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1 Introduction
In complex urban environments, accurate estimation of both the state and its uncer-
tainty is essential for ensuring the safe navigation of vehicles. The dynamic and unpre-
dictable nature of these environments creates numerous sources of errors that can affect 
measurements from different sensors. For instance, Global Navigation Satellite System 
(GNSS) measurements are susceptible to bias error from multipath and non-line-of-
sight signals in environments with tall structures [1]. Similarly, visual odometry meas-
urements are influenced by dynamic objects and changes in lighting conditions  [2]. 
Failing to account for these errors can lead to inaccurate or even misleading estimates of 
the state and uncertainty, which can have serious consequences for safety.

To address these challenges inherent in urban navigation, many systems rely on multi-
sensor integration [3, 4]. These systems fuse data from a diverse array of complementary 
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sensors, thereby mitigating individual sensor limitations and leading to a more reliable 
estimate of the state. However, integrating multi-sensor data presents its own set of 
challenges, such as the need to mitigate large errors in sensor measurements and accom-
modate diverse noise sources [5, 6]. These diverse noise sources contribute to multiple 
modes of uncertainty that may yield multiple plausible solutions for the state. Hence, 
algorithms for multi-sensor state estimation must have the dual capability of being 
robust to large errors while accurately capturing the underlying multi-modal uncertainty.

Various techniques have been proposed to account for large errors and incorporate 
measurements from multiple sensors, such as optimization-based methods and robust 
Bayesian filters. Optimization-based methods, such as factor graphs with robust cost 
functions  [7–10], are capable of handling nonlinearities and uncertainties by optimiz-
ing over a large state space consisting of multiple states and uncertainty parameters. 
However, these approaches are computationally demanding due to the size of the opti-
mization space, and require significant parameter tuning to achieve good estimation 
performance  [11]. Moreover, state uncertainty is often not assessed in optimization-
based approaches due to the increased computational demands, which limits their utility 
in scenarios where reliable localization is crucial.

On the other hand, Bayesian filters—such as Extended Kalman filters (EKFs) and 
Unscented Kalman filters (UKFs)—estimate the probability distribution of the state 
based on the history of measurements  [12]. These filters utilize Bayesian statistics to 
track both the state estimate and its associated uncertainty by combining prior state 
information, vehicle dynamics, and sensor measurements across time. For exam-
ple, EKFs have been used to provide localization estimates by integrating stereo cam-
era measurements and Real-Time Kinematic GPS (RTK-GPS)  [13]. Another work  [14] 
proposed a similar method by fusing GPS, INS, a monovision camera, and a 3D carto-
graphical model. An adaptive EKF framework in [15] used Google Street View images 
with GPS for state estimation. Outlier-robust versions of these filters use strategies such 
as robust cost functions, statistical tests, minimax optimization, or heavy-tailed priors 
to handle outliers and model complex noise distributions. For example, robust UKFs 
were explored in  [16] for tight integration of multiple GPS receivers with a monocu-
lar camera and an IMU, and in [17] for vehicle geo-localization with a GPS receiver, a 
video camera, and a 3D city model. While these filters are computationally efficient and 
easy to implement, they require careful parameter tuning based on the application to 
achieve good state and uncertainty estimation performance. This can become challeng-
ing in complex systems that involve multiple sensor measurements and their associated 
parameters  [18]. Moreover, these filters rely on a Gaussian distribution to model the 
state probability distribution, which restricts their capacity to adequately account for the 
multi-modal uncertainty that can arise due to sensor measurements in complex urban 
environments.

Particle filter, another type of Bayesian filter, captures multi-modal uncertainty over 
the state by tracking the distribution as a weighted collection of points in the state 
space [19]. In a recent work [20], a particle filtering framework was proposed for fus-
ing GNSS with camera images and for characterizing the uncertainty in localization 
from sensor fusion. Similarly, in  [21], images from a monocular camera were fused 
with low-cost GPS sensors and a map to provide high-accuracy localization. Variants 
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of particle filters have been explored for multi-modal sensor fusion such as decentral-
ized filters [22] and differentiable filters [23]. However, particle filters are often chal-
lenged by the “curse of dimensionality”—or exponentially increasing computational 
complexity with higher-dimensional state spaces—leading to prohibitive computa-
tional costs [24].

Recent literature has proposed two other promising approaches to efficiently capture 
multi-modal uncertainty over the state: employing a combination of filters, also known 
as Interacting Multiple Model(IMM) filters   [25], and modeling the distribution as a 
mixture of Gaussian distributions [26]. For example, IMM filters have been explored for 
providing positioning by integrating low-cost GPS and in-vehicle sensors while adapt-
ing the vehicle model to various driving conditions  [27]. An IMM filter was proposed 
in [28] to provide fault-tolerant positioning by integrating IMU with wheel encoders in 
GPS-degraded environments for mobile robots. Self-adaptive Gaussian mixture models 
were used in [29] to model the effects of non-Gaussian GNSS outliers. These approaches 
have shown an improved ability in capturing real-world uncertainty in a variety of robot-
ics and navigation applications. However, these techniques also have limitations, such as 
model complexity and difficulty in parameter selection.

In addition to conventional approaches, various studies have introduced data-driven 
adaptations of filtering algorithms by incorporating machine learning and deep learning 
techniques. To enhance localization accuracy during GNSS outages, an adaptive Kalman 
filter that incorporates neural network-derived position and velocity measurements was 
proposed in [30]. A fully differentiable pipeline to train an Extended Kalman Filter (EKF) 
for visual-inertial odometry was established in  [31]. Similarly, other researchers have 
explored neural network-based methodologies for modeling diverse parameters within 
filtering techniques [23, 32–34]. These methods use existing data to automatically infer 
good parameters for improving the accuracy of localization. However, the lack of trans-
parency within these methods poses a challenge, as relying on parameters fine-tuned for 
accuracy on a limited dataset may not adequately account for uncertainty in the general 
case.

The limitations of existing robust state estimation methods in effectively capturing 
uncertainty highlight the need for developing techniques to address these challenges. In 
this work, we propose a novel robust Bayesian filtering framework that uses Rao–Black-
wellization to effectively capture multi-modal uncertainty while maintaining the accu-
racy and error resilience of existing robust Bayesian filtering approaches. Our approach 
enhances the robust EKF by tracking multiple points where the EKF and its robust cost 
function are linearized. By employing a particle filter to effectively track these lineariza-
tion points, our framework can overcome the limitations of the linearization and Gauss-
ian assumptions in the EKF, capturing the multi-modal uncertainty in a computationally 
efficient manner.

We use Rao–Blackwellization [35] to integrate the robust EKF and the particle filter 
into a single robust Bayesian filter that estimates a multi-modal probability distribution 
of the state. This facilitates the reuse of the standard filtering components in the EKF 
for efficient implementation [36]. We then apply this filter to a multi-sensor setup com-
prising of camera, GNSS, and attitude and heading reference system (AHRS), where the 
sensor modules are developed based on our previous work  [37]. However, tuning the 
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parameters for our complex multi-sensor setup is challenging. To address this, we devise 
a gradient descent-based optimization strategy for efficient parameter tuning.

Next, we use the estimated multi-modal uncertainty to develop an approach for com-
puting position error bounds along the lateral, longitudinal, and vertical directions of 
motion. These bounds enable us to assess the positioning performance for safe operation 
in urban environments [38]. Our approach is implemented in PyTorch [39] to leverage 
parallelization for fast execution and automatic differentiation capabilities.

