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Deep Learning Meets Knowledge Graphs: A

Comprehensive Survey

Abstract

Knowledge Graphs (KGs) which can encode structural relations connect-
ing two objects with one or multiple related attributes have become an
increasingly popular research direction. Given the superiority of deep
learning in representing complex data in continuous space, it is handy to
represent KGs data, thus promoting KGs construction, representation,
and application. This survey article provides a comprehensive overview
of deep learning technologies and KGs by exploring research topics from
diverse phases of the KGs lifecycle, such as construction, representation,
and knowledge-aware application. We propose new taxonomies on these
research topics for motivating cross-understanding between deep learning
and KGs. Based on the above three phases, we classify the different tasks
of KGs and task-related methods. Afterwards, we explain the principles
of combing deep learning in various KGs steps like KGs embedding. We
further discuss the contribution and advantages of deep learning applied
to the different application scenarios. Finally, we summarize some critical
challenges and open issues deep learning approaches face in KGs.

Keywords: knowledge graphs, deep learning, knowledge graph representation.

1 Introduction

There has been a rapid growth in the importance of Knowledge Graphs
(KGs) along with their wide application to question-answering systems, search
engines, and recommendation systems [1–3]. In the era of knowledge engineer-
ing, a large number of KGs, such as Freebase [4], YAGO [5], and NELL [6],
have been developed gradually. KGs are large networks of real-world entities
described in terms of their semantic types and their relations to each other,
representing facts in the form of triples (head entity, relation, tail entity). Fur-
thermore, KGs can mine, organize, and manage knowledge from large-scale
data to improve the effectiveness of information usage and provide users with
more innovative services.

According to popular mainstream research, we identify a series of problems
in the lifecycle of knowledge graphs from construction to application. In the
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first phase of building KGs, extracting knowledge efficiently and reducing erro-
neous knowledge generated during this fact-extracting process have become
significant issues [7]. After the KGs have been created, it is also a challenge
to handle the dynamically growing facts and improve the scalability of KGs.
In addition, although the current knowledge graph contains tens of millions of
entities and relations, most suffer from incompleteness and noise [8]. How to
correct the facts and complete KGs has currently become a popular research
topic. Finally, researchers have to consider integrating advanced KGs related
technologies with different real-life scenarios for successful applications.

In the light of the successful application of deep learning to graph learning
areas, it can encode and represent graph data into vectors in continuous space
to extract the desired features of a graph [9–11]. Recently, there has been an
increasing interest in extending deep learning approaches for KGs motivated
by convolutional neural networks (CNNs), recurrent neural networks (RNNs),
and autoencoders from deep learning. Some new neural network architectures
have been rapidly developed to handle the complex data of knowledge graphs
over the past few years.

This article conducts a comprehensive survey of current literature on deep
learning for KGs, proposing a new classification criterion, contributing sig-
nificantly to the construction, representation, and application of knowledge
graphs. Our main contributions are summarized as follows.

• Comprehensive Overview: We comprehensively overview each phase of
the KGs lifecycle and the deep learning methods proposed. Besides, we have
explained and compared the more insightful methods in detail. In addition,
we analyze the contribution and advantages of deep learning methods to the
different application scenarios.

• New Taxonomies: We propose a new classification criterion based on the
process of KGs. Specifically, we refine the lifecycle of a knowledge graph
into three phases: knowledge graph construction, knowledge representation,
and knowledge-aware application. Then, based on the above three phases,
we classify the different tasks of KGs and task-related methods. This new
classification method is more similar to human cognition and can better help
researchers become familiar with the KGs domain.

• Broad Audience: We provide comprehensive coverage on advanced
research topics, which is suitable for most researchers, especially academics
new to KGs. The knowledge-aware applications section covers extensive
research topics from distinct disciplines, which provides insights for scholars
from both computer science and other research domains.

• Future Directions: This survey summarizes the challenges and open issues
of deep learning approaches in knowledge graphs, which sheds light on
potentially valuable future research directions. Specifically, knowledge trans-
fer in cross-domain, interactive learning and cognitive learning, scalability,
dynamics, anomaly detection, and explainability are illustrated.
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Table 1 Related Surveys

Survey Aspects Contribution

Hur et al. [12] KGs construction
This paper critiques state-of-the-art automated techniques to produce

knowledge graphs of near-human quality autonomously.

Lin et al. [13] Knowledge representation learning (KRL)
This paper introduces the motivations for KRL, and an overview of the

existing approaches with applications of KRL.

Zou et al. [14] KGs application
This paper introduces KGs applications stemming from different domains,

and points out advancements of applying KGs.

Abu et al. [15] Domain-specific KGs
This paper offers a comprehensive definition of a domain-specific KGs

and the state-of-the-art approaches drawn from academic works.

Ji et al. [16]
Knowledge acquisition, KRL, This paper focuses on the classification of KGs related technologies and

Temporal KGs, KGs application provides a comprehensive review of KGs.
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The rest of this paper is organized as follows. Section 2 presents the defini-
tion of KGs and a brief introduction to deep learning on KGs. Deep learning
in knowledge graph construction, representation, and application are respec-
tively introduced in Section 3, Section 4, and Section 5. Challenges and open
issues are come up with in Section 6. Finally, Section 7 concludes the paper.

2 An Overview of Knowledge Graphs

2.1 Related Surveys

As shown in Table 1, previous surveys on deep learning approaches for knowl-
edge graphs have mainly unfolded against merely representative aspects of
KGs, such as knowledge graph construction [12], knowledge representation
learning [13], knowledge graph application [14, 17] or domain-specific knowl-
edge graphs [15]. Based on the mentioned surveys, this survey focuses on
introducing the knowledge graph systematically or comprehensively. Of course,
previous researchers have also presented surveys that comprehensively intro-
duce the knowledge graph. For example, Ji et al. [16] provides a more full-scaled
view from fourfold and goes deeper into the flow of KRL. However, like previ-
ous reviews, its taxonomies focus too much on the elaboration and introduction
of technologies, which is more suitable for researchers who have some insights
into fields related to KGs. In contrast, this survey starts from the flow of the
KGs lifecycle, focusing on the relevance of various phases from construction
to application, and comprehensively introduces deep learning-related methods
in each phase. In summary, compared with previous surveys, our survey has a
more comprehensive introduction to deep learning and KGs.

2.2 Deep Learning for Knowledge Graphs

This survey follows a phase decomposition of the knowledge graphs lifecycle. It
provides a comprehensive literature review of research related to deep learning
at each phase, including knowledge graphs construction, knowledge represen-
tation, and knowledge-aware applications, where the taxonomy structures are
illustrated in Fig. 1.

Knowledge Graphs Construction: Knowledge graph construction is
the foundation for the following applications. The prerequisite for construction
is the precise extraction of knowledge from structured and unstructured data
sources. The current mainstream research directions for knowledge extraction
mainly include relation extraction, entity extraction, and attribute extraction.
Various deep neural network (DNN) based methods are widely used for relation
extraction tasks, including graph neural network (GNN), CNN, RNN, etc [18].
Entity extraction is divided into entity discovery/recognition, entity disam-
biguation, and entity resolution. Attribute extraction is the task of adding
auxiliary information to the knowledge graphs by extracting the attributes of
entities, of which the forms include neural networks, multi-model, and others.
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Fig. 1 Categorization of deep learning on knowledge graphs through lifecycle.

