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Abstract 

The detection and tracking of small and weak maneuvering radar targets in complex 
electromagnetic environments is still a difficult problem to effectively solve. To address 
this problem, this paper proposes a dynamic programming tracking-before-detection 
method based on a long short-term memory (LSTM) network (LSTM-DP-TBD). With the 
predicted target motion state provided by the LSTM network, the state transition range 
of the traditional DP-TBD algorithm can be updated in real time, and the detection and 
tracking effect achieved for maneuvering small and weak targets is also improved. Uti-
lizing the LSTM network to model the moving state of the target, the moving features 
of the maneuvering target can be learned from the noisy input data. By incorporating 
these features into the traditional DP-TBD algorithm, the state transition set can be 
adjusted in time with the changes in the moving state of the target so that the new 
algorithm is capable of effectively recursively accumulating the movement trend of the 
maneuvering small and weak target. Simulation results show that the new algorithm 
is able to effectively accomplish the task of detecting and tracking maneuvering small 
and weak targets, and it achieves improved detection and tracking probabilities.

Keywords: Dynamic programming, Tracking before detection, LSTM, State transition 
set

1 Introduction
In an actual complex electromagnetic environment, for small targets or weak targets 
affected by electromagnetic interference, radar antennae may receive very weak tar-
get echo signals. The traditional detection-before-tracking (DBT) method has been 
unable to reliably achieve detection and tracking. To solve the problem of detecting 
and tracking small and weak targets, the tracking-before-detection (TBD) method 
was recently proposed. The TBD method does not set the threshold of each frame to 
detect targets; instead, through the accumulation of multiframe echo data, it utilizes 
the differences among the correlations between the targets and noise or clutter in 
multiple time frames to obtain the target detection results and produce a target track-
ing trajectory. We can simply use exhaustive methods to solve such problems, but it 
is almost impossible to implement them because as the number of frames increases, 
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the computational burden quickly becomes unsustainable. To reduce the computa-
tional burden and make it feasible, researchers have successively proposed a TBD 
algorithm based on dynamic programming (DP-TBD) [1, 2], a TBD algorithm based 
on the Hough transform (HT-TBD) [3], a TBD algorithm based on particle filtering 
(PF-TBD) [4, 5], and a TBD algorithm based on random finite sets (RFS-TBD) [6, 7]. 
Among them, the DP-TBD algorithm has become a research hotspot in recent years 
because of its clear thought process, easy implementation and excellent performance.

The essence of dynamic programming is to transform a high-dimensional mul-
tistage decision optimization problem into several low-dimensional interrelated 
subproblems and solve them. The optimization dimensions decrease, and thus the 
computational burden becomes smaller.

According to its value function, DP-TBD can be classified into value functions based 
on amplitudes, value functions based on posterior probability densities and value 
functions based on log-likelihood ratios. The principle of the first kind of algorithm is 
relatively simple; it does not possess prior clutter information, and its detection per-
formance is not affected by target amplitude fluctuations. However, its signal-to-noise 
ratio (SNR) cannot be too low, and it is only applicable to targets with approximately 
linear motion. The second and third types of algorithms can detect a maneuvering 
target with a very low SNR, but they need to know the prior clutter distribution. In 
addition, the third type is more suitable for environments with non-Gaussian noise.

Barniv [8] first proposed the use of the DP algorithm to achieve TBD and analyzed 
the resulting target detection performance by using the likelihood function as the 
value function. Arnold [9] further developed similar algorithms and proposed an in-
frame DP search method that is capable of detecting targets below 0 dB. After that, 
Tonissen et  al. [10] proposed taking the signal amplitude of the target as the value 
function of the DP-TBD algorithm for the first time; this approach is able to detect 
the moving target of the fluctuation model. According to the extreme value theory 
(EVT) and the generalized extreme value theory (GEVT), they obtained the conclu-
sion that the statistical distribution of the value function after DP-TBD accumulation 
is similar to the Gumbel distribution. Johnston et  al. [11] analyzed the mechanism 
of DP-TBD algorithm and obtained explicit expressions of asymptotic false-alarm 
probability and track detection probability by using EVT. Buzzi et al. [12] studied the 
application of the DP-TBD algorithm based on generalized likelihood ratio detection 
(GLRT) in an airborne radar model.