Our strategy for using Rao–Blackwellization to improve the estimation of state and 
uncertainty shares similarities with  [40, 41] and distinguishes itself from the conven-
tional Rao-Blackwellized particle filter in several key aspects. In traditional applications 
of Rao–Blackwellization, the overall state space of interest is partitioned into multiple 
substates, where each substate is tracked with a different filter [26, 42, 43]. Our approach, 
on the other hand, introduces an additional term—the linearization point—and employs 
Rao–Blackwellization to factor it separately from the primary state of interest. Moreo-
ver, our approach emphasizes multi-sensor and robust filtering settings and focuses on 
characterizing multi-modal uncertainty to compute position error bounds, whereas the 
previous approaches do not address these aspects.

The contributions of this work are summarized as follows:

• We develop a novel Bayesian filtering framework that captures multi-modal uncer-
tainty while accommodating diverse sensor measurements and possible outliers. Our 
approach tracks a probability distribution of the points for linearizing the dynamics, 
observation, and robust cost models, effectively accounting for errors from approxi-
mation and diverse noise sources.

• Drawing on recent advancements in differentiable filter design research  [23, 44], 
we present a gradient descent-based optimization strategy for tuning the parame-
ters in our filter. The optimization objective is expressed as a total loss function that 
includes both measurement and position loss terms.

• We present a method for estimating position error bounds along the lateral, longi-
tudinal, and vertical directions of the vehicle’s motion. Our proposed approach uses 
the multi-modal probability distribution obtained from our hybrid filter and explic-
itly accounts for uncertainties in both position and heading estimation.

• We validate our approach using real-world data from Hong Kong [45], a dense urban 
environment, and demonstrate its effectiveness in achieving improved reliability in 
the position error bounds, while maintaining competitive state estimation perfor-
mance compared to existing methods. Moreover, we demonstrate that the computa-
tional requirements of our approach are comparable to existing methods, making it a 
practical choice for state estimation in urban environments.

The rest of the paper is structured as follows: in Sect. 2, we present background on 
robust Bayesian filters. Next, we derive our proposed robust filter for multi-modal 
uncertainty quantification in Sect.  3. Section  4 outlines the dynamics and the sen-
sor modules in our multi-sensor setup. We describe the estimation of position error 
bounds from the captured multi-modal uncertainty in Sect.  5. The loss functions 
and optimization strategy for tuning the filter parameters are presented in Sect.  6. 
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Experimental results and discussions for the performance evaluation of our approach 
are provided in Sect. 7. Finally, we conclude the paper with Sect. 8.

2  Background on robust Bayesian filters
We consider a nonlinear discrete-time system with a time-invariant transition func-
tion f and a time-varying measurement function ht given as follows:

where xt is the system state and mt is the measurement at time t. The process noise wt 
and the measurement noise νt are zero mean with covariance matrix Qt and Rt , respec-
tively. The time-varying nature of ht accommodates an asynchronous measurement set-
ting, where measurements from different sensors are obtained at distinct time instances 
due to varying sampling rates.

The objective of Bayesian filtering is to estimate the probability distribution of the 
state vector xt given the sequence of measurement vectors m1:t = {m1, . . . ,mt} and 
the prior probability estimate p(xt−1|mt−1) . Using Bayes’ rule and the law of total 
probability, the posterior probability of the state conditioned on the measurements is 
given as

where p(mt |xt) is the likelihood function representing the probability of observing 
measurement mt from state xt . The term p(xt |xt−1) represents the transition probability 
from state xt−1 to xt.

Conventional approaches to Bayesian filtering approximate the probability distribu-
tion p(xt |mt) as a Gaussian distribution for efficiency and tractability. For example, the 
extended Kalman filter (EKF) uses a linearized version of the transition and measure-
ment functions, and the unscented Kalman filter (UKF) uses nonlinear function evalu-
ations at preselected sigma points to model p(xt |mt) [46]. Using these approximations, 
p(xt |mt) can be efficiently estimated from p(xt−1|mt−1) and the measurements through 
Eq.  3 and matrix operations. This process is commonly broken down into two steps, 
namely the predict and the update step [47]. However, the estimation accuracy of these 
approaches can substantially degrade when the process and measurement noise signifi-
cantly deviates from the modeled Gaussian distribution, which is a common occurrence 
when using sensors in real-world settings [48–50].

To improve the accuracy in non-Gaussian settings, we can replace the Gaussian likeli-
hood used in conventional Bayesian filtering approaches with a robust cost function-
based likelihood

where rt = mt − ht(xt) is the residual, and ρ(rt) is the robust cost function, such as 
Huber loss or Tukey biweight loss [51]. The robust cost function reweights the influence 

(1)xt = f (xt−1)+ wt , wt ∼ N (0,Qt),

(2)mt = ht(xt)+ νt , νt ∼ N (0,Rt),

(3)p(xt |m1:t) ∝ p(mt |xt) p(xt |xt−1)p(xt−1|m1:t−1)dxt−1,

(4)p(mt |xt) ∝ exp (−ρ(rt)),
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of measurements based on their residuals, thereby reducing the impact of outliers and 
unmodeled errors.

The robust cost-based likelihood can be integrated into the EKF and UKF frame-
works by modifying the update step [52–55]. A common method to do this involves 
reweighting the measurement covariance matrices Rt based on the first-order approx-
imation of the cost function ψ(rt) , also known as the influence function,

The measurement covariance matrix Rt is then reweighted using ψ(rt) to obtain a robust 
covariance matrix R̃t:

The robust measurement covariance matrix R̃t is then used in the update step of the 
EKF and UKF to compute the Kalman gain and update the estimate of the state and 
covariance.

The performance of robust Bayesian filtering depends on the careful selection of 
a robust cost function and its associated parameters, which can be challenging to 
identify as they depend on the sensor configuration and environmental characteris-
tics [56]. Furthermore, the approximations employed by these filters to enhance com-
putational efficiency—such as linearizing in transition, measurements, and robust 
cost—can also introduce inaccuracies in both the estimated state and the quantifica-
tion of uncertainty. Therefore, it is important to account for the impacts of these error 
sources to effectively represent the uncertainty within the filtering framework.

3  Proposed robust Bayesian filter with multi‑modal uncertainty
In the context of multi-sensor navigation in urban environments, the presence of 
diverse and dynamic noise can cause significant deviation from the typically assumed 
Gaussian behavior in the sensor measurements. Instead, the measurements may 
exhibit multi-modal behavior, which then propagates to a multi-modal uncertainty 
in the state estimation process  [29, 49]. While the robust Bayesian filters discussed 
in the previous section can improve state estimation accuracy by relying on a sin-
gle Gaussian distribution to represent the state probability distribution, they are ill-
equipped to effectively capture the underlying multi-modal uncertainty.

To address this challenge, we propose a robust Bayesian filter that incorporates 
multi-modal uncertainty modeling into the estimation process. Our approach extends 
the standard Bayesian filtering framework by explicitly incorporating a linearization 
point, denoted as xlt , at each timestep t. The linearization point serves as a reference 
for linearizing the transition and measurement models, as well as for computing the 
influence function. The overall approach is illustrated in Fig. 1

We first rewrite Eq. 3 to estimate the posterior probability of the state xt given the 
linearization point xlt and the measurements m1:t

(5)ψ(rt) =
dρ(r)

dr

∣∣∣∣
r=rt

.

(6)R̃t = ψ(rt)
−1Rt .
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In this equation, the probability terms are computed in a manner analogous to the robust 
EKF approach described earlier in Sec. 2, with the key distinction that the linearization 
point xlt is used for linearizing the equations.

