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Introduction
Schizophrenia (SCZ) and schizophrenia-like disorders (SLDs) are 
neurodevelopmental diseases with an average global prevalence of 
1%. Antipsychotic drugs, extremely effective for acute psychosis, 
are much less helpful in the chronic phase, marked primarily by 
negative and cognitive symptoms [1]. In addition, SCZ outcome 
studies show that a dismal 13.5% of patients achieve sustained 
recovery at any time after the first psychotic episode, suggesting 
that the currently available antipsychotic drugs do not target the 
central pathology of this illness [2-4].
  
SCZ neuroimaging studies have consistently reported progressive 
brain shrinkage, while microscopy found gray matter loss at the 
expense of dendritic spines and synapses.  These findings comprise 
the proof of concept that the available treatment strategies do not 
address gray matter loss [5]. Indeed, several studies have found 
accelerated brain atrophy with some antipsychotic drugs, indicating 
that maintenance treatment may require different approaches than 
acute episodes.

Novel studies have emphasized the role of p53, somatostatin (SST), 
and non-pituitary growth hormone (npGH) in SCZ-associated 
neuronal senescence [6,7]. In addition, p53 and senescence can 
activate human endogenous retroviruses (HERVs), ancestral 
pathogens, residing in the human genome, previously linked to 
SCZ with negative symptoms [8].
The role of hormones in the etiology of neuropsychiatric disorders 
is well-established as these conditions often become manifest 
at puberty or postpartum, life milestones marked by significant 
stress and “hormonal storms”. In addition, endocrinopathies, 
including Cushing’s syndrome, hypopituitarism, and primary 
hyperparathyroidism (PHPT) have been associated with 
SCZ, emphasizing the intertwinement of endocrinology and 
neuropathology [9-12]. Moreover, gut microbes, synthesize 
several hormones, including SST and npGH, likely implicating 

the microbiome in SCZ [13-17]. Indeed, commensal flora can 
synthesize many SCZ-relevant neurotransmitters, including 
dopamine (DA), serotonin (5HT), norepinephrine (NE), 
acetylcholine (ACh), melatonin, somatostatin (SST), and oxytocin 
(OXT), further linking mental illness to various endocrinopathies 
[18-21].
 
Numerous studies have connected SCZ with the premature cellular 
(including neuronal) senescence, emphasizing that DNA damage 
or defective genomic repair is the likely cause of this pathology 
[22-24]. It is well-established that SCZ patients live on average 15 
to 20 years shorter than their healthy counterparts and develop 
age-related diseases while still young, highlighting the role of 
premature aging in this disorder. Indeed, some scholars refer 
to SCZ as “segmental” progeria, to emphasize this correlation 
[25].

Gamma oscillations (30-100 Hz) on electroencephalogram (EEG) 
are altered in SCZ patients, probably reflecting the loss of SST-
expressing gamma-aminobutyric acid (GABA) neurons, known 
for promoting network oscillations [26-29]. Interestingly, both 
GABA and SST are synthesized by the gut microbes, which are 
also known for entraining “brain-like” oscillations, linking the 
microbiome to the EEG waves [30-35]. This is not surprising as in 
bacteria, oscillations control gene expression, division, cell cycle 
progression, and antibiotic resistance [35-37].
  
Do gut microbes communicate with the host via synchronized 
oscillations? Many believe that certain frequencies may be 
ideal for low-energy encoding and transmitting information 
to distant body tissues, suggesting that this platform may be 
functioning in parallel with the synaptic and exocrine/paracrine 
neurotransmission [38,39]. Indeed, synchronized oscillations were 
documented in many tissues, including the endocrine glands, 
which are known for releasing hormones in regular spurs [40-

−	 SCZ is associated with genomic damage and premature cellular senescence, affecting both somatic and postmitotic cells.
−	 Premature neuronal senescence contributes to gray matter loss, involving the neurites and synapses of inhibitory interneurons.
−	 Loss of somatostatin-expressing GABA interneurons may drive the gray matter loss in schizophrenia. 
−	 Deficient somatostatin upregulates non-pituitary growth hormone, inducing DNA damage and p53-mediated neuronal senescence.