In recent years, researchers have conducted a lot of research on DP-TBD algorithm. 
One important direction is the improvement of merit function (MF) to reduce the effect 
of MF diffusion. Succary et al. [13] proposed a merit function based on the system mem-
ory coefficients to improve the system performance. Zhu et al. [14] analyzed the causes 
of the MF loss, noted that missing target detection information is helpful for prevent-
ing the MF loss, and proposed a candidate plot-based DP-TBD (CP-DP-TBD) method, 
which provided candidate plots carrying missing target detection information through 
an improved MF transfer program. Wen et  al. [15] proposed an improved Doppler-
supervised DP-TBD architecture. The architecture uses the dual-domain MF to inte-
grate both the inverse shadow amplitude in SAR images and the Doppler energy in the 
RD spectrum to achieve more accurate state estimation.
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Improvements to state transition constraints have also been extensively studied. 
Grossi et al. [16] proposed a two-step approach in which measurements of the likelihood 
ratio exceeding the main threshold in each frame were retained in the review stage, and 
final state transition decisions were made through the generalized likelihood ratio test. 
Xing et al. [17] proposed a DP-TBD algorithm with adaptive state transition set, which 
introduced Kalman filtering and target state transition probability into the traditional 
algorithm to improve the search efficiency of maneuvering targets. Zheng et al. [18] used 
the exponential smoothing prediction method to estimate the state of candidate targets 
according to the historical trajectory, and substituted the estimated state into the state 
transition probability model.

Extensions of second-order Markov chain for state transitions have also been stud-
ied. Hu et al. [19] proposed that the subsequent observation values can be used for cor-
rection when determining the state transition of the target, and the direction weighting 
method was introduced to reduce the false tracks. Wang et al. [20] proposed to use a 
second-order Markov model to model the target state transition process of the previ-
ous two-frame, and on this basis to transform the traditional DP optimization into a 
series of two-dimensional optimization. Fu et  al. [21] proposed an improved second-
order DP algorithm, which estimated the current state of pixels on the image plane by 
adding the maximized optimal MF of the previous two frames and the observed data of 
the current frame. Meanwhile, in order to inhibit the MF diffusion, the sequential and 
reverse observation data were connected end to end to form a ring structure. In addi-
tion, some scholars have extended the application of DP-TBD algorithm. Li et al. [22] 
used keystone transformation (KT) and phase gradient autofocusing (PGA) algorithms 
for offset compensation to improve the SNRs of moving targets. And an incoherent inte-
gration method combining DP-TBD and joint intensity-spatial constant false-alarm rate 
(J-CA-CFAR) was proposed. Lu et al. [23], aiming at the problem that sea targets need 
relatively long coherent integration times (CITs), which is not conducive to the detection 
and tracking of aerial targets, proposed selecting the pulse number in the CIT by using 
prior airborne target motion knowledge for coherent accumulation processing; then, 
they used the DP-TBD method to realize the noncoherent accumulation of detection 
and tracking for aerial targets.

The above studies optimized the traditional DP-TBD algorithm in terms of the MF 
loss, state transition constraint, second-order Markov chain, applied preprocessing to 
improve the SNR and achieve a better CIT, and achieved certain effects. However, the 
detection and tracking of weak targets with strong maneuverability has not been effec-
tively realized. This is because the range of state transition set applied in the above DP-
TBD algorithms is manually preset, or estimated by smoothing algorithm, or estimated 
by Markov chain. When the target is non-cooperative and its motion state is difficult 
to estimate, the state transition set obtained by the traditional method is difficult to 
adapt to the state changes. If the preset range is smaller, the target cannot be effectively 
detected, while if it is larger, a heavier burden is imposed on the algorithm calculation.