Knowledge Representation: Knowledge representation is essential for
further utilization of the acquired knowledge that provides the computational
conditions and theoretical possibilities for downstream applications [19–21].
We categorize deep learning for knowledge representation into knowledge
graphs representation learning and knowledge graphs completion. The former
is a critical research issue for capturing plenteous semantic information of
elements in KGs, including translational, multiplicative, graph-based, neural
networks, and temporal models. The latter is the task of predicting missing
facts in KGs, and the relevant deep learning methods can be divided into three
types: the first is traditional path-based reasoning method, the second type is
the probability graph model, and finally, the model based on representation
learning [22].

Knowledge-Aware Application: Deep learning in knowledge-aware
applications includes recommender systems, question answering, natural lan-
guage understanding, decision making, and domain-specific Knowledge Graphs
(e.g., scholarly, biomedical, musical).

2.3 Notations and Definitions

The definition of a knowledge graph will change with its orientation, leading
to a diverse definition of it. For example, the definition of a domain-specific
knowledge graph will emphasize the role of ontologies in building the graph.
However, for a domain-independent knowledge graph, its definition will stress
the importance of multiple kinds of triples. In this survey, we follow the per-
vasive approach of defining the knowledge graph, KG G, considered to contain
a collection of triples {(h, r, t)} ⊆ N × R × N , in which the entity set is
denoted as N while the relation set is denoted as R. Specific notations and
their descriptions are listed in Table 2.
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Table 2 Notations and Definitions

Notations Definitions
N The set of entities in KG
R The set of relations in KG
G A knowledge graph G = {N ,R}
T The set of tasks
(h, r, t) Triple of head, relation and tail
(h, r, t, τ) Triple added by a temporal dimension
(h, r, t) Embedding of head, relation and tail
M Transition matrix
I Identity matrix
h⊤ Transpose vector
h⊥ Projected vector
fr(·), g(·) Score function
σ(·) Activation function
· l1/2 L1 or L2 norm

Rd d-dimensional Euclidean space
Cd d-dimensional complex space
concat(·), [h; t] Connection operator
⟨h, r⟩ Hadmard product
h ◦ r Hadmard product
h ⋆ t Circular correlation
diag(·) Connection operator
ω Convolutional filters
∗ Convolution operator

3 Deep Learning for Knowledge Graphs
Construction

3.1 Relation Extraction

Relation extraction (RE) is the key subtask to construct large-scale KGs, which
aims to extract entity pairs from natural language text and recognize the
semantic relationships between them. Traditional methods [23–28] have been
put forward to achieve relation extraction tasks. However, those methods were
highly counting on the manual design features. They encountered problems
such as high time complexity, which may be challenging to apply to large-scale
relation extraction tasks. In recent years, with the widespread application of
deep learning technology, it has been widely used automatically in extraction
tasks and many new neural models have been set forth, many of which are
listed in Table 3.

Deep neural networks, including CNNs, RNNs, and GNNs, have been dif-
fusely applied in relation extraction and other knowledge graphs construction
fields. There are apparent advantages of convolutional neural networks in fea-
ture extraction. Liu et al. [29] first applied a convolutional network to relation
extraction by incorporating lexical features. Then based on the previous work,
Zeng et al. [30] explored a CNN-based model with position features, which
encoded the relative distances to entity pairs. However, this model only con-
siders local features but ignores global attributes. The method proposed by
Nguyen et al. [31] utilizes multiple window sizes filters for relation extraction



Springer Nature 2021 LATEX template

Deep Learning Meets Knowledge Graphs: A Comprehensive Survey 7

while considering CNN as an encoder. Santos et al. [32] developed a novel loss
function while ranking CNN to tackle the relation classification task. As shown
in Fig. 2(a), PCNN [33] aims to capture structural information between two
entities by devising a piecewise max-pooling layer. To capture sentence-level
interaction information for more accurate rates of relation extraction, Jiang et
al. [34] realized the information sharing between the different sentences and
dealt with the multi-label characteristics of relation extraction.

Despite the CNN-based approaches having been successful, researchers
found that CNN cannot handle temporal sequence, particularly for the long-
distance dependency between entity pairs. So recurrent neural network is
introduced for its superiority in sequential data modeling. Zhang et al. [35]
adopted bi-directional RNN (BiRNN) to model long-distance relation pat-
terns. Like the bi-directional structure of BiRNN, bidirectional long short term
memory (BLSTM) [36] is designed to deal with the relation extraction tasks
by mining the sentence-level representation. Miwa and Bansal [37] proposed a
novel end-to-end model using LSTMs, which was based on sequences and tree
structures.

Graph convolutional network (GCN) is also constantly applied to rela-
tion extraction for its superiority in capturing contextual relationships and
structural features. The syntactic dependency tree contains the dependency
relationships between words in a sentence. Introducing GCN into the rela-
tion extraction task can mine deeper semantic information. C-GCN [38] pools
information over arbitrary dependency structures efficiently in parallel by
extending GCN. RESIDE [39] utilized GCN to encode grammatical informa-
tion in the text. AGGCNs [40] take full dependency trees as inputs in an
end-to-end manner by applying GCN. Due to the importance of long-tail rela-
tions, few long-tail imbalance data are available. Zhang et al. [41] applied GCN
to learn relational knowledge. Recently, MrGCN [42] is designed to accomplish
discourse-level RE tasks, along with a novel graph pooling approach.

Attention mechanisms and other deep learning techniques are widely inte-
grated into relation extraction tasks. For example, to alleviate the wrong
labeling problem, PCNN+ATT [43] is introduced to represent the seman-
tics of sentences for RE, which is a kind of sentence-level attention-based
model. At the same time, Zhou et al. [44] applied attention mechanisms and
BLSTM networks to relation classification, aiming to capture the semantic
information. Considering multi-lingual data for relation extraction, MNRE [45]
utilized mono-lingual attention to select sentences within a language and
a cross-language attention mechanism to take advantage of the consistency
and complementarity of different languages. To deal with the wrong label-
ing problem mentioned before, Wang et al. [46] utilized the prior knowledge
from KGs and supervised the learning process directly. Reinforcement learn-
ing is a branch of machine learning, and it emphasizes how to act based on
the environment to maximize the expected benefits. Qin et al. [47] proposed
a reinforcement learning-based model for distant supervision RE, which can
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deal with the false-positive problem. Due to noise labeling problems in dis-
tant supervision relation extraction, DSGAN [48] firstly considers adversarial
learning. The model utilizes a generator and a discriminator that distinguish
positive and negative data samples. In addition to the methods mentioned
above, other deep learning techniques, for example, deep residual learning, can
also be applied for relation extraction [49].

3.2 Entity Extraction

3.2.1 Entity Discovery/Recognition

The entity is the essential component of knowledge graphs, and entity recog-
nition, also known as named entity recognition (NER), plays a major role in
knowledge graph construction. NER is the process of locating the boundaries
of named entities in text and classifying them into a set of predefined types.
Traditional methods can be divided into three categories, including super-
vised learning methods, semi-supervised learning methods, and other methods
based on rules, dictionaries, and online knowledge bases. As the applicability
of traditional methods declines, many other techniques based on deep learning
are constantly proposed. For example, Lample et al. [50] proposed a neural
architecture that does not rely on term resources or features but only on small-
scale supervised training data and unannotated corpora. For decoupling the
work of feature engineering and increasing the applicability and usability of
the model, Jason and Eric [51] proposed a new neural network structure, as
illustrated in Fig. 2(b). They used BiLSTM and CNN hybrid structure to
generate and measure word-level and character-level features, thus eliminat-
ing the need for most feature engineering. Andrej et al. [52] developed a novel
framework based on parallel recurrent neural networks for NER. The motiva-
tion lies in its ease of distribution and ability to reduce the total number of
parameters. MGNER [53] is aimed to deal with multi-granularity named entity
recognition. This task refers to situations where multiple entities in a sentence
do not overlap or are entirely nested. Li et al. [54] designed a unified model
for NER, which can deal with both flat and nested NER tasks. For domain-
specific entity recognition tasks, K-BERT [55] can add domain knowledge into
a model; unsurprisingly, it outperforms BERT [56]. Recently, Nie et al. [57]
proposed a novel knowledge-aware model for NER, tackling the heterogeneity
issue between NER and KB-type systems.