In order to incorporate the uncertainty in the selection of an appropriate linearization 
point xlt , we model a separate probability distribution. The corresponding filtering equa-
tion is expressed as

This equation has a similar form to Eq. 3 and is used to update the linearization point xlt 
based on available measurements mt . To effectively model the multi-modal uncertainty, 
we employ a particle filter to estimate p(xlt |m1:t) . The filter uses a set of weighted parti-
cles to represent the probability distribution, where each particle is a linearization point. 
First, we use the prior distribution p(xlt−1|m1:t−1) to generate a set of prediction parti-
cles given by the state transition model

where wl
t is the process noise for the linearization point at time t with covariance matrix 

Ql
t . For simplicity, we set the covariance Ql

t = Qt in this paper. However, we note that the 
choice of Qt can have a significant impact on the estimation accuracy and robustness. 
Future work can consider exploring the different choices of Ql

t as a separate term—such 
as by taking advantage of the well-established methods in particle filter literature and the 
use of proposal distributions [57, 58]—to improve the estimation performance.

(7)p(xt |x
l
t ,m1:t) ∝ p(mt |x

l
t , xt)

∫
p(xt |x

l
t , xt−1)p(xt−1|x

l
t ,m1:t−1)dxt−1.

(8)p(xlt |m1:t) ∝ p(mt |x
l
t)

∫
p(xlt |x

l
t−1)p(x

l
t−1|m1:t−1)dx

l
t−1.

(9)xlt = f (xlt−1)+ wl
t , wl

t ∼ N (0,Ql
t),

Fig. 1 Architecture of the proposed robust Bayesian filter. The filter takes a prior probability distribution 
of the linearization points and state and uses a system transition model and measurement model to 
estimate the posterior probability distribution of the state. The linearization point probability distribution 
is represented as weighted samples, and the state probability distribution is represented by a Gaussian 
distribution tracked by the underlying robust Kalman filter. The filter first applies the prediction step to 
each linearization point in the prior distribution. Using this predicted point for linearizing the robust filter 
system transition, measurement and cost models, we then apply the predict and update steps in parallel to 
update the state probability distribution for each linearization point. Based on the updated state probability 
distribution, the linearization point samples are refined and their weights are updated using the available 
measurements. Finally, the weighted linearization point samples are resampled and combined with the 
updated state probability distribution to represent the posterior state probability distribution
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Based on the linearization point xlt corresponding to each particle, we can estimate the 
posterior state probability distribution p(xt |xlt ,m1:t) using the Bayesian filtering expres-
sion described in Eq. 8, while keeping the linearization point xlt unchanged. However, 
due to the randomness in the particle filter, tracking the linearization point in this man-
ner can result in precision errors, particularly when the number of particles is low. To 
address this issue and improve the accuracy of the estimation process, we propose a two-
step approach. First, we estimate p(xt |xlt ,m1:t) using the linearization point xlt . Then, we 
refine the value of xlt by setting it to the mean of the posterior distribution p(xt |xlt ,m1:t) . 
This refinement step ensures that the linearization point is more closely aligned with the 
state probability distribution, improving the accuracy of the estimation.

In the second step of the particle filter, we update the weight of each prediction par-
ticle based on the available measurements mt and likelihood p(mt |x

l
t) . We model the 

likelihood as a normal distribution with mean based on the nonlinear measurement 
model ht(·) and covariance Rl

t

To improve estimation performance, appropriate values of Rl
t can be assigned based on 

the application. By modeling Rl
t separately from Rt , we can incentivize tracking distinct 

linearization points in high uncertainty scenarios without compromising on the estima-
tion accuracy.

Finally, we perform a resampling step on the set of linearization points based on the 
updated weights to improve our estimate of the posterior distribution p(xlt |m1:t) . We 
use the soft resampling strategy proposed in [59] to maintain differentiability in the 
parameter optimization.

Algorithm 1: Proposed robust Bayesian filter
Input: Initial set of linearization points xl

0,i, i = 1, . . . , N , state estimates
x0,i, k = 1, . . . , N ; system transition model f(·); measurement model
h(·); measurement data m1:T ; covariance matrices Qt, Q

l
t, Rt, R

l
t

Output: Estimated posterior probability distribution p(xt|m1:T )
1 Initialize particle weights w0,i = 1/N , i = 1, . . . , N ; state covariance matrices

Σ0,i, i = 1, . . . , N
2 for t = 1 to T do
3 for i = 1 to N do
4 Generate prediction particles xl

t,i based on Eq. 9;
5 Update state xt,i and covariance Σt,i using robust EKF and

linearization point xl
t,i

6 Refine the linearization point xl
t,i ← xt,i;

7 Compute weights wt,i ∝ wt−1,i · p(mt|xl
t,i);

8 end
9 Resample particles to obtain a new set of particles xl

t,i and weights wt,i;
10 Normalize the weights wt,i;
11 Estimate the state probability distribution

p(xt|m1:t) ≈
∑N

i=1 wt,i · p(xt|xl
t,i,m1:t) using Eq. 11;

12 end

(10)p(mt |x
l
t) = N (mt |ht(x

l
t),R

l
t)
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To estimate the overall probability distribution of the state p(xt |mt) , we combine 
the estimates from the particle filter and the robust EKF using the law of total prob-
ability and the Rao-Blackwell theorem

which allows us to estimate p(xt |m1:t) by conditioning on the linearization point xlt . This 
approach has a smaller estimation variance than Eq. 3 based on the Rao-Blackwell theo-
rem, allowing us to better capture the uncertainty in the estimate of the state xt . The 
overall algorithm is outlined in Algorithm 1.

The use of a particle filter allows us to capture multiple modes in the distribution of 
the linearization point, which in turn enables us to better represent the multi-modal 
uncertainty in state estimation. However, particle filters are often challenged by the 
“curse of dimensionality” when the state space is large. To address this challenge, we 
restrict the domain of the linearization point to the position domain, reducing the 
dimensionality of the particle filter state space. This enables us to maintain computa-
tional efficiency while modeling the uncertainty inherent in the system.

4  Multi‑sensor state estimation
In this section, we describe how we apply the approach described in the previous 
sections for multi-sensor state and uncertainty estimation. Figure  2 illustrates the 
multi-sensor setup and the individual sensor modules. The camera module captures 
an image at each timestep, and utilizes robust features and depth estimated using 
deep neural networks to assess the motion. The GNSS module combines pseudorange 
measurements from multiple satellite constellations and a base station. The attitude 
and heading reference system (AHRS) provides the orientation and angular velocity 
measurements. Our proposed filter integrates all of these measurements to estimate 
the state and uncertainty. Further details regarding the filter and each of the sensor 
modules are provided in the subsequent sections.