To solve this problem, it is difficult to use the above traditional methods. Consider-
ing the rapid development of deep learning technology in recent years, especially the 
long short-term memory (LSTM) network, which can recursively process historical 
data and model historical memory, is suitable for processing time series with strong 
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correlation and uncertain length of sequence information. Inspired by this, this paper 
studies the combination of LSTM network and traditional DP-TBD algorithm to 
address the above puzzle. With the powerful learning ability of LSTM network, the 
long-term dependence features of target motion and measurement can be learned 
from the training of a large number of training data, and then the target motion state 
can be accurately estimated in the prediction stage according to the observed value 
of the current frame to the target and its state information of the historical frame. 
Therefore, we propose to integrate LSTM network into DP algorithm structure to 
form LSTM-DP-TBD architecture. On the basis of accurately predicting the motion 
state of the target, this architecture can improve the state transition set in DP-TBD to 
be determined by the predicted motion state parameters. As a result, this architecture 
can effectively solve the problem of adaptive setting of state transition sets without 
the need for clutter and noise prior distribution information and preset values, so as 
to enhance the ability to detect and track weak targets with strong mobility.

The contribution of the work can be summarized in the following:

1. In order to solve the problem that the state transition set needs adaptive change 
when the traditional DP-TBD algorithm face with non-cooperative target, inspired 
by LSTM network technology, we propose a new LSTM-DP-TBD target tracking 
architecture which combines DP-TBD and LSTM network. We model LSTM net-
works for motion state estimation of non-cooperative target. Based on the long-term 
dependence of its learning, the architecture can accurately estimate the motion state 
of the target according to the current observed value and historical information, and 
realize the dynamic self-adaptation of the state transition set in the structure of DP-
TBD algorithm after embedding in the system. The advantages of this architecture 
are that it is not necessary to know the prior distribution of the motion model and 
noise of the target and the default value of the transfer set in advance.

2. We use a large amount of training data generated on sampling the widely used non-
linear maneuvering radar target time series model.

3. From the qualitative and quantitative simulation results, it is proved that the detec-
tion and tracking performance of this architecture is stronger than that of traditional 
DP-TBD methods in TBD target tracking tasks.

2  Related work
Target tracking algorithm based on video is the fastest and most comprehensive 
development direction of target tracking technology. It is to establish the position 
relation of the object to be tracked in the continuous video sequence and obtain the 
complete motion trajectory of the object. In this process, the expression ability of 
image features plays a crucial role in video target tracking. Generally, video tracking 
problems can be divided into classification tasks and estimation tasks. The former is 
mainly to divide the image area into foreground and background to provide the rough 
position of the target in the image robustly. The latter is the estimated target state, 
which is commonly represented by a boundary box in a video image.
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In the past few years, the focus of video object tracking research is object classification. 
One of the most concerned is the classifier based on correlation filtering. This kind of 
method calculates the reliable confidence in a dense two-dimensional grid through the 
cyclic matrix, and its regression model can be given by the discrete Fourier transform, so 
that the speed of training and testing can be greatly improved. Many of these methods 
have been proved to be very successful in video target tracking, such as MOSSE [24], 
KCF [25], DSST [26], etc. This kind of methods have a very prominent speed advantage, 
but they commonly used image features represented by HoG and CN make the perfor-
mance improvement become difficultly.

Depth features represented by convolutional neural network (CNN) have stronger fea-
ture expression, generalization and migration capabilities. Some studies have proposed 
using CNN features for visual tracking. Qi et al. [27] proposed to build different weak 
tracers by applying correlation filters to the output of different layers of CNN, and then 
hedged them into a stronger tracer by online decision theory hedging algorithm. Yang 
et  al. [28] proposed an improvement to the online discriminant approach in terms of 
providing more compact and richer training data and introducing statistic-based losses 
to obtain more discriminant features.

Accurate target estimation is mainly embodied in the accurate estimation of the target 
tracking box, which is a complex task and requires advanced understanding of the tar-
get attitude. Early accurate target estimation has not been achieved, and most methods 
adopt simple multi-scale detection strategy. Qi et al. [29] proposed that gradient histo-
gram (HOG) features were used to train SVM classifiers for selection, and then segmen-
tation algorithm was used to determine the appropriate size of the tracking box. Qi et al. 
[30] proposed to adaptively utilize level set segmentation and boundary box regression 
techniques to obtain more compact boundary boxes.