3.2.2 Entity Disambiguation

Entity disambiguation, also known as entity linking, is the task of matching
the ambiguous entities to the corresponding entities in the knowledge graphs,
which is the first step to making machines understand natural language. For
instance, Jingjing Guo, a former member of China’s diving team, won the gold
medal at the 2004 Athens Olympics. The name Jingjing Guo should be linked
to the entity of Jingjing Guo in the KG. The current entity disambiguation
approaches are constantly being proposed through deep learning-based work
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Table 3 A summary of relation extraction approaches

Category Method Architecture Brief Problem or Contrubution

CNN-based

Liu et al. [29] CNN + synonym coding Semantic knowledge aggregation among words

O-CNN [30] CNN + max-pooling Capturing lexical and sentence-level features

Multi-CNN [31] CNN + multiple window sizes + max-pooling Unbalanced corpus

CR-CNN [32] CNN + max-pooling + ranking loss Efficiency improvement of artificial classes

PCNN [33] CNN + piecewise max-pooling Noise labeling problem

MIMLCNN [34] CNN + cross-sentence max-pooling Multi-label nature of distant supervised relation extraction

RNN-based
RNN+PI [35] RNN + max-pooling + position indicators Long-distance pattern learning problem

BLSTM [36] Bi-LSTM + max-pooling Sentence level representation

GCN-based

C-GCN [38] GCN + path-centric pruning Dependency tree optimization and efficiency improvement

RESIDE [39] GCN + additional supervision Modeling syntactic information

AGGCNs [40] GCN + multi-head attention + dense layer Irrelevant information from the dependency trees

KATT [41] GCN + CNN+ attention Long-tail problem of relations

MrGCN [42] GCN + pooling Learn larger receptive fields

Other

PCNN+ATT [43] Attention + PCNN Noise labeling problem

Att-BLSTM [44] Attention + BiLSTM Capturing sentence-level semantic information

MNRE [45] Attention + CNN Multi-lingual data for relation extraction

DSGAN [48] Attention + PCNN/CNN + GAN Noise labeling problem

ResCNN-x [49] Residual connection + CNN-x Distant supervised noisy relation extraction
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(a) PCNN (b) BiLSTM-CNN

Fig. 2 Illustrations of some knowledge graph construction tasks: (a) Relation extraction
with PCNN; (b) Entity recognition with BiLSTM-CNN.

to do entity linking. For example, Huang et al. [58] came up with a fresh
deep semantic relatedness model based on deep neural networks to measure
entity semantic relatedness. Ganea et al. [59] put forward a novel deep learn-
ing model for joint document-level entity disambiguation, which leverages a
neural attention mechanism over local context windows to learn the represen-
tation. To measure the semantic matching between the mention’s context and
target entity, Phan et al. [60] developed a deep learning model by utilizing
the attention mechanism and LSTM for entity disambiguation. Cao et al. [61]
proposed a new neural model named neural collective entity linking (NCEL)
for encoding local contextual features and global coherence information by
employing a GCN. Through thinking of connections as underlying variables,
Le and Titov [62] induced relations by optimizing the entity-linking model in
an end-to-end manner. Recently, Bootleg [63] proposed a self-supervised model
for entity disambiguation tasks.

3.2.3 Entity Resolution

Entity resolution refers to identifying all mentions of the same real-world entity
within a knowledge base or across multiple knowledge bases [64]. As the real
world develops, KGs gradually expand, making semantic relationships between
entities a greater challenge to overcome. Entity resolution can handle the above
problems and reduce the complexity by duplicating and linking entities and
proposing canonicalized references to entities. Meanwhile, entity resolution has
been applied in various domains, such as finance and biology. Entity resolu-
tion may be named differently in different studies, including deduplication [65],
linking discovery [66], record linkage [67–69]. Traditional methods of entity res-
olution were based on distance or similarity. They then used machine learning
techniques to determine whether two entities are the same, for example, the
method [70] proposed by Konda et al. However, deep learning-based models
for entity resolution have been demonstrated successful in gaining better per-
formance. Zhu et al. [64] modeled the entity resolution problem as a multi-type



Springer Nature 2021 LATEX template

Deep Learning Meets Knowledge Graphs: A Comprehensive Survey 11

graph summarization problem. Meanwhile, the method was based on similar-
ity measures, which were not only limited to simple distance-based metrics
but also structural similarity. Deep entity resolution (DeepER) [71] switched
each tuple to distributed representation vector by using recurrent neural net-
work with long short term memory to capture similarities. Mudgal et al. [72]
showed that deep learning solutions were significantly outperformed existing
frameworks on unstructured textual data. Li et al. [73] developed a novel
entity resolution model named graph entity resolution (GraphER) using graph
convolutional neural networks, aiming to handle structured entity resolution
problems in a token-centric manner.

3.3 Attribute Extraction

Attribute extraction is the task of extracting entity attributes of which the
list is constructed by extracting the attribute name and value of the entity
from the original data of different information sources. When forming a triple,
the attributes of an entity can be thought of as a relationship between the
entity and its attribute values, which can be represented by (entity, attribute,
attribute value). Attribute extraction includes neural network-based attribute
extraction and other forms of attribute extraction, for example, multi-modal
attribute extraction. Whether the data is tagged or not, attribute extraction
can be divided into supervised, unsupervised, and semi-supervised attribute
extraction.

Alternatively, attribute extraction can be regarded as special relation
extraction. Still different from general relation extraction, the difficulty of
attribute extraction compared with relation extraction lies in recognizing the
entity’s attributes and attribute values. However, the structure of attribute
value is uncertain, so most studies are based on rule or pattern extraction.
ReNoun [74] uses a dependency parsing-based pattern discovery approach
to achieve attribute extraction for long-tail entities by inductively extract-
ing patterns from the training set through a remotely supervised approach.
The parsing results, however, lose the rich context around the entities in the
schema, and the process is costly for a large corpus. MetaPAD [75] aimed
to mine a novel typed textual pattern structure, called meta pattern, which
is extended to a frequent, informative, and precise subsequence pattern from
a specific context of massive text corpora. In addition, attribute extraction
based on neural networks can be transformed into sequence tagging or machine
reading comprehension tasks. For example, Zhao et al. [76] used a sequence
tagging model incorporating BERT to extract attributes from medical texts.
Unlike most research about attribute extracting information from text data, it
is worth mentioning that Robert et al. [77] introduced multi-modal attribute
extraction.