(11)p(xt |m1:t) =

∫
p(xlt |m1:t)p(xt |x

l
t ,m1:t)dx

l
t ,

Fig. 2 Sensor modules in our multi-sensor setup. The setup includes a camera module with depth 
estimation and feature detection component, b GNSS module that combines pseudorange measurements 
from multiple satellite constellations and a nearby base station, and c AHRS module that provides orientation 
and angular velocity measurements. The camera module outputs velocity and landmark measurements, 
which are fused with the GNSS and AHRS measurements by our filter for state estimation
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4.1  State space and dynamics model

The state vector xt =
[
pt vt qt ω̃t

]
 consists of position pt , velocity vt , orientation quater-

nion qt and the bias in angular velocity measurements ω̃t at time t. We model the vehi-
cle motion as a constant velocity model using the angular velocity ωt obtained from the 
AHRS:

where �t is the time step between consecutive measurements, and q̇(ω) is the quater-
nion derivative corresponding to the angular velocity ω . To avoid numerical stability 
issues, we re-normalize the quaternion qt to a unit quaternion each time we update it 
based on the dynamics. The process noise covariance matrix Qt is given as

where Qp
t  , Qv

t  , and Qω̃
t  denote the diagonal process noise covariance matrices for position, 

velocity, and angular velocity bias, respectively. We construct the process noise covari-
ance for the quaternion Qq

t  by linearizing the Euler-to-quaternion transformation about 
qt , which enables us to incorporate correlation across terms and obtain better uncer-
tainty characterization in the dynamics. To compute Qq

t  , we first obtain the Jacobian J qt  
of the Euler-to-quaternion transformation. We then use the diagonal 3× 3 process noise 
covariance matrix Q̃q

t  in the Euler space, and apply it to J qt  as

To account for the varied acquisition rates of sensors, we utilize sequential or asynchro-
nous updates within our filter [60, 61]. Specifically, the state probability distribution is 
updated incrementally as the measurements arrive, with different update steps executed 
for the measurements. This approach both improves computational efficiency and ena-
bles modularity, allowing easy addition or removal of the different sensor components.

In the following sections, we provide a detailed description of each sensor module and 
the corresponding filter observation model.

4.2  Camera module

Our visual odometry pipeline utilizes consecutive image frames {It−1, It} from an 
onboard monocular camera to estimate the vehicle motion. The choice of a monocu-
lar camera is motivated by its advantages in terms of affordability, compactness, and 
versatility over other visual sensors  [62]. While traditional techniques based on fea-
ture-matching from monocular images can estimate motion up to an unknown scale 
factor  [63, 64], we leverage recent research on visual odometry to develop a more 
accurate approach. Our pipeline incorporates neural networks to both detect features 
and estimate their associated depth from camera images, which allows us to obtain 

(12)f (xt−1) =



I3×3 �tI3×3 04×4 03×3

03×3 I3×3 04×4 03×3

04×4 04×4 I4×4 03×3

04×4 04×4 04×4 I3×3


 xt−1 +




03×3

03×3

�tq̇(ωt − ω̃t)

03×3


 ,

(13)Qt =




Q
p
t 03×3 04×4 03×3

03×3 Qv
t 04×4 03×3

03×3 03×3 Q
q
t 03×3

03×3 03×3 04×4 Qω̃
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scale-consistent and robust visual odometry. This strategy, which combines monoc-
ular depth estimates with keypoints detected on the image, has been previously 
explored in [65, 66] and has been shown to outperform both geometry-based and 
learning-based methods. Throughout the paper, we refer to this pipeline as Monocu-
lar-Depth aided Visual Odometry (MD-VO).

MD-VO relies on keypoint detection and depth estimation to construct the obser-
vation model.

Keypoint detection In the first step, we detect a set of keypoints kt = {k1t , . . . , k
M
t } 

and descriptors dt = {d1t , . . . , d
M
t } from the input image It where M is the total num-

ber of detected features. Keypoints are the distinctive local regions in the image, 
while descriptors are vectors that represent these regions with invariance to motion 
and lighting deformations. However, real-world camera images are often subject to 
significant variations over time, leading to spurious feature matching and erroneous 
motion estimation  [2]. To mitigate the effects of spurious feature-matching, we use 
the neural network-based SuperPoint detector [67], which has been optimized using 
real-world images. This detector is designed to identify keypoints and descriptors that 
are robust to real-world deformations and suitable for multiple-view geometry prob-
lems. By utilizing these features, we improve our feature extraction step and improve 
positioning performance in urban environments.

Next, we match the descriptor set dt with the descriptor sets {dt−1, . . . ,dt−TSP } 
from the previous TSP = 10 frames. We rank the matches based on the sum of closest 
matching scores ηiSP calculated as:

We apply a threshold τSP to the scores ηiSP to select the 50 best-performing keypoints 
for subsequent motion estimation. This strategy ensures that the selected features per-
sist in multiple frames, leading to more robust feature detection. To further enhance the 
robustness of subsequent motion estimation against outliers, we employ Random Sam-
ple Consensus (RANSAC) algorithm [68] to identify and remove large outliers.

For the remainder of this section, we will use the notation kt to refer to the M′ best 
keypoints identified using the aforementioned method. Additionally, we will use kt−1 
to denote the matching keypoints (i.e., the minimizers of ηiSP(t − 1) ) from the previ-
ous frame.

Depth Estimation In the depth estimation step, we estimate the 3D depth IDt−1(k) 
associated with every pixel k in frame It−1 from the previous time t − 1 . Projecting 2D 
image coordinates to 3D is an ill-posed and inherently ambiguous task. However, pre-
vious research has shown that this task can be effectively accomplished by leveraging 
patterns in the appearance of objects [69, 70].

(15)ηiSP(t
′) =min

j
�dit − d

j
t ′ �

(16)ηiSP =

t−1∑

t ′=t−TSP

ηiSP(t
′).



Page 12 of 30Gupta et al. EURASIP Journal on Advances in Signal Processing        (2023) 2023:100 

In this work, we utilize pre-trained models from MonoVO [70] to estimate the depth. 
To reduce computation requirements, we initiate depth calculation from the previous 
image acquisition timestep, as we only require the 3D locations at the previous time.

Next, we estimate the 3D coordinates k̃t−1 that correspond to the 2D keypoints kt−1 as

where Kcam is the matrix containing camera intrinsic parameters. Using these estimated 
3D coordinates, we construct observation models based on the current frame.

To construct the observation model for the camera module, we consider the sensor 
measurement mt based on the current frame 2D keypoints kt and an estimated body 
frame velocity ṽt . The measurement vector mt is given as

here kt is rearranged in a column-major fashion to obtain a single vector, which makes 
it easier to use within the filter. We obtain the velocity ṽt from the matched 3D-2D key-
points using perspective-n-point algorithms [71]. We enforce ṽt to be nonzero only along 
the axis that aligns with the forward direction of the vehicle’s motion. Our empirical 
evaluations indicate that adding this velocity measurement to the overall measurement 
vector helps regularize the filter’s estimate of velocity and improves the overall stability 
of the filter. Based on the estimated 3D coordinates k̃t−1 of the previous frame keypoints 
kt−1 , we model the measurement mt as a function of both the vehicle’s state xt and an 
estimate of the keyframe’s position p̃t−1 and orientation q̃t−1

where R(qt) and R(q̃t−1) are rotation matrices corresponding to the orientations qt and 
q̃t−1 , respectively, and ζ is the scaling parameter. The measurement noise matrix Rt cor-
responding to mt is set as a diagonal matrix with identical values for each keypoint. In 
addition, we assign small values to the diagonal terms corresponding to the zero-val-
ued entries in ṽt . This is because the vehicle can be assumed to have negligible or zero 
motion along non-forward directions with a high level of certainty. By assigning smaller 
values to these terms, the filter is incentivized to model the vehicle’s motion primarily 
along the forward direction.

We estimate the keyframe’s position p̃t−1 and orientation q̃t−1 separately from the 
vehicle’s state xt by running a concurrent EKF with identical dynamics and sensor mod-
ules, except for a modification to the camera module. In the camera module, we set the 

(17)k̃t−1 =

[
k̃1t−1, . . . , k̃

M′

t−1

]⊤

(18)k̃ it−1 = K−1
cam

[
IDt−1(k

i
t−1)k

i
t−1

IDt−1(k
i
t−1)

]
,

(19)mt =
[
[1 0]k⊤t [0 1]k⊤t ṽ⊤t

]
.