The recent research direction of target estimation is to learn prior knowledge by a large 
number of offline training. Such methods are mainly represented by the popular Sia-
mese network structure in recent years. Siamese structure uses two CNN networks with 
shared weights to obtain the feature vectors of two input images, calculate their similar-
ity through cross-correlation, and then track the target by searching the image area most 
similar to the target template, which can effectively achieve end-to-end training. This 
kind of method first received attention from SiamFC [31], which trained Siamese net-
work as image similarity learner in offline stage, and then estimated the similarity online 
in tracking stage. Paul et al. [32] proposed the duplicate detector Siam R-CNN, which 
integrated Faster R-CNN into the Siamese architecture. Through determining whether 
the region proposal is the same as the template region, and regressing of the boundary 
box of the target, the schema can redetect template objects anywhere in the image. The 
fusion of target classification and estimation is also studied. Martin et al. [33] proposed 
a tracking system composed of dedicated target estimation and target classification. 
Through offline learning, the target estimation component is trained to predict the inter-
section over union (IoU) overlap between the target and the estimated boundary box, 
thus incorporating high-level knowledge into the target estimation. Bhat et al. [34] pro-
posed a discriminant model prediction architecture for tracking, which consists of two 
branches: a target classification branch for distinguishing targets from the background, 
and a boundary box estimation branch for predicting accurate target boxes, both of 



Page 6 of 18Song et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:57 

which input depth features from a common backbone network. By discriminating learn-
ing losses in the learning target model and optimizing strategies based on the steepest 
descent method, it can make full use of the background information and has the online 
discrimination ability to update the target model with new data. Shen et  al. [35] pro-
posed an improved unsupervised tracking framework of Siam tracker through forward 
and backward tracking video, aiming at learning time mapping on classification branch 
and regression branch. Some scholars have studied the new application directions of Sia-
mese network. Qi et al. [36] proposed a face tracking method based on Siamese CNN. 
The L-CNN and G-CNN were designed to capture and authenticate face information 
from the local and global levels, respectively, and a boundary box tracking method for 
faces was realized. Liu et al. [37] extended boundary box estimation to multi-target UAV 
tracking, and used boundary box estimation, heat map tracking and ID feature updating 
to complete multi-target detection.

However, these mainstream video target tracking methods are rarely applied to radar 
dim target tracking. This may be due to several reasons.

1. The radar weak signal tracking problem (non-imaging radar) concerned in this paper 
actually belongs to the late data processing stage in the radar system, that is, before 
the radar threshold detection processing in the early stage. The input is the point-
track data of range-Doppler domain with clutter and noise interference. Common 
solutions are based on the target motion state estimation methods, such as KF, EKF, 
PF, TBD, etc.

2. Deep learning methods require a large number of publicly labeled training data sets, 
but it is difficult to obtain real radar received data in the scenario of radar tracking 
dim target. Currently, data sets generated by simulation are commonly used [7, 38].

Based on this, this paper does not adopt the current mainstream video target tracking 
methods, but leverages the powerful target state prediction ability of LSTM to improve 
the detection and tracking ability of the traditional DP-TBD structure to dim targets 
with relatively strong maneuverability.

3  Method
3.1  LSTM based on deep learning

In recent years, deep learning has made great progress in many applications, especially 
in the field of video target tracking in computer vision, including pedestrian surveillance 
[39], vehicle monitoring [40], biological sequence tracking [41] and other applications.

RNNs form an important branch of deep learning. Due to their special structure and 
characteristics. RNNs are particularly suitable for processing time-dependent sequence 
information. Therefore, an RNN is able to solve the target state tracking problem.

However, the structure of the basic RNN cannot store long-term sequence signals in 
memory, and serious gradient disappearance or gradient explosion problems may occur 
[42]. The main solution is to use an LSTM network, which can process long sequence 
signals more effectively.

LSTM is an RNN with an enhanced memory function [43]. The memory unit contains 
four parts: an input gate, a forgetting gate, an output gate and a self-circulation connection. 
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LSTM remembers or discards memory cell states by controlling the outputs of the three 
gates. The combination effect produced by the four parts enables the network to store 
or access sequence information for a long time, thus mitigating the gradient vanishing 
problem.

In this article, the utilized LSTM structure is described as follows [44, 45]:

where σ is the sigmoid function and ⊗ denotes elementwise multiplication.
We can see that LSTM is able to be interpreted as resetting the memory according to 

the forgetting gate, writing to the memory according to the input gate, reading from the 
memory according to the output gate, and finally forming the output and a hidden state. 
The values of the middle memory cell and all gates depend on the input at the current time, 
as well as all parameters. For a multilayer LSTM network, the hidden state of the first layer 
is treated as the input of the second layer.

