
Vectorization for Digital Signal Processors via Equality Saturation
Extended Abstract

Alexa VanHattum
Cornell University

Rachit Nigam
Cornell University

Vincent T. Lee
Facebook Reality Labs Research

James Bornholt
The University of Texas at Austin

Adrian Sampson
Cornell University

1. Motivation

Digital signal processors (DSPs) are ubiquitous and un-
matched in their efficiency for embedded sensing applica-
tions, but they are difficult to program. Their simple in-order
pipelines, their exotic VLIW and vector instruction sets, and
their per-deployment hardware variability means that tradi-
tional compilers generate code that is often far from optimal.
Instead, DSP engineers typically hand-tune implementations
of critical, fixed-size kernels to extract the best performance
from a specific DSP target. Applications such as such as simul-
taneous localization and mapping (SLAM) [12, 13, 19, 20]
and structure from motion [21] rely on components dominated
by a variety of small-scale DSP kernels, so this kind of manual,
kernel-by-kernel optimization can pay off.

Expert tuning, however, is difficult to scale to the diversity
of DSP hardware. DSPs often offer per-application hardware
customization, where device makers can select a subset of an
instruction set tailored for their particular application and even
add custom proprietary instructions [7]. Even worse, appli-
cations often need size-specific, specialized variants of DSP
kernels: for example, products and convolutions of small 3×3
and 4×4 matrices are commonplace in various machine per-
ception applications. Manually optimizing each kernel size for
each possible DSP target represents an enormous engineering
cost.

This paper designs a compiler, Diospyros, that aims to com-
pete with manual tuning by DSP experts. Diospyros frames
compilation as a search problem in a space of candidate pro-
grams. It uses a system of rewrite rules to define a search space
that encompasses both high-level functional specifications and
low-level device-specific instructions. Crucially, rewrite rules
in Diospyros can perform complex data movement to enable
efficient use of the fixed-width vector SIMD units common in
DSP architectures. Unlike traditional approaches to general-
purpose vectorization [9], Diospyros generates irregular shuf-
fle operations that pack as much work as possible into vector
lanes. This focus on data movement allows Diospyros to ef-
fectively optimize specialized small-scale signal processing
kernels that dominate many DSP applications, and that exist-
ing DSP compilers struggle with.

To identify the most efficient vectorized compilation of a
scalar input program, Diospyros exhaustively searches the
space of candidates using equality saturation [8, 22, 25].
Equality saturation lets Diospyros explore all possible ap-
plications of its rewrite rules in any order by representing the
search space as an equality graph (E-graph) [14]. From this

0.1 0.5 1 5 10 15 20 25

Speedup over naive (fixed-size) loop nest

2DConv
4×4 3×3

MatMul
4×4 4×4

QProd
4, 3, 4, 3

QRDecomp
3×3

Loop nest Library Diospyros

Figure 1: Speedup for a sample of kernels compiled with
Diospyros, compared to naive loop nests and optimized li-
brary routines. This figure highlights kernels where Diospyros
does well; the paper’s Figure 5 shows full results.

saturated E-graph, Diospyros extracts the most efficient pro-
gram according to a cost model and lowers it to C code with
target-specific vector intrinsics that can be passed through a
vendor-supplied DSP compiler for code generation.

2. Limitations of the State of the Art

Optimizations for automatic vectorization Classical vec-
torization techniques include loop-based vectorizers [1], super-
word level parallelism (SLP) optimizations [9], and modern
descendants [11, 15]. These optimizations typically do not
attempt to aggressively shuffle data to fit it into fixed-size
vector units, which is Diospyros’s main goal. Their focus is
fundamentally different. Classic vectorization passes aim to
cover large codebases quickly and heuristically; Diospyros
focuses on individual, high-value kernels and searches for an
optimal implementation. Classic approaches work best on reg-
ular loops over large arrays that allow the computation to reach
a “steady state”; Diospyros focuses on the small, fixed-size
kernels that often arise in DSP applications, where it is critical
to rearrange data to pack it into vector lanes.

Program synthesis for high-performance kernels Other
systems have applied synthesis techniques to find efficient ker-
nel implementations [2, 16, 26]. However, these systems face
scalability challenges common to program synthesis; Diospy-
ros can synthesize kernels several times larger than previous ef-
forts focused on DSPs or other embedded applications [4, 23].
Diospyros’s abstract vector DSL is also more portable than
most synthesis-based compilation techniques, which require a
detailed semantics for the target architecture.



Optimizing linear algebra kernels There is a long line of
work on efficient compilation for DSP code, including vec-
torization [5, 10, 24]. These techniques can often generate
target-specific shuffle code to implement pre-specified permu-
tation patterns, but they do not search for kernel-specific data
movement strategies themselves. These approaches rely on
domain expertise and hardware-specific engineering to gen-
erate fast code. Diospyros avoids baking in any specific data
movement strategies and instead expends computation time to
automate the search for optimized implementations.

