamic character of
wireless environment, there are many possibilities that
can result in low current reliability. Apart from the at-
tack behavior, the channel randomness (i.e., shadowing
or fading effects, noise uncertainty) may also lead to in-
accurate BPA estimation for SUs. Under such random
influences, one honest SU may have poor sensing per-
formance at some particular sensing slots. At that time,
its reports will be inconsistent with the reports from
other honest SUs or even have higher similarity degree
with the reports from malicious SUs. Furthermore, if the
number of malicious SUs increases in the network, these
malicious SUs will support each other and distort the
evaluation of current reliability significantly. In other
words, we can neither conclude a SU to be honest or to
be malicious precisely with the help of current reliability
alone. To tackle this problem, the reputation mechanism
is introduced into the proposed scheme.
3.2.2 Historical reputation
Although historical reputation cannot evaluate which
SUs are more trustworthy in real time, it can provide
useful suggestions about the past credibility of SUs based
on their previous reports. Besides, it is more stable and
insusceptible to the random influences. Therefore, the
historical reputation and the current reliability are com-
plementary to each other and can both be utilized in the
calculation of trustworthiness degree.
Most of the existing reputation mechanisms in CSS

calculate historical reputation value of SUi by simply
counting the times that the local decision of SUi is con-
sistent with FC's final decision [24-26]. There are two
main drawbacks in such approaches: First, these mecha-
nisms assume that the final decision is faultless and thus
use it as the benchmark, which can hardly be satisfied
under the presence of attacks. Second, the counting
method only cares about whether the local decision con-
sists with the final decision or not. If they are consistent,
the reputation value is updated by adding 1; otherwise, it
is updated by subtracting 1. This method leaves the
maintenance of reputation value with only two options
and loses valuable information contained in the details
of each past sensing slot.
In the proposed scheme, Dempster-Shafer theory is

exploited to establish a soft update approach for histor-
ical reputation maintenance. This soft update approach
takes the imperfectness of final decision into consider-
ation and updates the reputation value of SUi at the Lth
sensing slot based on the BPAs of both SUi and FC at
the (L − 1)th sensing slot. Specifically, we define two pa-
rameters, the self-assessed confidence ci and the center-
assessed confidence c, to differentiate particular cases in
making final decisions. A higher ci (or c) represents that
SUi (or FC) is more confirmative about its decision. Both
self-assessed confidence and center-assessed confidence
at the (L − 1)th sensing slot are calculated by FC and can
be written as

cL−1i ¼ mL−1
i H1ð Þ−mL−1

i H0ð Þ�� �� ð21Þ

cL−1 ¼ mL−1 H1ð Þ−mL−1 H0ð Þ�� �� ð22Þ

respectively. Here, mL − 1(H1) and mL − 1(H0) refer to the
combined BPAs of FC at the (L − 1)th sensing slot. Obvi-
ously, cL−1i ∈ 0; 1½ � and cL − 1 ∈ [0, 1]. Therefore, with the
soft update approach, the reputation value of SUi at the
Lth sensing slot can be obtained as

rLi ¼ rL−1i þ −1ð ÞuL−10 þvL−1i ⋅cL−1⋅
cL−1i þ α
� �
αþ 1

; α≥0; L ¼ 2; 3;…

ð23Þ
where rL−1i is the reputation value of SUi at the (L − 1)th
sensing slot, uL−10 is the 1-bit final decision, and vL−1i is
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the virtual 1-bit local decision of SUi inferred by FC.
Note that SUi does not need to make or report its local
hard decision (which would cause additional overhead),
since this local decision can be reasoned from its re-
ported BPAs by FC. That is,

vL−1i ¼
0;

mL−1
i H1ð Þ

mL−1
i H0ð Þ ≤λ

1;
mL−1

i H1ð Þ
mL−1

i H0ð Þ > λ

8>><
>>: ð24Þ

where λ is the decision threshold chosen by FC to meet
different performance requirements.
The soft update approach for historical reputation main-

tenance can be explained with (23) basically. First, whether
the reputation value rLi is increased or decreased is deter-
mined by the 1-bit final decision uL−10 and the virtual 1-bit
local decision vL−1i . If uL−10 and vL−1i are consistent, rLi in-
creases; if not, rLi decreases. This means the SUs whose
local decisions are consistent with the final decision made
by FC will gain a better reputation. Second, the variation of
reputation value is determined by the self-assessed confi-
dence cL − 1 and the center-assessed confidence cL − 1. If
both cL−1i and cL − 1 approach to 1 (meaning both SUi and
FC are very confirmative about their own decisions), then
the variation of reputation value will also approach to 1. If
SUi (or FC) is not sure about the correctness of its decision,
then cL−1i (or cL − 1) decreases, and the variation of reputa-
tion value will decrease consequently. As a result, the repu-
tation value is updated flexibly according to the particular
cases in making final decisions of the last sensing slot
(which is why it is called the soft update approach).
Besides, due to the fact that final decisions may be in-