To train the LSTM network, it is necessary to use loss a function to measure the error 
generated by the network output. The common loss function is the mean squared error 
function:

where x is the true output value and x̂ is the output value predicted by the network.
During the training process, the random gradient descent optimization algorithm is gen-

erally used to obtain the gradient of the network parameters, and a variable learning rate is 
set to control its continuous change in the direction that reduces the loss function until the 
minimum loss function is found; the results are the convergence parameters.

3.2  Traditional DP‑TBD algorithm

It is generally assumed that K frames of data are contained in a DP-TBD processing batch, 
and the target moves in an x–y two-dimensional plane. At time k, the motion state of the 
target is:

(1)ft = σ(Wfhht−1 +Wfxxt + bf ),

(2)it = σ(Wihht−1 +Wixxt + bi),

(3)ot = σ(Wohht−1 +Woxxt + bo),

(4)c̃t = tanh(Wchht−1 +Wcxxt + bc),

(5)ct = ft ⊗ ct−1 + it ⊗ c̃t ,

(6)ht = ot ⊗ tanh(ct),

(7)L(x, x̂) = (xi, x̂i)
2,

(8)xk = (pxk , vxk , axk , pyk , vyk , ayk),
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where pxk , pyk represent the position of the target in the x and y directions at time k, 
vxk , vyk represent the speed of the target in the x and y directions at time k, and axk , ayk 
represent the acceleration in the x and y directions at time k, respectively.

The measurement at each moment is a two-dimensional pixel plane. Assuming that 
the measurement plane has Nx × Ny resolving units, the measurement plane at time k 
can be expressed as an Nx × Ny matrix:

The implementation steps of the algorithm are as follows.

1. Initialization: For the discrete target state shown in Eq. (8),

where I1(x1) is the accumulation value function corresponding to the target state x1 in 
frame 1; S1(x1) is a transition function, which is used to store the target state transition 
relationship between each pair of frames. U(z1|x1) is the value function of the measure-
ment plane.

2. Recursive accumulation: When 2 ≤ k ≤ K  , the state xk has

where ϕ(xk) represents the state transition set of the target state xk during a frame 
time, that is, the set of all possible positions from frame k-1 to frame k. Let the num-
ber of transition states of the target state be 16 [11]; then, the set of possible positions 
is

L(xk |xk−1) represents the transition cost function of the target state from frame k-1 to 
frame k.

3. End of the iterative process: The threshold is set as VK  , and

4. Trace back: If Ik(
⌢
xK ) > VK  , let k = K − 1, ..., 1 ; then,

(9)zk = [zk(i, j)], i = 1, ...,Nx, j = 1, ...,Ny

(10)I1(x1) = U(z1|x1),

(11)S1(x1) = 0,

(12)Ik(xk) = max
xk−1∈ϕ(xk )

[Ik−1(xk−1)+ L(xk |xk−1)] + U(zk |xk),

(13)Sk(xk) = arg max
xk−1∈ϕ(xk )

[Ik−1(xk−1)+ L(xk |xk−1)],

(14)ϕ(xk) ∈ {[pxk + vxk − δx, pyk + vyk − δy]; δx, δy = −2,−1, 0, 1},

(15)
⌢
xK = arg max

xK∈R
Ik(xk),

(16)s.t.Ik(
⌢
xK ) > VK ,

(17)
⌢
xk = Sk+1(k + 1),
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Thus, the target track estimated by the DP-TBD algorithm is {⌢x1, ...,
⌢
xk}.

From the above implementation steps, it can be seen that the key to the DP-TBD algo-
rithm is to select an appropriate value function. The selection criterion can reflect the 
motion correlation difference between the target and the clutter characteristics.

Three common methods can be used to select the target value function.

1. Value function based on the target amplitude: The essence of the application of this 
function in the DP-TBD algorithm is to use the trajectory correlation of the target to 
complete the interframe incoherent accumulation of target states. However, its appli-
cation that the amplitude of the target to be higher than the average amplitude of the 
noise.