The SPIRAL project [6, 17], and particularly the SLinGen
tool for small fixed-size linear algebra kernels [18], proposes
a range of hand-tuned compilation strategies to optimize DSP
applications. Like SLinGen, Diospyros works at a higher ab-
straction level to enable optimizations that assembly would
obscure. However, equality saturation allows Diospyros to
both avoid hand-crafting specific optimization patterns and
cover a larger search space than SLinGen’s autotuning.

3. Key Insights

• Performance on DSP hardware depends on generating irreg-
ular “shuffle” instructions to keep vector units busy.

• Equality saturation can be applied to vectorization and, with-
out prioritizing target-specific heuristics, yield better perfor-
mance than an existing vectorizing DSP compiler.

• To make equality saturation scale to realistic DSP kernels
without running out of memory, it helps to limit the applica-
tion of rewrite rules that can blow up the size of the E-graph,
by applying them only speculatively and re-computing them
when necessary.

4. Main Artifacts

• Diospyros, an open-source vectorizing compiler for DSPs
based on rewrite rules with equality saturation. Diospyros
currently targets the Tensilica Fusion G3 family of digital
signal processors [3].

• A methodology for designing rewrite rules that allow for
flexibility in matching vector operations while avoiding the
exponential blowup caused by incorporating unrestricted
operator associativity and commutativity.

5. Key Results and Contributions

Empirical results:
• Kernels compiled with Diospyros outperform the best non-

hand written alternative (usually the optimized Nature math
library shipped with the Tensilica DSP SDK) by 3.0× on
average, as Figure 1 shows. Compared to an expert-written
kernel hand-tuned for a single fixed matrix size, Diospy-
ros produces a kernel with performance within 17% in 2.7
seconds of compilation time.

• As a case study, we integrate a Diospyros-generated kernel
into an open-source computer vision library and demonstrate
an end-to-end speedup of 2.1× compared to the baseline.

Contributions:
• We distill the challenges of programming high-performance

kernels on DSP hardware: simple hardware puts the burden
of optimization on the programmer; data sizes close to the
machine vector width create a need for irregular and unin-
tuitive data movement code; and machine-specific vector
instructions limit code portability.

• We demonstrate that equality saturation can apply to vector-
ization and can automatically generate critical data shuffling
strategies, outperforming an existing vectorizing compiler
for a DSP architecture.

• We describe a speculation strategy for limiting the applica-
tion of common rewrite rules in equality saturation, such as
commutativity and the additive identity, in order to avoid an
exponential blowup in memory requirements.

Advantages over past work:
• Unlike standard compiler passes for auto-vectorization,

Diospyros can identify novel data movement strategies that
are critical for DSP performance on common kernels.

• Unlike prior systems that use program synthesis for high-
performance code generation, Diospyros uses rewrite rules
over an abstract vector DSL to enable portability and to scale
better than synthesizers that require detailed machine-level
models.

• Unlike prior compiler infrastructure that targets DSPs,
Diospyros uses a generic rewriting approach and mostly
avoids baking in heuristics that tie it to a particular DSP
architecture or problem domain.

6. Why ASPLOS

This paper is about extracting performance from a kind of
architecture that relies on software optimization for efficiency.
It applies ideas from the programming languages and formal
methods worlds—term rewriting systems, equality saturation,
and symbolic evaluation—to expose instruction- and data-level
parallelism that neither standard compilers nor DSP hardware
can discover on their own.

7. Citation for Most Influential Paper Award

The Diospyros paper pioneered the use of equality saturation to
implement compilers for niche, domain-specific, and “moving
target” hardware. Hand-engineered compiler heuristics and
expert-written kernel libraries sufficed in the era when CPU
ISAs remained stable for decades, but the early 2020s saw
simultaneous explosions in domain-specific processors and in
linear algebra applications that necessitated a new approach.
By showing that a search-based strategy based on saturating
a system of rewrite rules could replace target-specific tuning
for digital signal processors (DSPs), the paper initiated a line
of work on building flexible compilers that can adapt to rapid
changes in the hardware they target.

2



References
[1] Randy Allen and Ken Kennedy. Automatic transla-

tion of FORTRAN programs to vector form. In ACM
Transactions on Programming Languages and Systems (
TOPLAS), 1987.

[2] Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani,
César Kunz, and Mark Marron. From relational veri-
fication to SIMD loop synthesis. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), 2013.

[3] Cadence Design Systems, Inc. Tensilica cus-
tomizable cores, 2020. https://ip.cadence.
com/ipportfolio/tensilica-ip/xtensa-
customizable.