ABSTRACT
Chronic mental illnesses, including schizophrenia, have been associated with premature brain aging manifested on neuroimaging as 
gray matter loss. This has  been associated with impaired insight (anosognosia) and suboptimal treatment outcome. Novel strategies 
for addressing premature brain aging are urgently needed and somatostatin up regulation may avert gray matter loss. Recent studies, 
involving non-pituitary growth hormone and p53, have offered early glimpses into the molecular underpinnings of cellular senescence in 
SCZ. Moreover, age-downregulated somatostatin and activation of Human Endogenous Retroviruses likely drive the negative and cognitive 
symptoms of SCZ.

In this perspective article, we discuss the following: 1) neuropsychiatric implications of premature brain aging, 2) potential therapies 
for restoring the homeostasis of somatostatin and non-pituitary growth hormone.
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43]. At the molecular level, the DNA double helix as well as the 
p53 genomic repair system, generate spontaneous oscillations, 
suggesting that macromolecules may engender their own signaling 
platform - a global molecular network [44]. For example, genome 
oscillations and gamma waves may generate a quantum code 
for almost instant information transfer to distant tissues and 
cells [45,46]. Along this line, desynchronization or uncoupling 
of a brain region from other areas was demonstrated in general 
anesthesia or ketamine-induced dissociation states, indicating that 
awareness requires network synchronization [47,48]. Conversely, 
noninvasive stimulatory techniques, such as photobiomodulation 
or transcranial magnetic stimulation (TMS), may avert gray 
matter loss by optimizing synchronization [49,50]. Indeed, a 40 
Hz auditory steady-state response (ASSR) is believed to be an 
insight biomarker of SCZ, suggesting novel therapeutic avenues 
for addressing anosognosia and the negative symptoms [51-54]. 
In addition, SST has been implicated not only in central nervous 
system (CNS) synchronization but also in brain plasticity, suggests 
that loss of this hormone may account for the negative and 
cognitive symptoms of SCZ [55,56]. Indeed, aging downregulates 
SST and upregulates npGH, linking local hormones to premature 
neuronal senescence and decreased gamma band [57-59]. Since 
SST-generating GABAergic interneurons are depleted in SCZ, 
desynchronization may explain the information processing 
difficulties [60].

In the GI tract, accumulation of npGH induces intestinal epithelial 
cells (IECs) senescence via p53 and insulin growth factor-1 (IGF-
1), enabling microbes and/or their molecule to migrate into the 
systemic circulation, eventually reaching the brain [61,6]. Indeed, 
microbial translocation may be averted by novel approaches, such 
as lipid replacement therapy (LRT) and or 3-phosphoinositide-
dependent protein kinase-1 (PDK1) inhibitors [62].
 
In this article, we take a closer look at the role of SST and npGH in 
neuronal senescence, microbial translocation, gray matter loss, and 
HERV-W activation. We also discuss some potential strategies for 
restoring the homeostasis of npGH and somatostatin.

Natural Progression of Schizophrenia
The gray matter loss in SCZ, demonstrated in both antipsychotic 
naïve patients and in those treated with these drugs, suggests that 
this disorder progresses despite the available therapeutics [63,64].
This is in line with the discouraging SCZ outcome studies, and the 
continuous need for long-term psychiatric hospitals [65,5].
 
SCZ starts with a premorbid phase with very few or no symptoms, 
followed by a prodrome with behavioral changes, but without overt 
psychosis, which gradually transitions into the psychotic phase 
marked by acute positive symptoms, multiple hospitalizations, 
and medication nonadherence. The last phase, beginning in the 
late 40s or early 50s, is characterized by negative and cognitive 
symptoms, significant disability and poor response to medications 
[66] (Figure 1).
 

Antipsychotics: Electron Donors or Receivers?
Several studies have found that psychotropic drugs which 
give away electrons do not deplete the CNS gray matter, while 
electron accepting therapeutics do, suggesting that biophysical 
properties of these drugs may be more important for the treatment 
outcome than their receptor affinity or agonist/antagonist status 
[67,68]. This quantum conceptualization of antipsychotics opens 
a new research vista - the development of electron donor drugs.  
For example, dopamine agonists and dopamine (DA) itself are 
electron donors, while most, but not all, antipsychotic drugs are 
electron acceptors, suggesting that partial DA antagonists may be 
preferable for SCZ maintenance treatment [69]. This is significant 
as electron donors, DA and DA agonists were shown to promote 
gamma oscillations, while antagonists had the opposite effect [70]. 
This raises the question of the “anionic brain”: do externalized 
anionic phospholipids such as phosphatidylserine (PS), a marker 
of cellular senescence, contribute to the loss of gray matter? It has 
been established that PS on the cytoplasmic side of cell membranes 
binds several kinases, containing the pleckstrin homology (PH) 
domain. This molecular leitmotif regulates cell membrane-
recruited kinases, including PDK1, implicated in SCZ [71]. Since 
PS is externalized in senescent cells, bringing about the “anionic 
brain”, downstream PDK1-mediated phosphorylation is disrupted, 
likely disinhibiting glycogen synthase kinase 3 beta (GSK3β), a 
SCZ-associated enzyme (see below in Natural and synthetic PDK1 
inhibitors). For this reason, LRT may stabilize the function of cell 
membranes, restoring the homeostasis of these kinases.