Springer Nature 2021 LATEX template

12 Deep Learning Meets Knowledge Graphs: A Comprehensive Survey

4 Deep Learning for Knowledge Representation

A network is composed of a set of nodes and edges, commonly employed to rep-
resent data in the real world. The effective representation of network features
can significantly improve the performance of downstream tasks [78]. Knowl-
edge representation is an abstract representation of the real world, and storage
is the foundation of knowledge graph construction, management, and appli-
cation. The vast amount of knowledge in the knowledge graphs from the real
world can only be processed by computers after it is appropriately represented.
At first, the knowledge representation methods include Predicate Logic, Pro-
duction Rule, Frame Systems, Probabilistic Graphical Model, and so on. With
the development of science, standard knowledge representation languages have
been constantly set forth, for example, RDF, XML, OWL, and so on. However,
previous knowledge representation methods are based on symbolic logic, which
can depict explicit and discrete knowledge but cannot represent a large amount
of knowledge in the real world that is not easy to be explained by symbolic
logic. Much deep learning-based knowledge representation methods are used
to overcome the disadvantages of conventional methods and effectively mine
and analyze the semantic relations between knowledge entities. This section
reviews recent advances in deep learning in knowledge representation which
is divided into knowledge graph representation learning and knowledge graph
completion.

4.1 Knowledge Graph Representation Learning

Over the past years, we have witnessed a rapid growth in knowledge graph
representation learning (KGRL), also known as knowledge graph embedding
(KGE). Network representation learning (NRL) is an effective graph analytics
technique and promotes users to deeply understand the hidden characteristics
of graph data [79]. Similar to the work of NRL on assigning low-dimensional
representations to nodes, KGRL aims to map entities and relations into low-
dimensional dense real-valued vectors while capturing their plenteous semantic
information for completing downstream tasks and applications. Meanwhile,
due to the similarity when handling features of graph-structured data, some
classical approaches of NRL including DeepWalk [80], Node2vec [81], Line [82],
SDNE [83] and GMM-based models such as GCN [84] and GraphSage [85],
also provide some novel insight for KGRL. However, NRL focuses on retaining
topological structure information in the representation space without learning
relational representation [86]. KGRL emphasizes head-to-tail relation, learning
node, and relation representations based on preserving structural information.
A knowledge graph is a multi-relational graph since the representation of rela-
tionships in a knowledge graph is no longer a single relation representation but
a multi-relation representation. The classification of KGRL models and some
related algorithms are listed in Table 4.
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Table 4 A summary of knowledge graph representation learning approaches

Category Method Entity embed. Relation embed. Scoring Function

Translational Models

TransE [87] h, t ∈ R
d r ∈ R

d ∥h+ r− t∥l1/l2
TransH [88] h, t ∈ R

d r,wr ∈ R
d

∥∥(h−w⊤
r hwr

)
+ dr −

(
t−w⊤

r twr

)∥∥
l1/l2

TransR [89] h, t ∈ R
d r ∈ R

k,Mr ∈ R
k×d ∥hr + r− tr∥l1/l2

TransD [90] h, t,wh,wt ∈ R
d r,wr ∈ R

k ∥h⊥ + r− t⊥∥
2
2

TransAt [93] h, t ∈ R
d r ∈ R

d Pr (σ (rh)h) + r− Pr (σ (rt) t)

Multiplicative Models

RESCAL [98] h, t ∈ R
d Mr ∈ R

d×d h⊤Mrt

DisMult [99] h, t ∈ R
d r ∈ R

d h⊤ diag (Mr) t

HOLE [100] h, t ∈ R
d Mr ∈ R

d×d r⊤(h ⋆ t)

ComplEx [101] h, t ∈ C
d r ∈ C

d Re
(
h⊤ diag(r)t

)

ANALOGY [102] h, t ∈ R
d Mr ∈ R

d×d h⊤Mrt

SimplE [103] h, t ∈ R
d r, r′ ∈ R

d 1
2
(h ◦ rt+ t ◦ r−1t)

TuckER [104] h, t ∈ R
d
e r ∈ R

d
r W ×1 h×2 wr ×3 t

Graph-based Models

RGCN [107] ei ∈ R
d Rr ∈ R

d×d eTs Rreo

SACN [108] h, t ∈ R
d r ∈ R

d g(vec(M(h, r))W )t

KBGAT [109] ei ∈ R
Ne×T rk ∈ R

Ne×T
(∏Ω

m=1 ReLU
([

h⃗i, g⃗k, h⃗j

]
∗ ωm

))
·W

RGHAT [111] h, t ∈ R
d r ∈ R

d ReLU(vec(ReLU([h; r] ∗ ω))Q)t

Neural Networks-based Models

NTN [113] h, t ∈ R
d r,br ∈ R

k, M̂ ∈ R
d×d×k

Mr,1,Mr,2 ∈ R
k×d

r⊤σ
(
hTM̂t+Mr,1h+Mr,2t+ br

)

SME [114] h, t ∈ R
d r ∈ R

d Gleft(h, r)
⊤Gright(r, t)

ConvE [115] Mh ∈ R
dw×dh , t ∈ R

d Mr ∈ R
dw×dh σ (vec (σ ([Mh; Mr] ∗ ω))W) t

ConvKB [116] h, t ∈ R
d r ∈ R

d concat(σ([h, r, t] ∗ ω)) · w

NAM [118] h, t ∈ R
d r ∈ R

d σ
(
z(L) · t+B(L+1)r

)

Temporal Models

Know-Evolve [120] ves ,ves ∈ R
d Rr ∈ R

d×d ge
s,eo

r (t) = ves(t−)T ·Rr · v
eo(t−)

TTransE [121] h, t ∈ R
d r ∈ R

d −∥h+ r+ τ − t∥L1/2

HyTE [122] h, t ∈ R
d r ∈ R

d ∥Pτ (h) + Pτ (r)− Pτ (t)∥L1/L2

TA-DisMult [124] es, eo ∈ R
d epseq ∈ R

d (es ◦ eo) e
T
pseq
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4.1.1 Translational Models

Translational models represent relations by interpreting them as the transla-
tion from head to tail entities, which are also used to measure the plausibility
of triples. Several translation-based models have been set forth to model multi-
relational data more effectively and easily. As shown in Fig. 3(a), TransE [87]
emphasizes that the vector of the head entity plus the relation is closer to the
vector of the tail entity in the representation space, namely h+r ≈ t, of which
the scoring function is defined as

fr(h, t) = ∥h+ r− t∥l1/l2 (1)

where l1 and l2 represent norms. Inspired by translational ideas, many exten-
sions have been constantly set forth. For instance, the strong assumption of
h + r ≈ t in the TransE model may lead to improper learning of representa-
tions in reflexive relations, one-to-many relations, and many-to-one relations.
To solve the problems, Wang et al. proposed TransH [88] shown in Fig. 3(b),
which emphasizes the projections of the head and tail entities being close to
each other on the hyperplane corresponding to the relation r, with a scoring
function defined as

fr(h, t) = ∥(h−w⊤
r hwr) + dr −

(
t−w⊤

r twr

)
∥l1/l2 (2)

where wr is the normal vector. In both TransE and TransH models, entities
and relations are represented in the same semantic space, which will limit
the expressive ability of the model to some extent. Due to this limitation,
TransR [89] is proposed, which maps head entity vector h and tail entity vector
t to hr=hMr and tr=tMr, with scoring function defined as

fr(h, t) = ∥hr + r− tr∥l1/l2 (3)

where Mr is the projection matrix. However, it doesn’t make sense for TransR
to use the same projection matrix while computing hr and tr. As shown in
Fig. 3(c), TransD [90] utilizes dynamic projection matrix, for the head entity
h and tail entity t, with mapping functions are respectively shown as

Mrh = rph
⊤
p + Im×n,Mrt = rpt

⊤
p + Im×n (4)

where Im×n is the identity matrix. After mapping, vectors of head entity and
tail entity are respectively computed as

h⊥ = Mrhh, t⊥ = Mrtt (5)

with the scoring function is defined as

fr(h, t) = ∥h⊥ + r− t⊥∥
2
2 (6)
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(a) TransE (b) TransH (c) TransD

Fig. 3 Illustrations of translational models: TransE, TransH and TransD.