2. Value function based on the posterior probability density function: Essentially, the 
DP-TBD algorithm approximately estimates the posterior probability density func-
tion in the discrete state space. Therefore, the posterior probability density func-
tion can be directly used as the value function to express the probability of the tar-
get track. Thus, the target state sequence that can achieve the maximum value is the 
most likely target track. In reference [46], the recurrence formula of the value func-
tion based on the posterior probability density function was derived as follows:

where the log-likelihood function log p(zk |xk) indicates the probability that the cell 
amplitude comes from the target. The transfer cost function log p(xk |xk−1) indicates the 
motion characteristics of the target track.

3. Value function based on the likelihood ratio: Arnold [8] of Stanford University first 
proposed the log-likelihood ratio value function:

Under Gaussian noise, the detection performances of the second and third class value 
functions are equivalent, and the third class has better nonlinear statistical properties 
under non-Gaussian noise.

Another key point is that the directly set state transition value determines the abil-
ity of the DP-TBD algorithm to detect and track maneuvering targets. The traditional 
algorithm does not take the real-time changes exhibited by the motion state of the tar-
get into account, and its value range is directly determined by the preset maximum and 
minimum speeds. However, if the target’s mobility is stronger than this range, the detec-
tion and tracking performance of the algorithm become seriously degraded.

4  Our approach
Considering detection performance and ease of implementation, in this paper, we 
choose to achieve the second kind of value function.

We focus on the second key point. The state transition set used in the recursive 
accumulation step of the traditional DP-TBD algorithm is determined by the preset 

(18)Ik(xk) = max
xk−1∈ϕ(xk )

[Ik−1(xk−1)+ log p(xk |xk−1)] + lg(
p(zk |xk)

P(zk |H0)
),

(19)Ik(xk) = max
xk−1∈ϕ(xk )

[Ik−1(xk−1)+ log p(xk |xk−1)] + log p(zk |xk),
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speed range, which leads to poor detection and tracking performance when applied to 
targets with strong maneuverability. In this paper, an LSTM network is innovatively 
incorporated into the recursive accumulation process of the DP-TBD algorithm. The 
powerful online learning ability of LSTM is used to estimate the motion state of the 
potential target so that the state transition set in the recursive accumulation step of 
the DP-TBD algorithm can be adjusted according to the changes exhibited by the 
actual motion state of the target.

The advantages of LSTM are that it not only has the ability to process long-term 
information but also does not have too many restrictions, so it can obtain a better 
tracking effect for a maneuvering target. The designed network structure is shown in 
Fig. 1 below:

As shown in Fig. 1, an LSTM network with two stacked layers is used to complete 
the estimation process from the target observation data yk to the target motion state 
xk , and its hidden layers are represented by memory units CP

k  . The loss function of the 
network parameter optimization step is defined as follows:

Fig. 1 Schematic diagram of the designed LSTM network structure
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After obtaining the predicted result, formula (14) of the aforementioned state 
transition set is adjusted as follows:

where v̇xk , v̇yk all come from the target states ẋk predicted by the LSTM network.
The main steps of the improved DP-TBD algorithm are as follows.

1. Initialization. When k = 1,

2. Recursive accumulation. When 2 ≤ k ≤ K  , for the state,

A. A state prediction is acquired, which can be obtained through the above LSTM 
network:

Substituting v̇xk , v̇yk into Eq. (21), the state transition set ϕ̇(xk) adjusted by the pre-
diction is obtained.

B. Recursive accumulation is performed:

The state transition set ϕ̇(xk) is determined by step A above.

3) Termination of judgment.

4) Track retracing. Letting k = K − 1, ..., 1 , we have

(20)L(x, x̂, θp) =

T
∑

i=1

(xi − x̂i
∣

∣yi−1 ),

(21)ϕ(xk) ∈ {[pxk + v̇xk · (1− δx), pyk + v̇yk · (1− δy)]; δx, δy = −2,−1, 0, 1},

(22)I1(x1) = log p(z1|x1),

(23)S1(x1) = 0,

(24)x1 = (px1, vx1, ax1, py1, vy1, ay1),

(25)ẋk = (ṗxk , v̇xk , ȧxk , ṗyk , v̇yk , ȧyk),

(26)Ik(xk) = max
xk−1∈ϕ(xk )