(20)ht(xt) =
[
[1 0]h1(pt , qt)

⊤ [0 1]h1(pt , qt)
⊤ h2(vt , qt)

⊤
]⊤

,

(21)h1(pt , qt) = k̃t−1

[
R(q̃t−1)R(qt)

⊤

(pt − p̃t−1)
⊤ζR(qt)

⊤

]
KT
cam,

(22)h2(vt , qt) = R(qt)vt
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observation model ht(xt) to the expected body frame velocity obtained from Eq. 22, and 
measurement mt to the velocity ṽt derived through 3D-2D matching. Based on our experi-
ments, using a separate filter to estimate the keyframe location provides more stable esti-
mates compared to using estimates based on the same filter.

4.3  GNSS module

Our GNSS pipeline utilizes pseudorange measurements ρt = {ρ1
t , . . . , ρ

Mt
t } from mul-

tiple constellations (GPS and Beidou) and a nearby base station, where Mt is the total 
number of visible GNSS satellites at time t. These measurements are obtained by calcu-
lating the time delay between the transmission of a signal from a satellite and its recep-
tion at the receiver onboard the vehicle. The kth pseudorange measurement ρk

t  is related 
to the distance between the receiver and the satellite by the following equation [72]:

where pkt  denotes the position of the satellite corresponding to the kth measurement at 
time t, bconst denotes the bias error in the receiver’s clock that also depends on the GNSS 
constellation, bk denotes the bias error in the satellite’s clock, ǫion, ǫtrop denote the errors 
due to ionospheric and tropospheric effects, ǫmp denotes the error due to multipath 
effects and ǫ denotes the random error. We use multiple GNSS constellations to com-
pensate for limited satellite visibility in urban environments.

To utilize the pseudorange measurements ρt for positioning, it is necessary to account 
for the various error sources specified in Eq. 23. A common approach is to employ dou-
ble-differenced (DD) measurements  [73]. To construct DD measurements, measure-
ments from the base station ρ̃t are first subtracted from the received measurements ρt , 
thereby canceling out the effects of ionospheric and tropospheric disturbances, as well 
as satellite clock bias. To account for the receiver clock bias, a reference satellite (index 
denoted as ref  ) is selected and its measurements are subtracted from all other measure-
ments. For the kth satellite, the DD measurement ∇�ρk

t  is expressed as follows:

The above approach successfully removes most error sources based on clock differences 
between the satellite and the receiver. However, DD measurements that form differences 
between measurements from different constellations still have a remaining receiver 
clock bias error due to lack of synchronization between the constellations  [72]. This 
error—known as the Inter-System Bias (ISB)—does not change significantly over long 
periods of time. Therefore, we pre-estimate this error from initial measurement residu-
als and ground truth data.

The overall measurement vector mt for the GNSS module is constructed using DD 
measurements as

(23)ρk
t =

∥∥∥pt − pkt

∥∥∥+ bconst − bk + ǫion + ǫtrop + ǫmp + ǫ,

(24)∇�ρk
t = �ρk

t −�ρref
t ,

(25)�ρk
t = ρk

t − ρ̃k
t .

(26)mt =

[
∇�ρ1

t . . . ∇�ρ
Mt−1
t

]⊤
.
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The corresponding sensor observation model ht(xt) is as follows:

where the double differences are constructed in a similar way to the DD measurements 
in Eq. 25.

We set the measurement noise matrix Rt corresponding to mt as a diagonal matrix 
with identical entries for all measurements for simplicity, which is common practice 
in filtering literature. However, it is worth noting that alternative methods of assigning 
covariance exist that take into account additional properties such as signal strength and 
satellite elevation [74]. Investigating the impact of such techniques on filter performance 
could be a direction for future work.

4.4  AHRS module

In the AHRS module, we use the orientation measurements ot to update the orientation 
quaternion qt tracked by the filter. The sensor observation model ht(xt) is the estimated 
quaternion qt . The measurement mt is set as the quaternion q(ot) corresponding to the 
measured orientation ot , where q(·) is the Euler-to-quaternion transformation function. 
The measurement noise covariance matrix Rt is calculated using the Jacobian J qt  of the 
Euler-to-quaternion transformation and a 3× 3 diagonal covariance matrix R̃t for Euler 
angles, similar to Eq. 14

To ensure numerical stability, we set the off-diagonal terms in Rt to zero and only keep 
the diagonal terms.

5  Estimating position error bounds
To ensure the safety of our proposed filtering method for location estimation, we use 
the tracked probability distribution p(xt |m1:t) to estimate probabilistic bounds on the 
estimation error. These error bounds can then be compared against carefully designed 
safety limits, such as the ones described in   [38], to detect situations when the filter’s 
location output is unsafe for navigation. Incorporating these checks adds a layer of pro-
tection to the localization system against uncorrectable estimation errors, improving the 
system’s reliability.

To estimate the position error bounds, we first utilize the vehicle’s estimated orienta-
tion qt to determine the transformation from the global coordinate frame to the coordi-
nate frame aligned with the lateral (side-to-side), longitudinal (forward–backward), and 
vertical directions of the vehicle’s motion. This transformation allows us to project the 
probability distribution p(xt |m1:t) onto the motion axes of the vehicle, enabling us to 
estimate the error along directions that are more relevant from a safety perspective.

The position part of the state probability distribution is represented as a weighted sum 
of Gaussian distributions, where the ith component’s mean and covariance are denoted 
by pt,i and �p

t,i , respectively. To estimate the probability distribution corresponding to 
the axes-aligned error vector et , we project each Gaussian distribution component along 
the axes specified by qt.

(27)ht(xt) =
[
∇��pt − p1t � . . . ∇��pt − p

Mt−1
t �

]⊤
,

(28)Rt = J
q
t R̃t(J

q
t )

⊤.
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To compute the mean µe
t,i parameter of the ith projected Gaussian distribution 

component, we apply the rotation matrix R(qt) to compute the difference between 
pt,i and the filter position estimate pt

To estimate the covariance parameter �e
t,i , we also need to account for the uncertainty 

in estimating the orientation. We first generate M samples of orientation {q1, . . . , qM} as

where �q
t  denotes the filter orientation covariance. We then project the covariance �p

t,i 
by applying the rotation matrix R(qj) and use Monte Carlo integration to estimate �e

t,i:

To obtain a probabilistic error bound for a given direction d and confidence level α , we 
seek to compute the quantile ταd  from the error distribution p(et) that satisfies the fol-
lowing equation:

where 1d is a 3-dimensional unit vector with the entry corresponding to direction d set 
to one and the rest set to zero. However, as the error distribution is represented as a 
mixture of Gaussian distributions, we cannot compute this quantile analytically. Instead, 
we over-approximate the bound by maximizing across the component-wise quantiles. 
The position error bound ταd  for direction d is estimated as

where τα/2d,i  denotes the quantile of the Gaussian distribution N (|µe
t,i1d |,1

⊤
i �

e
t,i1d) 

for confidence level α/2 . The quantile τα/2d,i  is computed using the absolute value of the 
mean to provide a one-sided bound on the position error, which is the maximum pos-
sible deviation in the positive or negative direction along the axis. Similarly, we use the 
confidence level of α/2 for these bounds since it includes both sides of the probability 
distribution.

The position error bounds estimated from our approach are designed to account 
for the uncertainty resulting from the various sources of noise and linear approxi-
mations inherent in the filtering process. In instances where the noise sources are 
unbiased and the approximations hold true, the quantiles derived from the different 
components would exhibit similar behavior, resulting in a performance that is simi-
lar to an EKF. However, in cases where these assumptions do not hold, our method-
ology enables us to capture and quantify the uncertainty present across the different 
components, thereby offering an advantage over the Gaussian approximations uti-
lized in the EKF.