In addition to the methods mentioned above, several variations have been
proposed. Following the translational principles, TransG [91] is proposed to
deal with multiple relation semantic problems through mining the multiple
potential meanings of pairs of entities whose relations may be associated with
corresponding triples in the knowledge graph. By improving the loss func-
tion of the previous translational method, TransA [92] can adaptively learn
the embedding of entities and relations in a knowledge graph. Besides, the
previous approaches ignored the hierarchical routine of human cognition, so
TransAt [93] adopts an attention mechanism to handle the problems above.
TransC [94] distinguishes concepts from instances by encoding instances, con-
cepts, and relations in the same semantic space. Cui et al. proposed TransL [95]
to learn the entity and relation embeddings by leveraging the local connection
explicitly. TransRHS [96] seamlessly integrated hierarchical relation struc-
ture into the embeddings. Recently, TransROWL [97] aims to enhance the
effectiveness of representation by injecting background knowledge into models.

4.1.2 Multiplicative Models

In multiplicative models, the likelihood of entity-relation-entity triple belong-
ing to the KG is quantified by a multiplicative score function. As shown in
Fig. 4(a), Nickel et al. developed RESCAL [98] which utilized tensor decom-
position and intrinsic structure of multi-relational data. To be more precise,
rank-r factorization was introduced, and the slice of X is factorized as

Xk ≈ ARkA
T , for k = 1, . . . ,m (7)

where A is the representation of entities and Rk is an asymmetric matrix.
DisMult [99] simplified RESCAL by restricting Mr to diagonal matrices, with
the scoring function defined as

fr(h, t) = h⊤ diag (Mr) t (8)

As a means to capture rich internal interactions in relational data while
making computation and training easier, HOLE [100] combines the expres-
siveness of the tensor product with the efficiency and simplicity of TransE,
using the cyclic correlation of vectors to represent entity pairs. ComplEx [101]
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(a) RESCAL (b) RGCN (c) SME

Fig. 4 Illustrations of some representation learning models: RESCAL, RGCN and SME.

expands DisMult by utilizing the composition of complex embeddings to cap-
ture semantic information of asymmetric relations. Liu et al. [102] proposed
ANALOGY, which models multi-relational data for optimizing the latent rep-
resentations concerning the analogical properties of the embedded entities and
relations, with the scoring function shown as

fr(h, t) = h⊤Mrt (9)

where h, t ∈ R
d is the embeddings of entities, and Mr is the relation matrix

limited the linear mapping. SimplE [103] introduces a simple improvement of
canonical polyadic decomposition and is considered the inverse of relations,
with the scoring function defined as

fr(h, t) =
1

2

(
h ◦ rt+ t ◦ r−1t

)
(10)

Same as the model mentioned above, TuckER [104] was developed for link
prediction by using tucker decomposition, and the scoring function is defined
as

fr(h, t) = W ×1 h×2 wr ×3 t (11)

where W ∈ R
de×dr×de is the core tensor and wr ∈ Rdr is the relation embed-

ding vector. Recently, Cao et al. introduced DualE [105] by integrating dual
quaternions into knowledge graph representation, with scoring function defined
as

fr(h, t) = ⟨a′h, at⟩+ ⟨b′h, bt⟩+ ⟨c′h, ct⟩+ ⟨d′h, dt⟩ (12)

ConEx [106] considered a multiplicative composition of a 2D convolution
with a hermitian inner product on complex-valued embeddings, with a score
computed as

fτ (h, t) = Re(⟨conv (eh, er) , eh, er, et⟩) (13)

where conv(·, ·) : C2d 7→ C
d is defined as

conv(eh, er) = f(vec(f([eh, er] ∗ ω))W + b) (14)
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4.1.3 Graph-based Models

In recent years, with the advantages of graph neural networks in learning
the representation of elements, we can better compute embeddings of entities
and relations in knowledge graphs. As illustrated in Fig. 4(b) RGCN [107]
presents relation-specific transformations and modeled multi-relational data
by applying graph convolutional networks, and the forward-pass update of the
entity is defined as

h
(l+1)
i = σ(

∑

r∈R

∑

j∈N r
i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i ) (15)

where h
(l)
i ∈ R

d(l)

is the state of l-th layer, Nr
i are neighbors of node i spe-

cific to relation r, and ci,r = N –i˝ˆ–r˝ is the normalization constant. RGCN
adopts novel encoder-decoder architecture, in which the encoder generates
entity embedding based on GCN [84] and the decoder predicts relations based
on entity embedding by semantic matching model. Based on the same architec-
ture, SACN [108] extends the RGCN to make it adaptable. Specifically, SACN
introduced a weighted graph convolutional network (WGCN) as an encoder,
which considered graph connectivity structure and node attributes in the com-
putation. Moreover, the decoder of SACN was a convolutional network named
Conv-TransE, with a scoring function defined as

fr(h, t) = f (vec (M (h, r))W ) t (16)

KBGAT [109] utilises graph attention networks as encoder while using the
multi-head mechanism to capture the semantic information from multi-hop
neighbourhoods, along with ConvKB, which is introduced as a decoder for
end-to-end link prediction. Ye et al. [110] proposed VR-GCN that combined
convolutional and translational characteristics. Unlike GCN, in each layer of
VR-GCN, the output is obtained by a nonlinear transformation after summing
and averaging the representations of its neighbours and itself. CompGCN [18]
jointly represents both entities and relations in the multi-relational graph
by leveraging entity-relation composition operations, with updating function
defined as

hv = f(
∑

(u,r)∈N (v)

W λ(r)φ (xu, zr)) (17)

where hv is the updated representation of node v, xu, zr is the initial embed-
ding of node u and relation r separately. W λ(r) ∈ R

d1×d0 is the parameter
specific to the type of the relation. RGHAT [111] is a new neighborhood-aware
model and aimed to compute different weights for different neighboring rela-
tions and entities. Recently, KEGCN [112] was proposed to represent both
entity and relation by using GCN and it utilizes several knowledge graph
embedding methods into GCNs for modelling multi-relational graphs.
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4.1.4 Neural Networks-based Models

In recent years, the research of neural networks encoding semantic information
of multi-relational data has been widely concerned. Many knowledge repre-
sentation methods based on neural networks are also emerging. For example,
Socher et al. proposed NTN [113] which first projects entities to their vector
embeddings in the input layer. Fig. 4(c) gives a simple illustration of SME [114],
another neural network framework which models multi-relational graphs into
a continuous representation space. SME defines several projection matrices to
describe the intrinsic relationship between entities and relations, and creates
two scoring functions for each triplet (h, r, t), where the linear form is defined
as

fr(h, t) =(M1lh +M2lr + b1)
T · (M3lt +M4lr + b2) (18)

and bilinear form is defined as

fr(h, t) = (M1lh ⊗M2lr + b1)
T · (M3lt ⊗M4lr + b2) (19)

In addition to these, convolutional neural networks are also used for KGRL.
For example, ConvE [115] applies 2D convolution over embeddings and mul-
tiple layers of nonlinear features to model the interactions in multi-relational
data by reshaping and concatenating the resulting matrix as input. The scoring
function is defined as follows:

fr(h, t) = σ (vec (σ ([Xh; Xr] ∗ ω))W) t (20)

where f is nonlinear function and vec is the vectorization operation, Xh, Xr

denote the 2D reshaping of h and r. ConvKB [116] also adopts CNNs to explore
global relations and only uses one-dimensional convolution. The final scoring
function of ConvKB is shown as

f(h, r, t) = concat (g ([vh,vr,vt] ∗Ω)) ·w (21)

Jiang et al. [117] proposed ConvR, an adaptive convolutional network spe-
cially designed to represent multi-relational data. In addition, NAM [118] also
uses deep neural networks to encode semantic information, and the scoring
function is defined as

fr(h, t) = σ
(
w⊤σ(W[h, r, t])

)
(22)

where W is weight matrix.