We construe, that SST downregulation and the subsequent surge 
in npGH contribute to premature neuronal senescence and the 
negative and cognitive symptoms of SCZ. This model is supported 
by the postmortem mRNA studies, demonstrating low SST and 
NMDA in patients with negative symptoms [72]. In addition, 
preclinical studies, have shown that knockdown of parvalbumin 
(PV) or SST neurons, resembles negative symptoms of SCZ [73].

Premature Senescence and Somatostatin Loss
The most consistent neuroimaging findings in SCZ, gray matter 
loss and enlargement of lateral ventricles, indicate that reversing 
this pathology could ameliorate the negative and cognitive 
symptoms, likely improving the outcome [74-76].

For example, in SCZ, reduced gamma oscillations due to the loss 
of gray matter volume may be a measurable marker of negative 
symptoms. At the molecular level, npGH-mediated DNA damage 
and p53-induced cellular senescence likely drive the gray matter 
loss [22]. In this regard, recent studies have shown that the 
interplay between npGH and p53 contributes to the accumulation 
of damaged DNA and premature senescence (77). Excessive 
genomic damage downregulates SST, increasing npGH, which in 
return, promotes brain aging and senescence-mediated pathology 
[72,78]. Moreover, p53 upregulation activates HERVs, viral 
fossils previously connected to SCZ [79].
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Under physiological circumstances, SST augments NMDA, 
while in SCZ, NMDA is hypofunctional, probably reflecting 
neuronal senescence and loss of this hormone [80]. Therefore, 
SST augmentation may comprise a strategy for developing 
etiopathogenetic treatments for the negative and cognitive symptoms 
of SCZ [72]. Indeed, In neuronal membranes, SST enhances 
protein kinase B (also called AKT), inhibiting GSK3β, an enzyme 
suppressed by lithium and several antipsychotic drugs. In addition, 
SST, activates phosphoinositide 3-kinases (PI3K)/AKT pathway, 
further suppressing GSK3β [81]. Moreover, AKT upregulation can 
be accomplished by lowering the neuronal membrane ceramide, 
highlighting the key role of membrane lipidome in SCZ (see below 
in Lipid rafts: hubs of cellular senescence).

In IECs, the complex interaction between IGF-1, p53, and npGH, 
induces premature cellular senescence, disrupting the gut barrier. 
This facilitates microbial translocation from the GI tract into the 
host circulation, ultimately reaching the CNS. For example, upon 
brain entry, microbial LPS was shown to induce neuroinflammation 
and premature aging, a pathology observed in AD. Indeed, 
gut microbiota LPS was found postmortem in the brains of AD 
patients, confirming translocation [82]. Others found, specific 
microbiota and immunoglobulins in patients with SCZ with 
negative symptoms, further linking this pathology to microbial 
migration outside the GI tract [83]. Interestingly, gut microbes, 
Bacillus subtilis and Escherichia coli can synthesize SST, 
demonstrating a possible feedback mechanism of counteracting 
excessive npGH [84,85]. 

It is believed that gray matter loss in SCZ occurs at the expense 
of neurites and synapses of the inhibitory parvalbumin (PV)-
expressing GABAergic interneurons, a subgroup of which release 
SST. It is noteworthy that neurons secreting vasoactive intestinal 
polypeptide (VIP) inhibit SST and GABA, disinhibiting the 
pyramidal cells [86,87] (Figure 3). For this reason, VIP inhibitors 
should be assessed for negative and cognitive symptoms of SCZ.