(29)µe
t,i = R(qt)(pt,i − pt).

(30)qj ∼ N
(
qt ,�

q
t

)
, 1 ≤ j ≤ M

(31)�e
t,i ≈

1

M

M∑

i=1

R(qj)�t,iR(qj)
⊤.

(32)p(et1d ≤ ταd ) ≥ α,

(33)ταd = max
i≤N

τ
α/2
d,i ,
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6  Optimizing filter parameters
Designing effective filtering methods involves selecting appropriate values for all the 
filter parameters. For our filter, these parameters include standard deviation terms for 
the dynamics, sensor observation models and the scaling factor in the camera module. 
However, choosing suitable values for these parameters can be challenging and time-
consuming due to the filter’s complexity.

In settings with available prior ground truth data and measurements, we can address 
this challenge by leveraging ideas from recent research on differentiable filter design [23, 
44]. We present a gradient-based optimization strategy that uses available measurements 
and ground truth position data to quickly find values for the filter parameters that result 
in good filter performance. Specifically, we minimize a total loss function that comprises 
measurement loss terms and position loss terms.

We employ a window-based strategy for optimization, wherein we randomly select 
windows of length T = 5 s from the available data. This approach allows us to incre-
mentally tune the filter parameters on subsets of data, which is more computationally 
efficient than optimizing over the entire dataset. At the beginning of each window, we 
initialize the filter by sampling from a Gaussian distribution centered at the ground truth 
position with a standard deviation of 5 ms, which helps to regularize the optimization 
and to prevent overfitting to specific data instances.

The measurement loss Lm(θ) with respect to the current parameters θ is the negative 
log probability of observing the measurements m1:t from the filter given the initial state.

where Tm denotes the total measurement instances available within the window, and xt is 
estimated using the filter.

The terms in this loss are available at the acquisition rate of the sensor measurements. 
This loss is similar to the unsupervised optimization objectives used for tuning Bayesian 
filter parameters in existing research [75].

The position loss Lp(θ) is the mean squared error between the filter estimated posi-
tions p1:T and the corresponding ground truth positions p∗1:T , which are usually avail-
able at a much slower rate than the sensor measurements. The position loss Lp(θ) is 
expressed as

where Tp denotes the total ground truth instances available within the window. This loss 
provides a stronger signal for tuning the filter parameters where explicit supervision is 
available [76]. The total loss L(θ) is expressed as the weighted sum of the position loss 
and each of the measurement losses

(34)Lm(θ) = −

Tm∑

t=2

log p(mt |m1:t−1, θ),

(35)≈ −

Tm∑

t=2

logp(mt |xt , θ),

(36)Lp(θ) =

Tp∑

t=2

�pt − p∗t �,
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where Lcam,Lgnss,Lahrs are calculated according to Eq.  35. The parameters 
�cam, �gnss, �ahrs denote the weighting factors for the losses and are set to 0.2 in our case.

We optimize L(θ) using gradient descent to update the parameters θ . To ensure 
numerical stability and prevent non-positive values during optimization, we use the 
softplus function—which is a smooth approximation of the rectified linear unit (ReLU) 
function—to enforce positivity for all parameters.

We note that the overall optimization problem consisting of several parameters is 
complex, and finding the global minimizer is not necessarily possible using this strategy 
since it depends on the initialization. Nevertheless, we find this strategy useful in refin-
ing the parameters starting from heuristically set initial values and reducing the overall 
tuning effort considerably.

7  Experimental results and discussion
7.1  UrbanNav dataset

We evaluate our proposed filter on the Hong Kong UrbanNav dataset  [45] which 
includes measurements from diverse sensors like GNSS, LiDAR, camera, and IMU, 
gathered in an urban environment with distinct regions. These regions comprise a wide 
street, one-sided buildings, and medium-height buildings, creating non-line-of-sight 
and multipath errors in GNSS measurements. The environment also contains dynamic 
objects that contribute to errors in the camera module as shown in the dataset images 
in Fig.  3b. The dataset spans a total duration of 785 s, covering a path length of 3.64 

(37)L(θ) = Lp(θ)+ �camLcam(θ)+ �gnssLgnss(θ)+ �ahrsLahrs(θ),

Fig. 3 Description of the UrbanNav Hong Kong dataset and sample images from the dataset collected in 
diverse environments
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km with two loops of the same trajectory. The second loop was used to tune the filter’s 
parameters, while the first loop was used to evaluate its performance.

In our evaluation, we utilize GNSS (GPS and Beidou), a monocular camera, and AHRS 
measurements from the UrbanNav dataset. The GNSS measurements were captured at 1 
Hz using a commercial u-blox ZED-F9P receiver, with GPS and Beidou visibility ranging 
from 4 to 20 satellites at each time instant. AHRS data was obtained from an Xsens Mti 
10, collected at 400 Hz. Images were captured at 15 Hz from a ZED2 camera with a reso-
lution of 1920× 1080 . Ground truth was obtained from a post-processed RTK GNSS-
INS integrated system, available at 1 Hz. In our experiments, the filter and the baselines 
were executed at 4 Hz. We focus on positioning performance and its uncertainty in this 
work.

7.2  Baselines

We compare the performance of our algorithm with respect to five filtering base-
lines, namely: a) Robust Naive RBPF (R-RBPF), b) Robust EKF with tight VO integra-
tion (R-EKF), c) Robust UKF with tight VO integration (R-UKF), d) Robust EKF with 
MD-VO only (R-EKF-VO), and e) Robust EKF with GNSS only (R-EKF-GNSS).

Some notes about these baselines are as follows:

• R-RBPF partitions the state space into position terms and tracks them using a stand-
ard particle filter with 20 particles to match our approach. The particle weights 
are computed using the robust version of the measurement likelihood function, as 
described in Eq 4. An EKF tracks the remaining terms, including orientation, veloc-
ity, and angular velocity bias. The position error bounds are determined by calculat-
ing the maximum deviation across the tracked particles along the lateral, longitudi-
nal, and vertical directions.

• R-EKF and R-UKF use the robust cost function in their update step as described in 
Sect. 2. During the execution of R-UKF, it was observed that the covariance matrix 
becomes non-positive definite at certain time instances due to numerical errors 
associated with the UKF, a well-known challenge [77] attributed to the choice of filter 
parameters. To address this issue, we reinitialized the covariance matrix and contin-
ued executing the filter from the last estimated state.

• We use R-EKF-VO and R-EKF-GNSS as simple baselines to gain insights into the 
filter performance when only a single sensor is used.

We evaluate the filter’s performance on the entire dataset. However, for ease of visualiza-
tion, we present the results categorized into three distinct regions, as illustrated in Fig. 4. 
This approach enables a comprehensive evaluation of the filter performance within each 
typical category of regions present in urban environments.

7.3  Experimental setup

The filter and all baselines were tuned and executed on the Stanford Research and 
Computing Center’s HPC cluster using an AMD 7502P CPU with 256 GB RAM and an 
NVIDIA Geforce RTX 2080Ti GPU. PyTorch is used for automatic differentiation and 
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tensor operations. The implementation of the filter and baselines is built upon the multi-
modal sensor fusion codebase from [23].