4.1.5 Temporal Models

Previous knowledge graph representation learning has focused on static knowl-
edge graphs where facts are not changed with time. However, the knowledge
graph used in the real-life application is dynamic for the availability of large-
scale event data with time stamps. The proposed temporal models offer
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knowledge graph representation learning methods to aggregate the rich tem-
poral information in dynamic knowledge graphs for better knowledge graph
representation. Generally, a novel temporal dimension is added to the triples,
represented as: (h, r, t, τ). For example, t-TransE [119] takes temporal infor-
mation into consideration. The temporal order score function is defined
as

g (ri, rj) = ∥riM− rj∥1 (23)

where M ∈ Rn×n is a transition matrix between pair-wise temporal ordering
relation pair (ri, rj). Know-Evolve [120] learns non-linearly evolving entity rep-
resentations at different times based on a novel deep evolutionary knowledge
network, and it utilises the temporal point process to describe the impact of
different time points. TTransE [121] extends TransE to encode time informa-
tion in the same representation space as entities and relations, with the scoring
function defined as

fτ (h, r, t) = −∥h+ r+ τ − t∥l1/2 (24)

HyTE [122], through a time-aware KGE approach, explicitly binds time to
the entity-relation space by associating each timestamp with the corresponding
hyperplane, of which the scoring function is shown as

fτ (h, r, t) = ∥Pτ (eh) + Pτ (er)− Pτ (et)∥l1/l2 (25)

The projected representation on wτ is computed as

Pτ (eh) = eh −
(
w⊤

τ eh
)
wτ

Pτ (et) = et −
(
w⊤

τ et
)
wτ

Pτ (er) = er −
(
w⊤

τ er
)
wτ

(26)

where the ∥wτ∥2=1. In addition, DE-SimplE [123], a novel temporal knowledge
graph embedding approach, provides the entity’s characteristics at any point
in time by equipping the static model with a diachronic entity embedding func-
tion. TA-DistMult [124] applies RNNs to learn the embedding of relation types
while considering the temporal information. Lacroix et al. proposed TCom-
plEx [125] enlightened by the canonical decomposition of tensors, which was
the extension of ComplEx [101]. RE-GCN [126] is aimed to learn the dynamic
representation of entities and relations at each timestamp while capturing the
structural dependencies within the knowledge graph. Wu et al. [127] developed
TIE to address some challenges, such as catastrophic forgetting.

4.2 Knowledge Graph Completion

The advancement of current knowledge graphs automation technologies makes
it easy to build large knowledge graphs containing millions of entities and
relationships. Despite the tremendous scale of the knowledge graphs, they are
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still suffering from the problem of incompleteness and inadequacy. Research
about knowledge graph completion (KGC) has been promoted to automatically
complete the missing facts of a triplet, which can make the information in the
knowledge graphs more comprehensive. According to the missing part, it can
be divided into three sub-tasks:

1. Head entity completion Given the relation and tail entities, complete the
missing head entities in the triplet, for example, (?, locatedIn, California).

2. Tail entity completion Given the relation and head entities, complete the
missing tail entities in the triplet, for example, (Los Angeles, locatedIn, ?).

3. Relation completion Given the head and tail entities, complete the missing
relation in the triplet, for example, (Los Angeles, ?, California).

Overall, classifying nodes and predicting edges are two essential tasks that
many complex systems tried to undertake [128]. Put another way, the subtasks
of KGC can also be divided into entity prediction, link prediction, and triple
classification.

Knowledge graph completion algorithms can be divided into two types
according to whether they can process new entities or new relations, namely,
static knowledge graph completion (SKGC) and dynamic knowledge graph
completion (DKGC). However, in this survey, we classify knowledge graph
completion according to deep learning techniques. In recent years, relation
completion has become a hot topic in academic circles, and much work has
been focused on it. The relevant methods can be categorized into three types:
the first type is the relation path-based reasoning method; the second type
is the probability graph-based method; the final one is the method based on
representation learning.

The relation path ranking algorithm predicts the relation between two enti-
ties by using the path linking them as a feature. The relation path ranking
algorithm, implying complex graph structures and message transfer processes,
is highly interpretable and automatically discovers association rules from the
data. This tends to be more accurate than representation-based learning meth-
ods. This includes random walk, breadth-first search, and depth-first search.
For example, PRA [129] learns a weighted combination of path-constrained
random walkers and could utilize the complex path features of relational data.
Due to the shortcomings of PRA, which ignores the relevance of relations,
CPRA [130] couples the path ranking of multiple relations by introducing a
common-path-based similarity measure, which shows more significant inter-
pretability and predictive accuracy than PRA. Also, in dealing with the path
of multiple relations, Das et al. proposed a method [131] that integrated mul-
tiple paths by using neural attention modeling with RNN, including a novel
pooling function that does soft attention during gradient step and finding it
to work better.

Probabilistic graphs use nodes to represent variables, namely candidate
facts in the knowledge graph. The edges in the graph represent relations
between candidate facts [132]. Each node is attached with a certain probability,
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and the missing relation is found through probabilistic reasoning. Probabilis-
tic graphical models for KGC utilise the Bayesian network and Markov logic
network [133]. Markov logic network is a probability distribution model with
Markovian random variables combining the Markov network and first-order
logic, which has substantial application prospects in natural language process-
ing, complex network, information extraction and other fields. Qu et al. [134]
defined the joint distribution of all possible triples by using a Markov logic
network with first-order logic, which can be efficiently optimized with the vari-
ational EM algorithm. A Bayesian network is a directed acyclic graph in form,
which takes the network structure and node attribute information into consid-
eration to reflect the states of a part of the world being modelled and describe
how these states relate to probabilities. GaussianPath [135] adopts a trainable
Bayesian neural network to approximate Q-function, aiming to capture the
uncertainty of a multi-hop reasoning path for knowledge graph completion.

The representation learning-based completion method represents the enti-
ties and relations in the knowledge graph in a low-dimensional space. It then
defines a scoring function based on triples on each knowledge item. The
final scores of all candidate entities are calculated through a scoring func-
tion for ranking them. Compared with the two methods mentioned above,
the method based on representation learning is more general and efficient for
knowledge graph completion. Besides, many previous knowledge representa-
tion learning methods can be added directly as a module to the process of
knowledge graph completion tasks. For example, in the translational mod-
els, such as TransE [87], TransH [88], TransR [89], TransD [90], etc, can be
used to complete the knowledge graph. Graph-based models, for instance,
SACN [108], comprised of weighted GCNs and Conv-TransE, take the entity
attribute and internal structure of the knowledge graph into consideration,
and the effectiveness of SACN performs well in knowledge graph completion
task. Moreover, ConMask [136] utilises external text to lock missing relevant
entities. It leverages semantic averaging and CNNs to fully extract relation-
dependent representation from the textual features of entities and relations
in the KGs. TuckER [104] is based on the Tucker decomposition of a binary
tensor of known facts for knowledge graph completion.