correct from time to time but are still more accurate
than local decisions, parameter α is employed to adjust
the relative status between FC and SUs in the soft up-
date. In general, α should not be set too large; otherwise,
the historical reputation will be updated with little con-
tribution from the self-assessed confidence; on the other
hand, effectively differentiating the BPAs from FC and
SUs requires that α should not be set too small, either.
In practice, the parameter α can be modified based on
some previous experience or based on the experimental
measurements when the number and attack patterns of
malicious SUs are known.
Then, the historical reputation of SUi at the Lth sens-

ing slot can be normalized as

RepLi ¼
rLi

maxi rLi
� � ; rLi > 0

0; rLi ≤0

8<
: ð25Þ

Initially, r1i ¼ Δ; i ¼ 1; 2;…; n . It should be pointed
out that there are many feasible ways to merge the
current reliability and the historical reputation. In this art-
icle, we adopt a simple way to obtain the trustworthiness
degree by normalizing the sum of current reliability and
historical reputation as the preliminary effort, which is

TruLi ¼
RelLi þ RepLi

maxi Rel
L
i þ RepLi

� � ; RepLi > 0

0; RepLi ¼ 0

8><
>: ð26Þ

As a result, the trustworthiness degree calculation of
the proposed scheme can not only differentiate mali-
cious SUs from honest ones based on their historical be-
haviors but also reserve the current difference for each
SU to achieve a better real-time performance.

3.3 Selection and adjustment of BPA
According to the trustworthiness degree of each SU, the
BPAs that are qualified to participate in the following
combination can be selected and adjusted. For SUi, if its
trustworthiness degree is lower than a certain threshold,
i.e., TruLi ≤β , then it is regarded as a malicious SU and
will be discarded from the following step at the Lth sens-
ing slot; otherwise, the BPAs of SUi are adjusted by FC
with the corresponding trustworthiness degree

mL
i
� H0ð Þ ¼ TruLi ⋅m

L
i H0ð Þ ð27Þ

mL
i
� H1ð Þ ¼ TruLi ⋅m

L
i H1ð Þ ð28Þ

and

mL
i
� Ωð Þ ¼ 1−mL

i
� H0ð Þ−mL

i
� H1ð Þ ð29Þ

3.4 Combination by Dempster-Shafer rule
To make the final decision uL0 , all the adjusted BPAs are
appropriately aggregated to obtain the combined BPAs
according to the combination rule of Dempster-Shafer
theory [22]

mL H0ð Þ ¼ mL
1
�⊕mL

2
�⊕⋯⊕mL

pL
� H0ð Þ ¼

X
∩Ai¼H0

YpL
i¼1

mL
i
� Aið Þ

1−
X
∩Ai¼∅

YpL
i¼1

mL
i
� Aið Þ

ð30Þ

mL H1ð Þ ¼ mL
1
�⊕mL

2
�⊕⋯⊕mL

pL
� H1ð Þ ¼

X
∩Ai¼H1

YpL
i¼1

mL
i
� Aið Þ

1−
X
∩Ai¼∅

YpL
i¼1

mL
i
� Aið Þ

ð31Þ
where Ai ∈ℜ(Ω), i = 1, 2,…, pL, and pL is the number of
SUs whose BPAs are selected and adjusted to participate
in the combination at the Lth sensing slot.



Figure 4 Performance comparison of each scheme when SU6

(with average SNR γ6 = −1 dB) is a FA attacker.
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At last, the combined BPAs mL(H0) and mL(H1) are
used to make the final decision according to the follow-
ing decision rule

uL0 ¼
0; Decide H0 if

mL H1ð Þ
mL H0ð Þ ≤ λ

1; Decide H1 if
mL H1ð Þ
mL H0ð Þ > λ

8>><
>>: ð32Þ

where λ is the same decision threshold as adopted in
[24]. Once the final decision is made, the historical repu-
tation can be updated according to [23] for the detection
of the next sensing slot.
Remark. It is noted from [23] that the soft update ap-

proach for historical reputation maintenance can be imple-
mented with low computational complexity and storage
cost. The reputation value of each SU is updated in an it-
erative manner, which only needs its reputation value of the
very last sensing slot. More importantly, the soft update ap-
proach takes advantage of Dempster-Shafer theory's ability
of representing uncertainty by using BPAs to update the
historical reputation, which is more suitable than traditional
counting method.