During the development and childhood, inhibitory GABAergic 
interneurons are underdeveloped and appear gradually during 
adolescence and early adulthood. In contrast, the number of 
excitatory synapses decreases during this time as the CNS 
undergoes adolescence-mediated recalibration [5,88]. The loss 
of gray matter volume and gamma oscillations in SCZ and AD 
is believed to be the result of excessive microglial “pruning” of 
neurites and synapses [73,89-91]. However, senescence-depleted 
SST may lead to the loss of dendritic arborizations, producing the 
same pathological effect as over-pruning [92].

Cellular senescence is an anticancer program marked by resistance 
to apoptosis, irreversible proliferation arrest, active metabolism, 
and a specific secretome, known as the senescence-associated 
secretory phenotype (SASP) which contains enzymes, cytokines, 
and npGH [6]. These molecules spread the senescent phenotype 
to the neighboring healthy cells, promoting inflammation. 
Upregulated npGH may be the cause of senescent cells’ resistance 
to apoptosis as well as the neuronal reattempts at mitosis. 
Augmenting gamma oscillatory band may improve insight in 

Figure 1: SCZ is believed to be a neurodevelopmental disorder, which starts “in utero”. There are usually no symptoms, or very few symptoms in the 
initial, premorbid phase. The following prodromal phase is marked by behavioral changes but no overt psychosis. The subsequent psychotic phase 
is characterized by acute positive symptoms, multiple hospitalizations, and medication nonadherence. The last SCZ phase, beginning around the age 
of 50, is characterized by negative and cognitive symptoms, significant disability, and poor response to medications. As patients get older, cognitive 
disorders usually begin during this phase. 
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Figure 2: Cellular senescence, an anticancer program, is activated by damaged DNA. The genome guardian, p53 initiates the senescence phenotype 
and repairs the genome. Senescence lowers SST and increases the levels of npGH which also upregulates IGF-1.  In the GI tract, senescent intestinal 
epithelial cell (IECs) can disrupt the permeability of gut barrier, enabling microbial migration across the lamina propria. Premature neuronal senescence 
also activates HERVs, viral fossils comprising 8% of the human genome. Translocated bacteria and their molecules can reach the brain, causing 
neuronal damage by activating microglia.
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Figure 3: Gamma oscillations comprise a rapid rhythm believed to be generated by the synaptic “chatter” of inhibitory GABAergic interneurons, such 
as PV-expressing and somatostatin (SST)-expressing cells which interact with GABA receptors. When inhibitory neurons fail to suppress the pyramidal 
cells, the first psychotic episode may become manifest.  In the figure, a VIP neuron inhibits PV and SST cells, disinhibiting the pyramidal neuron.
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patients with SCZ, likely by promoting neurite growth, opening 
novel treatment opportunities [93,94]. For example, several 
studies have found that 40 Hz intranasal photobiomodulation or 
transcranial magnetic stimulation (TMS) at 40 Hz were beneficial 
for negative symptoms and cognition in SCZ [95-99]. Aside from 
gamma oscillations, anosognosia correlates directly with the loss 
of both gray matter and SST [100-102]. Can gray matter loss be 
restored? Studies are contradictory in this area and much more 
research is needed.

The Good Vibes and The Bad Vibes
Oscillations or vibrations are fundamental properties of all 
matter, including the living organisms [103,104]. For example, 
auditory cortex not only responds to the exogenous oscillatory 
input but also generates its own spontaneous oscillations, likely 
utilizing these waves as a signaling platform [105]. In addition, 
pancreatic β-cells utilize electrical and metabolic oscillations to 
signal with other cells, suggesting that this communication tool 
is used routinely for intercellular crosstalk [106]. In the CNS, 
astrocytes communicate via calcium (Ca2+) waves evoked by 
the GH-activated NMDA channels, implicating this hormone in 
glial homeostasis [107,108]. This is significant as SCZ, marked 
by impoverished gamma spectrum, has also been associated 
with abnormal Ca2+ signaling, further implicating SST in this 
pathology [109]. Simple organisms, including yeast, were shown 
to communicate with their counterparts via partially synchronized 
glycolytic oscillations, indicating that this mechanism is highly 
conserved in nature [110,111]. Moreover, microbial community 
in the GI tract was demonstrated to oscillate in synchrony with 
the metabolism, suggesting that the enteric nervous system (ENS) 
may sense these signals and relays them to the CNS [104].