5 Deep Learning for Knowledge-Aware
Applications

Deep learning techniques have received extensive research and attention in
recent years. This paper systematically introduces the practical applications
of deep learning techniques on knowledge graphs. According to our survey,
the main focus of knowledge-aware applications based on deep learning is on
recommender systems, question and answer systems, natural language under-
standing, and decision making, as described in Section 5.1 to Section 5.4 of
this paper. Applications on specific domains are presented in Section 5.5.
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5.1 Recommender Systems

Recommendation systems are used to solve the information overload problem
faced by users and have tremendous applications in various fields. Traditional
recommendation methods such as content filtering, collaborative filtering, and
hybrid methods [137] cannot discover potential connections between entities
denoting the latent interaction messages [138]. They also face problems such
as cold start and poor scalability. Traditional methods can easily lead to poor
accuracy or poorly interpretable recommendations for scenarios with sparse
data, making it difficult for users to understand why they have been rec-
ommended irrelevant items [139]. The successful application of deep learning
techniques on knowledge graphs has enabled the practical problems faced by
traditional recommendation methods to be solved [140]. The existing KG-
based recommendation methods can be categorized into embedding-based
methods and path-based methods [14].

5.1.1 Embedding-based

The recommendation system based on knowledge graph representation learn-
ing uses the KGE algorithm to transform KG to map users, items, and the
relationship between them into a continuous vector space. Further, it applies
the learned information such as entity similarity to complete the recommen-
dation task, improving the computation efficiency and providing semantic
support for the recommendation system. Since introducing deep learning-
based embedding methods in knowledge graphs, combining with some classical
embedding models such as TransE to implement recommendation systems has
achieved good results. For Example, Gourab Chowdhury et al. [141] introduced
TransE to learn embeddings of entities and relations to propose a neural fac-
torization model for recommendation tasks. Paula Gómez Duran et al. [142]
applied graph convolutional networks (GCNs) to an existing collaborative fil-
tering model to learn contextual information about interactions through a
graph convolutional embedding layer to enrich recommendations. Traditional
recommendation methods face several problems, as mentioned above, and
for the same, appropriate embedding models are proposed. Entity2vec [143]
is a recommended method that computes subgraph embeddings of specific
attributes to learn correlations between users and items, achieving excellent
performance despite sparse datasets and can better solve the problem of
sparse data compared to traditional recommendation methods. Star-GCN [144]
masks the input node embeddings and reconstructs the input node embeddings
through two components: graph decoding and graph encoding. The model can
learn entity embeddings that do not appear during the training process, thus
alleviating the cold-start problem.

5.1.2 Path-based

A knowledge graph is a heterogeneous network in which the entities repre-
senting users, items, and the interactions between them may have different
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types. Different paths can visually reflect the different connections between
users and items, so combining path reasoning with recommendation systems
can make the recommendation process more rational [145]. Lin et al. [146].
used a gated attention mechanism to capture user preferences from specific
types of paths and applied this information to path reasoning. Considering
the dynamic nature of some recommender systems, TPRec [147] adds tem-
poral information to knowledge graph path reasoning. Specifically, TPRec
treats user-item interactions as temporal-aware relationships and constructs a
knowledge graph of temporal-aware interactions, making the recommendation
process more interpretable.

5.2 Question Answering

A knowledge graph-based question and answer system (KBQA) is a technology
that extracts entities and relations from natural language questions and uses
knowledge such as reasoning rules to obtain answers in a knowledge graph.
Traditional KBQA methods include semantic analysis-based QA, information
retrieval-based QA, etc [148]. Semantic analysis-based QA analyses the seman-
tic information in natural language questions and converts it into a logical
form that can be understood by the knowledge base, thus reasoning through
knowledge in the knowledge-base to obtain the final answer [149]. Informa-
tion retrieval-based question and answer extracts entities from the question,
express the entities as question features based on specific templates and rules,
and retrieves candidate answer subgraphs in the knowledge base for filtering
based on the features [150].

However, traditional KBQA methods involve manual feature extraction
and human-defined templates and rules. There are problems such as the dif-
ficult manual design of rules and tedious feature extraction, which make the
methods very difficult to apply, and cannot handle complex semantic parsing
scenarios, and the accuracy of the results is not high enough. Therefore, com-
bining deep learning with KBQA has become a mainstream research trend in
recent years. Luo et al. [151], proposed a single-relational question answering
model based on BERT, which applied the attention mechanism to the seman-
tic association construction of natural language questions and KG facts and
optimized the representation of candidate objects with better results. Hao et
al. [152], provided an end-to-end cross-attentive model for different aspects of
a test taker’s response, where correctness is judged based on a weighted sum
of all aspects of the answer’s score. Daniil Sorokin et al. [153], combined gated
graph neural networks with semantic parsing, using neural networks to auto-
matically encode the graph structure for semantic parsing without involving
the manual extraction of features. Compared with traditional semantic pars-
ing methods, the model introducing a graph neural network can handle more
complex semantic parsing scenarios. Question answering is often accompanied
by reasoning. Cai et al. [154], provided a deep cognitive reasoning network
(DCRN) that encodes and later decodes questions to obtain reasoning path
information. Finally, it receives answers through two stages: unconscious rough
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recognition of candidate entities and conscious precise recognition of candidate
entities. Unlike specific rule-based reasoning question-and-answer systems, this
method can accomplish reasoning tasks through graph structure information,
free from the limitations of traditional methods.

5.3 Natural Language Understanding

Utilizing the rich background knowledge in the knowledge base during nat-
ural language understanding can enhance the learning ability of the model.
Knowledge-driven NLU tasks have made good progress in recent years, and
knowledge-aware NLU tasks, such as entity linking tasks and relationship
extraction tasks, have emerged. The application of graph neural networks in
natural language processing is summarised in detail by Wu et al. [155]. Specif-
ically, the deep learning-based knowledge-aware NLU task can be understood
as the following process: firstly, the prior knowledge in the external knowledge
base is mapped into low-dimensional vectors by graph representation learn-
ing techniques, and then the text representation learning in the NLU task is
enriched by using the knowledge base based on embedding, so that the text
has higher-level semantic understanding, thus solving the problem of lack of
background knowledge support in the traditional NLU model. Logeswaran et
al. [156] proposed a new Zero-Shot entity linking model in which entities are
described by only one paragraph of text and the model is not applied to a spe-
cific domain with robust domain application. KLMo [157] is a KG-enhanced
pre-trained language framework that proposes a knowledge aggregator to
model the interaction of entities and relations in KG to enhance the expressive
power of the language model. KCL-TEN [158] is a textual entailment network
where external knowledge and textual context interact, which introduces prior
knowledge from an external knowledge base in the model and uses graph atten-
tion networks to learn graph-level representations of text. Peng et al. [159]
proposed an event-based heterogeneous information network by incorporating
knowledge from external knowledge bases. Based on this heterogeneous infor-
mation network, they discovered an overall similarity between social events
and used a graph convolutional neural network to accomplish the classification
task of events. Dun et al. [160] provided a knowledge-aware attention network
(KAN) to detect fake news, where they extract entities from the news con-
tent, and the corresponding entities and their contexts in the knowledge base
are used as external supplementary knowledge. Entities and their contexts are
encoded by a transformer encoder and are finally fed into the classifier via a
multi-headed attention mechanism to determine the truthfulness of the news.