4. Simulation results
In this section, abundant simulation results are pre-
sented to compare the performance of the proposed
robust CSS scheme with several existing schemes, as
shown from Figures 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.
Specifically, the curve of ‘OPT LIN’ shows the optimal
linear CSS scheme proposed in [13], ‘OPT LRT’ shows
the LRT-based optimal fusion rule presented in [11], and
‘SINGLE’ shows the situation of single SU spectrum
sensing. Three CSS schemes based on Dempster-Shafer
theory are presented here: ‘RSE D-S’ shows the enhanced
Figure 3 Performance comparison of each scheme when there
is no malicious SU.
scheme with reliability source evaluation proposed in
[15], ‘SIM D-S’ shows another enhanced scheme with
similarity degree calculation proposed in [16], and our
proposed robust scheme is shown as ‘TRU D-S.’ The im-
pact of both FA and FAMD attack patterns is investi-
gated with different number of malicious SUs jointly.
MATLAB is used to simulate the system.

4.1 Parameter setting
The simulations are performed in a CRN with one PU,
n = 6 SU, and one FC. PU is assumed to be a digital tele-
vision (DTV) base station. The probabilities of presence
and absence of PU are both set to be 0.5. The time-
bandwidth product TW = 10, the adjusting parameter
α = 1, the initial reputation value Δ of each SU is 5, and
the trustworthiness degree threshold β = 0.7. Without
Figure 5 Performance comparison of each scheme when SU6

(with average SNR γ6 = −1 dB) is a FAMD attacker.



Figure 6 Performance comparison of each scheme when both
SU4 (γ4 = −3 dB) and SU6 (γ6 = −1 dB) are FA attackers.

Figure 8 Performance comparison of each scheme when SU4

(γ4 = −3 dB) is a FA attacker and SU6 (γ6 = −1 dB) is a
FAMD attacker.
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loss of generality, we choose some simple attack parameters
in the simulation. Specifically, the attack strength factors
η1 = η3 = 2, η2 = 0.5, and the attack probabilities pa1 = pa2 =
pa3 = 1. The attack thresholds δ1 and δ2 are both chosen as
an energy level, which is the right intersection of two prob-
ability density functions (PDFs) under hypotheses H0 and
H1 of each SU. Besides, the average SNR of six SUs are con-
sidered to be −6, −5, −4, −3, −2, and −1 dB, respectively.
Simulations are run for 10,000 rounds.
4.2 Performance evaluation
Figure 3 shows the sensing performance of each CSS
scheme through receiver operating characteristics (ROC)
Figure 7 Performance comparison of each scheme when both
SU4 (γ4 = −3 dB) and SU6 (γ6 = −1 dB) are FAMD attackers.
curve, under the condition that there is no malicious SU
existing in the network. The curve of SINGLE which
represents the sensing performance of SU2 (i.e., the one
with average SNR γ2 = −5 dB) is shown as reference. As
can be seen, every CSS scheme works quite well through
cooperation in a non-hostile environment. It should be
pointed out that, although our proposed TRU D-S
scheme works better than SIM D-S scheme, it is slightly
worse than OPT LIN, OPT LRT, and RSE D-S schemes.
However, the limited advantage of OPT LIN, OPT LRT,
and RSE D-S schemes is achieved by using the average
SNR of each SU in the fusion. Since no such prior know-
ledge is required at FC for the proposed scheme, it is
much easier to implement in practice.
Figure 9 The dynamic change of the current reliability when
SU6 is a FAMD attacker (same as Figure 5).



Figure 10 The dynamic change of the historical reputation
when SU6 is a FAMD attacker (same as Figure 5).

Figure 12 The dynamic change of the current reliability when
SU4 is a FA attacker and SU6 is a FAMD attacker (same as Figure 8).
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The scenario of one malicious SU existing is presented
in Figures 4 and 5. Specifically, Figure 4 shows the sens-
ing performance of each scheme when the malicious SU
adopts FA attack pattern, while Figure 5 shows that of
each scheme when the malicious SU is a FAMD at-
tacker. In both figures, the worst case where SU6 (with
the highest average SNR γ6 = −1 dB) is the malicious SU
is considered. As before, SINGLE shows the sensing per-
formance of SU2 as reference. From Figure 4, we can see
that both proposed TRU D-S scheme and OPT LIN
scheme can achieve a desirable performance and work
better than other CSS schemes. Figure 5 has substanti-
ated that among all the CSS schemes presented, the
proposed scheme is most robust to FAMD attack. The
Figure 11 The dynamic change of the trustworthiness degree
when SU6 is a FAMD attacker (same as Figure 5).
performance gain is mainly achieved by calculating the
trustworthiness degree to select and adjust BPAs for the
combination, as discussed in Sections 3.2 and 3.3.
Figures 6,7,8 have shown the sensing performance of

each CSS scheme when two malicious SUs appear. In
Figure 6, two FA attackers are considered. Without loss
of generality, we select SU4 (i.e., the one with average
SNR γ4 = −3 dB) and SU6 as attackers in the simulation.
Similarly, SU4 and SU6 are chosen as FAMD attackers in
Figure 7. In Figure 8, SU4 and SU6 are chosen as FA at-
tacker and FAMD attacker, respectively. Comparing
Figures 6,7,8 with Figures 4 and 5, we can see that the
overall performance of all schemes would degrade if the
Figure 13 The dynamic change of the historical reputation
when SU4 is a FA attacker and SU6 is a FAMD attacker (same as
Figure 8).