Oscillation synchronization via “traveling waves”, can transfer 
information to distant brain regions, likely driving human 
awareness. In contrast, desynchronization, observed during 
general anesthesia, induces unconsciousness, emphasizing 
the role of this signaling platform for the higher order of brain 
functions [112,113]. Indeed, it is believed that gamma waves, 
drive both the interoceptive awareness and cognition, contributing 
to a highly specialized form of information processing [114,115]. 
Interoceptive awareness refers the individual’s ability to direct 
attention to the endogenous sensory information, discerning 
visceral cues on well-being, pain, discomfort, or ownership of 
limbs and body parts. In SCZ, anosognosia was associated with 
more frequent decompensations, worse psychotic or negative 
symptoms, and aggressive behavior, emphasizing the importance 
of insight for the outcome of this illness neuropsychiatric disorders, 
including SCZ, are often associated with anosognosia, neglect, 
or unawareness of the illness presence. For example, strokes of 
the right hemisphere can cause left-sided neglect with denial of 
left extremities [118]. Another example of anosognosia is failure 
to acknowledge one’s own memory impairment, a phenomenon 
observed in cognitive disorders as well as in viral infections, 
including HIV and COVID-19 [119,120]. These findings have 
rekindled the interest of researchers and clinicians in the mental 

illness-associated anosognosia.  Several neuroimaging studies 
have linked interoceptive awareness to insight as well as the 
abundance of GABAergic interneurons in the insular cortex (IC), 
a brain area associated with insight.

GABAergic interneurons are comprised of PV—expressing 
neurons, SST-expressing cells and 5-hydroxytryptamine 
(5HTRs) cells which include VIP-generating neurons (Figure 4). 
Interestingly, SST interneurons and some VIP neurons express 
muscarinic receptors, which are currently targeted in SCZ 
[121]. For example, xanomeline, a muscarinic M1/M4 agonist, 
exerts antipsychotic properties despite very low affinity for DA 
receptors, suggesting that non-dopaminergic transmission may 
be implicated in SCZ [122]. Therefore, enhancing GABAergic 
signaling to ameliorate anosognosia could likely be accomplished 
by inhibiting VIP-expressing GABAergic interneurons (Figure 4) 
[123]. Ameliorating anosognosia may significantly improve the 
long-term prognosis of SCZ, therefore, searching for therapeutics 
in this area is of paramount importance [124]. Along this line, a 
recent preclinical study has identified SST interneurons in anterior 
insula, suggesting that depletion of this hormone may impair 
insight by driving neuronal senescence [125].

Taken together, SCZ characteristics, including decreased gray 
matter volume, anosognosia, and impaired gamma oscillations 
may mirror the loss of inhibitory SST interneurons. Absent SST, 
npGH is upregulated, leading to cellular senescence and likely, the 
negative symptoms of SCZ [126,127].
  
HERVs, Ancient Viruses Causing Contemporary Illness
DNA damage-associated cellular senescence was shown to 
activate HERV-W, an ancient retroviral element, associated with 
SCZ [128-133). HERV-W is encoded in the regulatory region 
of GABA receptor B1 (GABBR1), linking these pathogens to 
the inhibitory interneurons. HERV-W encodes for syncytin-1, a 
placental protein known for fusing individual trophoblasts into the 
syncytiotrophoblast, enabling placentation. Excessive syncytin-1 
may trigger pathology by fusing healthy neurons, a phenomenon 
observed in neurodegenerative disorders as well as in normal 
aging [134-136]. Most HERVs are incomplete genes, which 
are never transcribed, however, some of these elements were 
“domesticated” in time and had assumed physiological functions.  
Several studies have shown that HERVs can lay dormant in host 
DNA until activated by infections, cellular senescence, or placental 
hormones [137,138]. Upregulated by the damaged DNA, npGH 
induces cellular senescence and disseminates this phenotype via 
SASP. Damaged DNA upregulates p53, which in turn, induces 
further npGH transcription [6]. Recent studies have revealed that 
p53 can activate HERVs, utilizing them as tools against various 
cancers, suggesting that these dormant pathogens may destabilize 
the genome [139-141]. Elevated HERV-W levels were previously 
documented in SCZ, linking these viral relics to the genetics of 
SCZ [142].