To tune the filter parameters, we use R-EKF as a reference due to its fast execution 
time. We employ the same set of parameters for all filters to ensure a fair comparison. 
The parameters are tuned individually while the remaining parameters are held fixed. 
We optimize the parameters using the Adam optimizer  [78] with a learning rate of 
0.01 for 100,000 iterations. The final parameter values, along with the key manually set 
parameters, are listed in Table 1.

The Tukey biweight function [79] is used as the cost function in the filters. However, 
if the input residuals exceed a set threshold, this function becomes constant, causing 
the influence function to become non-invertible. To address this issue, we approximate 
the inverse by assigning a high value to the entries associated with residuals above the 
threshold. These threshold values are manually set and remain unchanged during the 
optimization of filter parameters using gradient descent.

7.4  Positioning performance

We first compare the positioning performance of our approach with respect to the 
baselines. Figure 4 shows the trajectory tracking plots of each approach and Fig. 5 
shows the positioning performance with respect to time for qualitative analy-
sis. The plots demonstrate that our proposed method produces position estimates 
with higher accuracy than the baselines. Specifically, in the region characterized by 
medium-height buildings, our approach exhibits clear improvement compared to 
R-EKF. Similarly, our approach outperforms R-UKF in a few regions where numeri-
cal errors occurred during covariance estimation, necessitating reinitialization. 
Notably, both R-EKF and R-UKF demonstrate smoother position estimates than our 
approach. Despite using the same number of particles as our approach, R-RBPF per-
forms substantially worse. This observation is consistent with the widely recognized 
fact that particle filter methods alone require a large number of particles—that scales 
exponentially with the size of the state space—for good estimation performance [80]. 
However, for real-world applications, the computational costs associated with 

Table 1 Experimental parameters

Parameter Value Parameter Value

No. of particles 20 Confidence level α 0.95

No. of visual landmarks 50 GPS-Beidou ISB 17.6 m

Initial position uncertainty 5.0 m Initial orientation uncertainty 0.2 rad

Initial velocity uncertainty 1.0 m/s Initial bias uncertainty 1.0 rad/s

GNSS robust threshold 50 m VO robust threshold 20 px

Propagation noise px 5.6 m Propagation noise vx 2.0 m/s

Propagation noise py 5.8 m Propagation noise vy 2.1 m/s

Propagation noise pz 0.01 m Propagation noise vz 0.01 m/s

Propagation noise roll, pitch 0.02 rad Propagation noise yaw 0.3 rad

Propagation noise bias 0.05 rad Observation noise roll, pitch, yaw 0.02 rad

Observation noise velocity 2.2 m/s Observation noise landmark 100.5 px

Observation noise pseudorange 5.3 m Speed scale 0.5
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increasing the number of particles may become prohibitively high. We also observe 
that, in general, baselines with multi-sensor measurements provide better position-
ing performance compared to those relying on single-sensor measurements.

To quantitatively evaluate the performance of our approach, we computed the 
mean, median, and 95th percentile of positioning error for all three sections of the 
trajectory. The results, presented in Table 2, demonstrate that our method produces 
positioning errors comparable to those of R-EKF and R-EKF-GNSS in the wide street 
and one-sided building regions. Additionally, our method exhibits smaller errors 
than all other baselines in these regions. In the medium urban region, our approach 
achieves smaller errors than all baselines except R-UKF. These results highlight the 
usability of our approach in real-world sensor fusion settings, where accurate state 
estimation is important.

Fig. 4 Trajectory tracking plots of each approach (blue) compared to the ground truth positions (dashed 
red). Purple lines depict the boundaries of wide street, one-sided buildings, and medium urban regions 
shown in Fig. 3a. The trajectory estimated from our approach is visually closer to the ground truth trajectory 
in a majority of the regions compared to the baselines

Fig. 5 Estimated positions over time along the east, north, and up directions compared to the ground truth 
positions over the entire trajectory of the dataset. The estimated positions from our approach show improved 
tracking performance and closely follow the ground truth positions compared to the baselines
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7.5  Position error bound evaluation

For qualitative evaluation of the position error bounding performance, we show plots 
that depict the estimated error bounds versus position error for each approach along 
the lateral, longitudinal, and vertical directions, as shown in Figs. 6, 7 and 8. The posi-
tion error bounds lying in the upper half of the plot—separated by the dotted red 
line—successfully enclose the position error.

Our approach generates position error bounds that are more clustered in the upper 
half of the plots compared to the baselines in all regions, except for R-UKF in the 
medium urban region. For clarity purposes, we compare our approach qualitatively 
against R-EKF and R-UKF only, while other baselines are included in the quantitative 
comparisons.

For quantitative comparison, we employ the failure rate metric to evaluate the effec-
tiveness of each method in bounding the position error. The failure rate metric spec-
ifies the fraction of instances where the estimated error bound fails to capture the 
actual position error, where a smaller value indicates better performance. The results 
are included in Tables 3, 4, and 5 for the failure rates along the lateral, longitudinal, 
and vertical directions, respectively.

Based on the presented results, our proposed approach outperforms all base-
line filters, except for R-UKF in the medium urban region and R-EKF-GNSS in all 
three regions. R-EKF-GNSS shows promising performance, despite its compara-
tively lower positioning accuracy, due to its sole reliance on GNSS measurements. 
The EKF’s Gaussian uncertainty modeling assumptions, which are used in R-EKF-
GNSS, hold reasonably true for GNSS measurements. Similarly, R-UKF demonstrates 
good bounding performance in the medium urban region where it also has good 

Table 2 Positioning error statistics

Algorithm Statistics Wide street One-sided 
buildings

Medium urban

Ours Mean (m) 5.6 6.8 25.6

Median (m) 4.5 4.9 19.2

95th percentile (m) 19.3 22.1 51.7

R-EKF Mean (m) 5.2 6.1 38.9

Median (m) 4.1 5.8 23.3

95th percentile (m) 22.3 12.9 85.4

R-UKF Mean (m) 7.3 21.8 16.2

Median (m) 4.3 15.3 14.1

95th percentile (m) 44.0 81.2 40.7

R-RBPF naive Mean (m) 81.5 80.2 81.3

Median (m) 78.1 76.8 78.8

95th percentile (m) 302.1 381.5 305.5

R-EKF-GNSS Mean (m) 4.9 6.8 58.7

Median (m) 4.3 4.9 39.9

95th percentile (m) 8.2 16.4 255.4

R-EKF-VO Mean (m) 74.3 67.1 32.3

Median (m) 67.2 62.6 36.6

95th percentile (m) 87.0 131.1 72.3
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positioning performance. However, its performance deteriorates in the one-sided 
building and wide street regions, where it exhibits worse positioning accuracy.

The results indicate that both R-UKF and R-EKF exhibit a higher failure rate along the 
vertical direction, most likely due to overconfident uncertainty estimates. In contrast, 
our approach uses the uncertainty across multiple particles to generate more conserva-
tive error bounds in the vertical direction with considerably lower failure rates. These 
observations emphasize the significance of accurate uncertainty parameters in charac-
terizing the position error bounds, particularly in challenging urban environments.

Overall, the qualitative and quantitative evaluations demonstrate that our pro-
posed approach produces more reliable error bounds compared to the baselines. Our 
approach’s improved position error bounding can be attributed to its capability to cap-
ture multi-modal uncertainty through multiple linearization points, which effectively 
captures uncertainty in situations where multiple plausible solutions exist based on the 
measurements. This reduces the proposed method’s reliance on the choice of the uncer-
tainty parameters, highlighting the potential of our approach for real-world applications 
in developing robust and reliable systems for autonomous navigation.

7.6  Computational statistics

We analyzed the average runtime per step for our proposed approach and the baselines, 
tabulated in Table 6.