[Ik−1(xk−1)+ log p(xk |xk−1)] + log p(zk |xk),

(27)Sk(xk) = arg max
xk−1∈ϕ(xk )

[Ik−1(xk−1)+ log p(xk |xk−1)],

(28)s.t.Ik(
⌢
xK ) > VK ,

(29)
⌢
xK = arg max

xK∈R
Ik(xk),

(30)
⌢

Xk = Sk+1(k + 1),
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5  Experiments
In this section, to demonstrated the tracking performance of the designed LSTM-DP-
TBD algorithm for nonlinear small and weak targets, we use CS model simulation 
data and compare the tracking performance of our algorithm with that of the tradi-
tional DP-TBD algorithm for nonlinear dim targets under a series of different SNR 
conditions.

The current statistical model (CS) is a typical nonlinear motion model that can 
describe the motion state of a maneuvering target. It is able to effectively simulate the 
state change exhibited by the target when a maneuvering mutation occurs. The radar 
sampling period is set as T, and the state equation of the CS model is

where F is the state transition matrix of the target, which is expressed as

where 03×3 is a zero matrix with three rows and three columns, and the expression of � 
is as follows:

where α is the maneuvering frequency, and the maneuverability reflected by the CS 
model varies with its value.

In Eq. (31), a is the mean acceleration value. uk represents state noise that follows a 
normal distribution uk ∼ N (0, σ 2

u ) . H = [H1 H2 ]
T  ; H1 and H2 are expressed as:

The target observation equation is

where the Y branch represents the case with the target at frame k, and the N branch rep-
resents the case without the target at frame k. Ak is the target amplitude; vk represents 
observation noise and follows a normal distribution vk ∼ N (0, σ 2

v ).
The size of the radar observation area is set as Nx × Ny = 100× 100 , the resolution 

unit is △ x =△ y = 2 , the total frame length is K = 10 , and the radar scanning time 
interval is T = 1.2s.

By using this model for simulation, first, the training dataset needed to train the 
aforementioned LSTM network can be obtained. Specifically, a random observation 
target is generated within a certain observation time frame, and the initial state is 
randomly set within a certain range. According to the target state equation of the 

(31)xk = F(xk+1)+ aH + uk ,

(32)Fk =

[

� 03×3

03×3 �

]

,

(33)� =





1 T (e−αT + αT − 1)/α2

0 1 (−e−αT + 1)/α

0 0 e−αT



,

(34)H1 = H2 =





(1− αT + α2T 2/2− e−αT )/α2

(−1+ αT + e−αT )/α

1− e−αT



,

(35)zk =

{

Ak + vk , Y
vk , N

,
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model, a target state sequence with 60 random paths is generated, and a correspond-
ing observation sequence is generated according to the target observation equation. 
The dimensions of the target state are the six dimensions mentioned above.

In the implementation of the LSTM network, a two-layer stacked LSTM network is 
adopted, and the number of hidden states in each layer is set to 256. To prevent over-
fitting, each LSTM layer is followed by a dropout layer with a ratio of 0.3. A 1-to-1 
network structure is chosen; that is, 1 data point is input to obtain the next predicted 
data point. After this, 796,166 network parameters are set, and the best values of these 
parameters need to be found through training. The training loss function is the afore-
mentioned loss function, and the adaptive moment estimation (Adam) optimization 
algorithm is adopted. The training dataset generated above is used to train and test the 
LSTM network.

Second, the validation data used to verify the performance of the algorithm can be 
obtained. The initial state of the target is set to x1 = (8, 3, 0, 5, 2, 0)T . The target is set to 
execute a strong steering maneuver in the observation area.

In this paper, the designed LSTM-DP-TBD algorithm is compared with the traditional 
DP-TBD algorithm in terms of the following aspects. (1) The amplitude distributions 
of the value function after K accumulation frames are compared to show the difference 
between the value function aggregation effects of the two algorithms. (2) The target 
detection probability Pd and tracking probability Pt are compared. Pd is defined as the 
probability of detecting the target after K accumulation frames, allowing for an error of 
one resolution unit. After detecting the target, Pt is defined as the probability that the 
estimated state obtained after track recovery is within one resolution unit of the real 
state in each frame. These probabilities are used to evaluate the detection and tracking 
performance of the two algorithms.