In our previous work, we have discussed SARS-CoV-2 inhibition 
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Figure 4: The ENS gastrin neurons sense microbial input from the gut lumen and relay these signals to the CNS via vagal, humoral, and oscillatory 
pathway. Gastrin neurons secrete GH to activate the VIP-expressing GABA cells. These cells inhibit (the inhibitory) GABA and SST neurons, releasing 
the pyramidal cells’ inhibitory brakes.
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Figure 5: Contemporary viruses, including COVID-19, activate HERV-W gene, while inhibiting p53. Both actions allow for the transcription of HERV 
envelope (ENV) gene, producing excessive syncyctin-1. This protein drives pathological cell-cell fusion in various organs, including the brain. Fusion 
of postmitotic neurons may predispose to the development of cognitive or negative symptoms of SCZ.

Figure 6: LRT exerts neuroprotective action in SCZ via PDK1/AKT/ GSK3β axis. PS (part of glycerophospholipids) binds PDK1, recruiting this 
kinase to the cell membrane. Natural or synthetic PDK1 inhibitors, enhance AKT-blockade of GSK3β, ameliorating the negative symptoms of SCZ.
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of p53 and HERV-W activation, pathological cell-cell fusion and 
virus-induced neurocognitive deficits [143] (Figure 5). For this 
reason, we will not discuss HERVs in more detail here. Taken 
together, contemporary viruses can activate HERVs to enhance 
their own infection. Neurocognitive deficits, autoimmune disorders 
and SCZ were associated with reactivated HERVs. 

Novel, Natural Antipsychotic Strategies for Schizophrenia
Membrane and serum lipids are altered in SCZ, suggesting 
that a better understanding of neurolipidomics, could lead to 
the development of novel therapies for negative and cognitive 
symptoms [144]. These include natural lipids with plant-derived 
PDK1 inhibitors, aiming at replacing the oxidized membrane 
lipidome with natural phospholipids.

Lipid replacement Therapy (LRT) adapted for 
schizophrenia (LRT+K)
LRT refers to the oral intake of natural glycerophospholipids 
to which we added kaempferol (3,4′,5,7-tetrahydroxyflavone), 
a natural flavonoid. The aim of LRT+K is to gradually replace 
damaged lipids in neuronal cell membranes with natural glycerides, 
containing phosphatidylserine (PS) and plant-derived kaempferol.

LRT interacts with a pathway previously implicated in SCZ: 
PDK1/ AKT/GSK3β (3-phosphoinositide-dependent kinase 1/
protein kinase B/ glycogen synthase kinase 3).  PDK1, found 
upstream of AKT and GSK3β, contains a pleckstrin homology 
(PH) domain, which binds PS in the cytoplasmic leaflet of cell 
membranes. PS/PDK1 attachment has two beneficial effects: 1) 
recruitment of PDK1 at the cell membrane, and 2) maintaining 
PDK1 in inactive conformation (Figure 6) [145,146]. This 
modulates the downstream phosphorylome, inhibiting, GSK3β. 
Uninhibited GSK3β promotes psychosis and several antipsychotic 
drugs and lithium are inhibitors of this enzyme [147].

AKT also contains a PH domain which binds PS in the lipid rafts. 
However, unlike PDK1, upon attachment to PS, AKT becomes 
active (probably via autophosphorylation). Activated AKT 
suppresses the downstream GSK3β, lowering the risk of psychosis 
(Figure 6) [145,146]. In contrast, kaempferol inhibits PDK1 (by a 
non-PH mechanism), probably via regulating the phosphorylation 
of AKT and GSK3β. Therefore, unlike antipsychotics and lithium, 
kaempferol, blocks PDK1 in a totally natural manner [148]. In 
addition, OSU-03012, a synthetic PDK1 inhibitor, is currently 
being evaluated for anticancer efficacy. OSU-03012 may help LRT 
by inactivating PDK1 by a mechanism different than PS (Figure 
6). Taken together, PS, a component of LRT, inactivates PDK1 
by recruiting it to the cell membrane. Conversely, PS attachment, 
activates AKT effectively suppressing GSK3β and psychosis. 

Lipid Rafts: Hubs of Cellular Senescence
Lipids play a key role in the pathogenesis of negative and cognitive 
symptoms of SCZ not only because of lipid oxidation but also 
because of decreased membrane cholesterol [149]. For example, a 
study found that external radiofrequencies-induced cell membrane 

oscillations depend on the lipid composition (the more cholesterol, 
the more fluid the membrane) [150]. Cholesterol modulates the 
bilayer structure of cell membrane by altering not only the fluidity, 
but also the thickness, compressibility, exocytosis of secretory 
vesicles, and oscillatory activity. Suggesting that in the absence 
of this lipid, cell membrane vibrations are attenuated [151]. In this 
regard, ceramide has a more rigid molecular structure and restrains 
the oscillatory activity [152].
 