Figure 14 The dynamic change of the trustworthiness degree
when SU4 is a FA attacker and SU6 is a FAMD attacker (same as
Figure 8).
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number of malicious SUs increases. Besides, Figure 6
has shown that OPT LRT scheme is vulnerable to two
FA attackers, while OPT LIN, RSE D-S, SIM D-S, and
the proposed scheme still remain robust. However, as
illustrated in Figures 7 and 8, all CSS schemes except
ours will suffer heavy degradation in performance
when a FAMD attacker occurs. It is shown that the
proposed TRU D-S scheme can detect the malicious
behavior effectively and outperform other schemes
significantly.
From Figures 9,10,11,12,13,14, the effectiveness of

trustworthiness degree calculation in the proposed
scheme is shown clearly. The dynamic change of the
current reliability, the historical reputation, and the
trustworthiness degree of SUs are shown under two differ-
ent circumstances, respectively. The decision threshold
here is chosen as λ = 1.
To be specific, Figures 9,10,11 show the dynamic

change in a circumstance where SU6 is a FAMD at-
tacker, which is the same situation as in Figure 5. From
Figure 9, we can see that although the current reliability
of the FAMD attacker seems to be lower than that of
honest SUs in average, it can still approach to 1 every
now and then. Besides, it is hard to tell which of the two
honest SUs has a better performance. Figure 10 shows
that the historical reputation of the FAMD attacker
drops to zero very quickly, which means its attack be-
havior has been effectively detected. The historical repu-
tation of SU4 is higher than SU2 due to the fact that SU4

has a higher average SNR. As a result, the FAMD at-
tacker will have zero trustworthiness degree and be dis-
carded from the combination, as illustrated in Figure 11.
Moreover, the trustworthiness degree of SU4 is obviously
higher than that of SU2, which means SU4 will play a
more important role in the final decision-making.
Figures 12,13,14 show the dynamic change in a cir-

cumstance where SU4 is a FA attacker and SU6 is a
FAMD attacker, which is the same situation as in
Figure 8. It is nearly impossible to differentiate mali-
cious SUs in Figure 12, since the current reliability of
every SU is similarly disordered. Fortunately, as shown
in Figure 13, the FAMD attacker will be detected
quickly and effectively considering its historical repu-
tation. We should point out that although the histor-
ical reputation of the FAMD attacker drops very fast
from the beginning, it still affects the final decision-
making before it is discarded. Therefore, at the time
the FAMD attacker's historical reputation comes to
zero, the FA attacker will have higher historical repu-
tation than honest SU2. But after a while, the historical
reputation of SU2 will recover gradually, while that of
the FA attacker falls to a relatively low level. As illustrated
in Figure 14, the trustworthiness degree of FAMD attacker
is zero, and the trustworthiness degree of FA attacker is
much lower than that of the honest SU2. It verifies that the
trustworthiness degree calculation can not only differentiate
malicious SUs from honest ones based on their historical
behaviors but also reserve the current difference of each
SU's sensing result caused by the uncertainty of wireless
environment.

5. Conclusions
In this article, we have proposed a robust CSS scheme
based on Dempster-Shafer theory and trustworthiness
degree calculation. It is carried out in four successive
steps, which are BPA, trustworthiness degree calcu-
lation, selection and adjustment of BPA, and com-
bination by Dempster-Shafer rule, respectively. In the
proposed scheme, the trustworthiness degree of each
SU is evaluated from both current difference aspect
and historical behavior aspect, and Dempster-Shafer
theory's potential is exploited to establish a soft update
approach for the reputation value maintenance. Our
proposed scheme can not only differentiate malicious
SUs from honest ones effectively based on their histor-
ical behaviors but also reserve the current difference
for each SU to achieve a better real-time performance.
Abundant simulation results have been conducted and
validated that the proposed scheme outperforms the
existing ones under the impact of different attack pat-
terns and different number of malicious SUs. In the fu-
ture work, more sophisticated attack patterns will be
considered, and more effective methods for calculating
the trustworthiness degree will be investigated.
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