Fig. 6 Comparison of position error bounds and position error along the lateral direction for the wide street, 
one-sided building, and medium urban regions. The dashed red line separates the upper region where the 
bounds exceed position error and the lower region where the bounds are smaller. Our proposed approach 
demonstrates improved bounding performance as indicated by the majority of error bounds lying in the 
upper half
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Our method and R-RBPF—both using 20 particles—exhibit an average step time that 
is less than twice that of the EKF and UKF-based baselines. This efficiency is attributed 
to the utilization of tensor operations to parallelize the EKF operations associated with 
the linearization points. From a theoretical standpoint, this aligns with the expected 
computational complexity of O(nm3 + nm2 + n) —contributed by the robust filtering, 
weighting, and resampling steps—where n is the number of particles and m is the size of 
the measurement vector. It is worth noting that upon assuming optimal parallelization 
across all particles, the complexity reduces to O(m3 + n) . This is comparable to the EKF’s 
theoretical complexity of O(m3).

We also investigate the effect of the number of landmark features used in the measure-
ment vector and the number of particles on the computational time, as shown in Fig. 9. 
Our findings indicate that the computational time stays under 100 ms till 200 features in 
the measurement vector and then increases at a sublinear rate till 1000 features. Further-
more, the computational time grows linearly with the particles at a slope smaller than 1, 
demonstrating the computational benefits of efficient tensor operations in our approach. 
These observations show that our approach can be employed in real-world applications 
without imposing a significant computational burden.

7.7  Discussion

Our experiments on positioning performance demonstrate that the proposed robust 
Bayesian filtering framework for positioning produces state estimates that are 

Fig. 7 Comparison of position error bounds and position error along the longitudinal direction for the wide 
street, one-sided building, and medium urban regions. The dashed red line separates the upper region 
where the bounds exceed position error and the lower region where the bounds are smaller. Our proposed 
approach demonstrates improved bounding performance as indicated by the majority of error bounds lying 
in the upper half



Page 24 of 30Gupta et al. EURASIP Journal on Advances in Signal Processing        (2023) 2023:100 

Fig. 8 Comparison of position error bounds and position error along the vertical direction for the wide 
street, one-sided building, and medium urban regions. The dashed red line separates the upper region 
where the bounds exceed position error and the lower region where the bounds are smaller. Our proposed 
approach demonstrates improved bounding performance as indicated by the majority of error bounds lying 
in the upper half

Table 3 Lateral failure rate for different sections of the trajectory

Trajectory section Our algorithm R-EKF R-UKF R-RBPF R-EKF-GNSS R-EKF-VO

Wide street 0.04 0.07 0.10 0.91 0.00 0.77

One-side buildings 0.12 0.14 0.21 0.70 0.01 0.59

Medium urban 0.16 0.43 0.02 0.85 0.01 0.81

Table 4 Longitudinal failure rate for different sections of the trajectory

Trajectory section Our algorithm R-EKF R-UKF R-RBPF R-EKF-GNSS R-EKF-VO

Wide street 0.15 0.24 0.19 0.71 0.00 0.98

One-side buildings 0.14 0.18 0.19 0.62 0.02 0.72

Medium urban 0.24 0.49 0.18 0.39 0.00 0.87

Table 5 Vertical failure rate for different sections of the trajectory

Trajectory section Our algorithm R-EKF R-UKF R-RBPF R-EKF-GNSS R-EKF-VO

Wide street 0.00 0.04 0.29 0.26 0.05 0.73

One-side buildings 0.00 0.02 0.05 0.32 0.02 0.47

Medium urban 0.01 0.28 0.37 0.08 0.02 0.65
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competitive with the robust EKF and UKF baselines. Moreover, this performance can 
be achieved with minimal manual tuning through the proposed gradient descent-based 
optimization strategy. Additionally, our approach outperforms particle filter baselines 
with the same number of particles when applied to a real-world setting. However, the 
performance of our method is dependent on the underlying particle filter for track-
ing linearization points, which results in position estimates that are less smooth com-
pared to the EKF and UKF-based methods. Therefore, it may be beneficial to explore 
improvements in particle filtering literature to further enhance the performance of our 
method. Incorporating improved methods for robust state estimation, such as factor 
graphs, in the framework is another direction for future research to enhance the overall 
performance.

Our position error bounding experiments indicate that the error bounds estimated 
using our approach are better correlated with the actual positioning error along each 
direction than the bounds from most baselines. It is important to note that a limitation 
of our approach is the difficulty in establishing theoretical guarantees on its performance 

Table 6 Average runtime per filter step for baselines and our algorithm

Algorithm Time per step 
(milliseconds)

Ours 51

R-EKF 33

R-UKF 32

R-RBPF Naive 50

R-EKF-GNSS 26

R-EKF-VO 30

Fig. 9 Runtime in milliseconds of our algorithm as a function of the number of features in the measurement 
vector and as a function of the number of particles in the filter. The blue vertical lines denote standard 
deviation error bars. Our approach leverages parallelization through tensor operations to achieve low 
computational overhead and efficiency comparable to an EKF, as shown by the figures
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due to the need for knowing the individual error distributions of each measurement at 
each time instant. Nevertheless, our empirical results suggest that our approach can 
identify situations where the positioning error grows large, making it useful in prevent-
ing the unsafe use of the estimated location. Hence, our approach has practical utility in 
safety-critical applications.

Finally, our experiments on computational statistics illustrate that our proposed 
framework has comparable computational requirements to the underlying robust state 
estimation method, which is achieved using parallelization with tensor operations. 
Therefore, our approach can be integrated into real-time localization systems without 
imposing excessive computational overhead. Future work can further explore adaptively 
varying the number of tracked linearization points in our framework to improve compu-
tational efficiency.

8  Conclusions
In this paper, we introduced a robust Bayesian filtering framework that effectively cap-
tures multi-modal uncertainty in positioning using diverse sensor measurements while 
being robust to outliers. Our framework consists of two key components: the robust 
filter component, which uses techniques such as Extended Kalman Filters for efficient 
and robust state estimation, and the multi-modal uncertainty component, which tracks a 
probability distribution over points for linearizing the dynamics, measurement models, 
and robust cost in the robust filter component. We combined these two components 
using the Rao-Blackwell theorem to create a robust Bayesian filter that is resilient to 
measurement outliers and can capture multi-modal state uncertainty.

We validated our proposed filter on real-world data from a multi-sensor setup com-
prising a camera, GNSS, and AHRS. To tune the filter parameters, we utilized a gra-
dient descent-based optimization strategy that leverages available measurements and 
ground truth position data. The results demonstrate our filter’s competitive state estima-
tion performance compared to existing filter-based robust state estimation methods and 
improved performance in bounding the position errors based on uncertainty. Further-
more, these improvements are achieved with less than twice the computational time of 
existing Kalman filter-based methods.

These results suggest that our proposed framework is suitable for real-world localiza-
tion applications where the reliability of the estimated location is critical. Our approach 
enables more robust and accurate localization in complex environments, thus proving to 
be a valuable tool for autonomous navigation systems in urban environments.

Abbreviations
GNSS  Global Navigation Satellite System
GPS  Global Positioning System
ISB  Inter-system bias
AHRS  Attitude and heading reference system
EKF  Extended Kalman filter
UKF  Unscented Kalman filter
DD  Double differenced
RTK  Real-time kinematic
IMM  Interacting multiple model
RBPF  Rao–Blackwellized particle filter
VO  Visual odometry
IMU  Inertial measurement unit
MDVO  Monocular depth-aided visual odometry
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