In senescent neurons, lipid rafts contain a disproportionate 
amount of ceramide compared to cholesterol, suggesting that old 
membranes are much less flexible and resistant to synchronization 
[153,154]. Indeed, earlier studies have implicated ceramide 
and sphingosine-1-phosphate in SCZ, further linking neuronal 
senescence to the biophysical properties of cell membranes 
[155-158].  Interestingly, several antipsychotic drugs intercalate 
themselves in the lipid bilayer, altering the biophysical properties 
of cell membranes. This suggests that antipsychotics may exert 
their actions by dopaminergic and non-dopaminergic mechanisms, 
the latter, including biophysical [159]. For example, cell membrane 
sterols were found altered in individuals at ultra-high risk of 
psychosis (UHR), suggesting that the membrane lipidome may 
be crucial for the pathogenesis of SCZ [160].  Likewise, in older 
individuals, the lipid composition of neuronal plasma membrane 
is altered in favor of ceramide, as cholesterol is replaced with this 
lipid in older individuals [161-163]. Indeed, loss of cholesterol may 
reduce gamma frequencies, predisposing to cognitive deficit [164]. 
Moreover, npGH was demonstrated to upregulate cell membrane 
ceramides, suggesting that aside from the genome, this hormone 
may also damage the cell membranes [165]. Taken together, as 
LRT provides healthy natural lipids to neuronal lipid rafts, this 
intervention may rehabilitate not only the lipidome but also the 
gray matter and the oscillatory gamma activity.

Natural and synthetic PDK1 inhibitors
Protein kinases are enzymes that transfer phosphate groups from 
adenine triphosphate (ATP) to specific proteins. PDK1 inhibitors 
exert their beneficial effects by inhibiting GSK3β. Natural PDK1 
inhibitors are ubiquitous, being present in numerous fruits and 
vegetables and for this reason, have no known adverse effects 
(Table 1).

Table 1: Natural flavonoids PDK1 inhibitors.
PDK1 inhibitor Plant References

Kaempferol fruits, vegetables, and herbs 166
Quercetin Onions, kale, broccoli 167

Myricetin Oranges, berries, tomatoes, nuts, 
tea 168

Epigallcatechin-3 
gallate Green tea 169

Lupiwighteone 
isoflavone

Glycyrrhiza glabra; Lotus 
pedunculatus 170

Delphinidin Citrus fruits 171
Honokiol Cherries, berries, grapes 172

Delphinidin Cranberries, Concord grapes, 
Pomegranates 173
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Synthetic PDK1 inhibitors
Several synthetic PDK1 inhibitors have been developed, but few 
can cross the BBB. The exception is OSU-03012, a celecoxib 
derivative without cyclooxygenase-2 inhibitory activity, which 
exerts antiviral properties and is currently being evaluated for 
glioblastoma (Figure 6) [174,175]. OSU-03012 may be a suitable 
candidate for SCZ with negative and cognitive symptoms. At 
present, several other PDK1 inhibitors are in clinical trials for in 
AD. 

Conclusions
For the past 70 years, psychiatry has been obsessed with the 
postsynaptic dopaminergic blockade and paid much less attention 
to the gray matter loss, enlargement of lateral ventricles, and the 
paucity of gamma oscillations. Novel SCZ studies have started 
to emphasize the importance of local hormones, GABAergic 
interneurons, as well as the lipid composition of neuronal 
membranes. The therapeutic strategies derived from these models 
may, for the first time, improve SCZ outcomes. Limiting gray 
matter loss, restoring the homeostasis of SST interneurons, and 
npGH inhibition, may address the root cause of SCZ. Biophysical 
approaches, including TMS or photobiomodulation at 40 Hz, 
may promote healthy oscillatory activities, restoring the integrity 
of the connectome and the synchronization of brain areas. 
Acknowledging brain oscillations as a unique communication 
platform has the advantage of influencing the connectome in a 
noninvasive manner. Together, these approaches may address the 
etiopathogenesis, rather than SCZ symptoms, bringing for the first 
time, remission instead of symptom reduction.
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