[4] Meghan Cowan, Thierry Moreau, Tianqi Chen, James
Bornholt, and Luis Ceze. Automatic generation of high-
performance quantized machine learning kernels. In
ACM/IEEE International Symposium on Code Genera-
tion and Optimization (CGO), 2020.

[5] Franz Franchetti and Markus Püschel. Generating SIMD
vectorized permutations. In Proceedings of the Interna-
tional Conference on Compiler Construction, 2008.

[6] Franz Franchetti, Yevgen Voronenko, and Markus
Püschel. A rewriting system for the vectorization of sig-
nal transforms. In International Conference on High Per-
formance Computing for Computational Science (VEC-
PAR), 2006.

[7] Ricardo E Gonzalez. Xtensa: A configurable and exten-
sible processor. IEEE Micro, 20(2):60–70, 2000.

[8] Rajeev Joshi, Greg Nelson, and Keith H. Randall. De-
nali: A goal-directed superoptimizer. In ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), 2002.

[9] Samuel Larsen and Saman Amarasinghe. Exploiting
superword level parallelism with multimedia instruction
sets. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2000.

[10] Daniel S. McFarlin, Volodymyr Arbatov, Franz
Franchetti, and Markus Püschel. Automatic SIMD vec-
torization of fast fourier transforms for the larrabee and
AVX instruction sets. In Proceedings of the International
Conference on Supercomputing, 2011.

[11] Charith Mendis and Saman Amarasinghe. GoSLP: Glob-
ally optimized superword level parallelism framework.
In ACM SIGPLAN Conference on Object Oriented Pro-
gramming, Systems, Languages and Applications (OOP-
SLA), 2018.

[12] Raul Mur-Artal and Juan D Tardós. ORB-SLAM2: an
open-source SLAM system for monocular, stereo and
RGB-D cameras. IEEE Transactions on Robotics, 33(5):
1255–1262, 2017.

[13] Raul Mur-Artal, Jose Maria Martinez Montiel, and
Juan D Tardos. Orb-slam: a versatile and accurate monoc-
ular slam system. IEEE transactions on robotics, 31(5):
1147–1163, 2015.

[14] Greg Nelson. Techniques for program verification. PhD
thesis, Stanford University, 1980.

[15] Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-
vectorization of interleaved data for SIMD. In ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), 2006.

[16] Phitchaya Mangpo Phothilimthana, Archibald Samuel
Elliott, An Wang, Abhinav Jangda, Bastian Hagedorn,
Henrik Barthels, Samuel J. Kaufman, Vinod Grover, Em-
ina Torlak, and Rastislav Bodík. Swizzle Inventor: Data
movement synthesis for GPU kernels. In ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
2019.

[17] Markus Puschel, José MF Moura, Jeremy R Johnson,
David Padua, Manuela M Veloso, Bryan W Singer,
Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen
Voronenko, et al. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, 93(2):232–275,
2005.

[18] Daniele G. Spampinato, Diego Fabregat-Traver, Paolo
Bientinesi, and Markus Püschel. Program generation for
small-scale linear algebra applications. In ACM/IEEE
International Symposium on Code Generation and Opti-
mization (CGO), 2018.

[19] Hauke Strasdat, Andrew J Davison, JM Martìnez Mon-
tiel, and Kurt Konolige. Double window optimisation
for constant time visual slam. In 2011 international
conference on computer vision, pages 2352–2359. IEEE,
2011.

[20] Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada.
OpenVSLAM: A Versatile Visual SLAM Framework.
In Proceedings of the 27th ACM International Con-
ference on Multimedia, MM ’19, pages 2292–2295,
New York, NY, USA, 2019. ACM. ISBN 978-1-4503-
6889-6. doi: 10.1145/3343031.3350539. URL http:
//doi.acm.org/10.1145/3343031.3350539.

[21] Chris Sweeney. Theia multiview geometry library: Tuto-
rial & reference. http://theia-sfm.org.

3



[22] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin
Lerner. Equality saturation: a new approach to opti-
mization. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2009.

[23] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James
Bornholt, and Adrian Sampson. A synthesis-aided com-
piler for DSP architectures (wip paper). In ACM SIG-
PLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES),
2020.

[24] Sander Vocke, Henk Corporaal, Roel Jordans, Rosilde
Corvino, and Rick Nas. Extending halide to improve
software development for imaging DSPs. In ACM Trans-
actions on Architecture and Code Optimization (TACO),
2017.

[25] Max Willsey, Yisu Remy Wang, Oliver Flatt, Chan-
drakana Nandi, Pavel Panchekha, and Zachary Tatlock.
egg: Fast and extensible e-graphs, July 2020. https:
//arxiv.org/abs/2004.03082.

[26] Zhilei Xu, Shoaib Kamil, and Armando Solar-Lezama.
MSL: A synthesis enabled language for distributed im-
plementations. In International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis (SC), 2014.

4