Firstly, simulation experiment 1 is first carried out: when SNR = 10  dB is given, the 
value function distributions of the two DP-TBD algorithms are compared.

The value function distribution based on the traditional posterior probability value 
function of the DP-TBD algorithm is shown in Fig.  2, the preset speed range is 3–0 
times, and K frames are accumulated. As can be seen from the figure, the traditional DP-
TBD algorithm produces an obvious agglomeration effect, which brings difficulties to 
the subsequent termination decision steps.

The value function distribution produced by the proposed LSTM-DP-TBD algorithm 
after K accumulation frames is shown in Fig. 3. It can be seen from the figure that the 
new LSTM-DP-TBD algorithm is able to effectively suppress the agglomeration effect, 
and the value function obtained after K accumulation frames is highlighted.

Secondly, using the proposed algorithm LSTM-DP-TBD, the traditional DP-TBD algo-
rithm and the algorithm in reference [19], named D-DP-TBD, simulation experiment 2 
is carried out to compare the target detection probabilities Pd and tracking probabilities 
Pt under a varying SNR. The results are obtained by conducting 2,000 Monte Carlo runs 
during the experiment.

As shown in Fig. 4, the detection probability Pd curves produced by the DP-TBD, 
D-DP-TBD and LSTM-DP-TBD algorithm as the SNR changes are compared. As 
can be seen from the figure, when the SNR is 2 dB, the Pd value of DP-TBD is close 
to 0, while that of D-DP-TBD is close to 0.1, and that of LSTM-DP-TBD is close to 
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0.2. when the SNR is 1 dB, the Pd values of DP-TBD and D-DP-TBD are both close 
to 0, while that of LSTM-DP-TBD is close to 0.1. This shows that LSTM-DP-TBD 
algorithm has better performance for low SNR signal detection. When the SNR is 
greater than 2 dB, the Pd values of all methods begin to rise. When the SNR is higher 
than 5  dB, the Pd of the LSTM-DP-TBD algorithm rises over 0.9, while that of the 

Fig. 2 Amplitude distribution diagram of the traditional DP-TBD algorithm value function when the SNR is 
10 dB

Fig. 3 Amplitude distribution diagram of the LSTM-DP-TBD algorithm value function when the SNR is 10 dB
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D-DP-TBD algorithm tends to rise over 0.9 when the SNR is higher than 6 dB, and 
that of the DP-TBD algorithm tends to rise to 0.7 when the SNR is higher than 9 dB. 
Therefore, the detection performance of the LSTM-DP-TBD algorithm is obviously 
better than that of the compared algorithms.

As shown in Fig. 5, the tracking probability Pt curves produced by the DP-TBD, D-DP-
TBD and LSTM-DP-TBD algorithms as the SNR changes are compared. As can be seen 
from the figure, when the SNR is higher than 5 dB, the Pt of the LSTM-DP-TBD algorithm 
rises over 0.9, while that of the D-DP-TBD algorithm tends to rise over 0.9 when the SNR is 
higher than 6 dB, and that of the DP-TBD algorithm tends to rise to 0.65 when the SNR is 
higher than 9 dB. Therefore, the tracking performance of the LSTM-DP-TBD algorithm is 
better than that of the compared algorithms.

Fig. 4 The detection probability curves produced by the DP-TBD algorithms as the SNR changes

Fig. 5 The track probability curves produced by the DP-TBD algorithms as the SNR changes
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6  Conclusion
In this paper, aiming at the problem that the state transition set used by the tradi-
tional DP-TBD algorithm in the recursive accumulation step is set as a fixed speed 
range, which leads to an insufficient tracking ability for small and weak targets with 
strong maneuvers, an LSTM network is applied to the DP-TBD algorithm, and a new 
LSTM-DP-TBD algorithm is proposed. Thus, the state transition set can be adjusted 
with the changes exhibited by the target state. The detection and tracking capability 
of the network for maneuvering targets is enhanced. The simulation results show that 
the proposed algorithm is superior in terms of suppressing the agglomeration effect 
and detecting and tracking. However, the LSTM-DP-TBD algorithm is computation-
ally expensive, and determining how to apply it in practice requires further research.
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