5.4 Decision Making

Knowledge graphs have become integral to many supported decision-making
systems for automatic reasoning and deep relationship discovery capabilities.
The knowledge-aware decision model consists of two main components: knowl-
edge modeling and representation and reasoning on knowledge graphs [161].
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Traditional knowledge graph-based decision models only associate simple
knowledge representations, which may ignore the latent semantic information
and fail to accommodate uncertain scenarios that further make the wrong
decisions.

The introduction of deep learning-based reasoning techniques enhances the
decision-making capability of knowledge graphs in complex scenarios. Lv et
al. [162] focused on common-sense question answering tasks. They used graph
representation learning techniques to relearn word representations in natural
language utterances, using graph neural networks and graph attention mecha-
nisms to aggregate evidence to predict final answers. Liu et al. [163] focused on
the text generation task for common sense reasoning and decision. They pro-
posed a knowledge graph-based pre-trained text generation model KG-BART,
which integrates the knowledge graph with the text decoding and encoding
process to generate higher quality, more logical utterances. Re-GCN [164]
recursively captures the structural dependencies of KGs in different times-
tamp states to learn evolutionary representations of entities and relations.
Experiments show that Re-GCN significantly improves the accuracy of future
event prediction and decision-making tasks. However, deep learning meth-
ods improve the problems, such as low computational efficiency in traditional
methods. They still have poor interpretability, which gives the theoretical
foundation for authentic decision-making. Recent studies have begun to com-
bine the advantages of both of these methods. Moon et al. [165] provided the
DialKG Walker framework, which converts conversations into paths traversed
on a knowledge graph, making conversational reasoning more interpretable.
UniKER [166] combines deterministic horn rules with knowledge graph embed-
dings, making logical reasoning and KGE complementary. They enhance both
the interpretability and computational efficiency of reasoning.

5.5 Domain-specific Applications

With The professional independence of certain fields, a domain-specific knowl-
edge graph is built as the primary means of tackling many real-life problems in
specific domains. However, the domain-specific knowledge graph approach has
different data distribution and characteristics compared to general knowledge
graphs. Many deep learning models for domain-specific applications have also
emerged. For example, medical domain knowledge graphs, such as a clinical
aid decision tool, a search engine for medical drug information, and an intel-
ligent question and answer system for medical knowledge. Knowledge-aware
models in medical applications are expected to lead to more efficient and accu-
rate medical services. MedBERT [167] is a BERT-based model for automatic
classification of medical queries, which incorporates medical domain knowl-
edge as side information in the model, and finally, BERT encoding to complete
the classification task of medical problems. In terms of disease-assisted detec-
tion, the knowledge graph can be used to assist in determining information
such as physical examinations and test results. Chai et al. [168] developed a
long short-term memory network based on biomedical knowledge mapping for
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the auxiliary diagnosis of thyroid diseases. Lu et al. [169] extracted patients’
discharge information from their electronic health records and used external
medical knowledge graphs to represent the textual information of the dis-
charge, and finally, convolutional networks were set to predict the readmission
rate of patients. In pharmacology, the prediction of drug-drug interactions
(DDI) is an important issue. Lin et al. [170] proposed an end-to-end knowl-
edge graph neural network. This framework efficiently learns information about
drugs and their neighbourhoods and outperforms previous state-of-the-art
models in predicting DDI. In addition to the above applications, knowledge
graphs can also be applied in the cognitive domain. Rao et al. [171] focused on
detecting psychiatric disorders on social media, and they integrated a bidirec-
tional gated recursive unit with an attention mechanism. The model achieved
better results on two mental illness detection tasks. In social computing, Yu et
al. proposed an efficient algorithm for finding outlier motifs by exploring the
user’s query and constrained conditions [172].

6 Challenges and Open Issues

6.1 Knowledge Transfer in Cross-Domain KGs

Knowledge graphs have been used as the primary approach to tackling many
real-life problems in various domains. However, as cross-discipline becomes nec-
essary across multiple research fields, specific-knowledge graphs can no longer
solve cross-domain issues. DOZEN [173] learns the relations between entities
across different domains from an existing ontology of external knowledge and
a set of analogies linking entities and domains. The cross-graph knowledge
transfer network [174] utilizes the graph structure to transfer knowledge across
domains, which helps it explicitly model intra-domain and cross-domain inter-
actions. But the current approaches are limited to only a few domains. As the
independence of each subject is broken, there is no doubt that the transfer of
knowledge from more domains to achieve multiple applications may become a
critical issue.

6.2 Interactive Learning and Cognitive Learning

The contribution of deep learning to knowledge graphs and the next generation
of artificial intelligence is confirmed by an increasing number of current stud-
ies. Improving the self-learning capability of knowledge graphs and designing
knowledge graphs that enable lifelong learning has become a critical topic. In
particular, interactive learning and cognitive learning have become one of the
mainstream research directions to realize the next generation of AI through
knowledge graphs. Cognitive graph [175] is built by iteratively coordinating
retrieval and reasoning. The structural information offered by the cognitive
graph enables our model to aggregate pieces of evidence from multiple rea-
soning paths and explain the reasoning process graphically. DCRN [154] is
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proposed under the direction of cognitive science to learn that humans can rea-
son over a large-capacity memory to find answers. It is very instructive to make
deep learning more intelligent and can continuously learn through interactive
and cognitive learning.

6.3 Scalability

Over the past decade, deep learning for KG has successfully modeled complex
data. Currently, the size and number of knowledge graphs are growing expo-
nentially, making it critical to properly improve the scalability of deep learning
applications. Gao et al. [176] proposes novel graph-augmented learning to rank
models by subgraph segmentation of large-scale graphs and then the exact
search of subgraphs to increase the efficiency of querying, which combines a
novel subgraph matching network based on GGNNs and an enhanced BiMPM
model. Nevertheless, there still has a long way to go to deal with cumbersome
deep architectures and the increasingly growing knowledge graphs.

6.4 Dynamics

Most of the current deep learning approaches for knowledge graphs are lim-
ited to dealing with static data. Nevertheless, the actual knowledge graph is
dynamic, with many facts holding for only a specific period. Data scarcity
becomes challenging when dealing with dynamic knowledge graphs due to the
emergence of new, previously unseen relations. Due to the dynamic nature of
knowledge graphs, models may need to be retrained frequently, which requires
time and memory to maintain a large training dataset. Dynamic deep learning
approaches can handle new relations and entities but do not require retrain-
ing. Current methods use continuous learning frameworks to avoid overfitting
and catastrophic forgetting of models. We still need many efforts to make the
technology useful for large-scale real-world applications.

6.5 Anomaly Detection

The result will never be perfect regardless of the approach to constructing a
knowledge graph. Due to the diversity of data sources and limitations of present
knowledge extraction methods, anomalies such as redundant, inconsistent, con-
tradictory, and inaccurate facts in a knowledge graph are unavoidable. To
facilitate wide adoption and advanced usage, anomaly detection in knowledge
graphs has become an essential task. Researchers have conducted preliminary
explorations for the popular anomaly detection tasks, such as outlier detection,
novelty detection, contextual anomaly detection, and collective anomaly detec-
tion. However, previous approaches are either domain-dependent, not scalable
to large-scale graphs, or may require substantial human intervention [177].
There are still severe gaps between the present state of anomaly detection
techniques and applications of high-quality KGs.
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6.6 Explainability

For knowledge graphs and deep learning on knowledge graphs, explainability
is not only a desirable property but a specific requirement for these tech-
niques to be applied in reality. KPRN [178] models the association paths in the
knowledge graph for user-item pairs to provide interpretable recommendations
to users [179]. T-GAP [180] discusses the relationship between time displace-
ment and query types using attention distributions with different timestamps
relations. A case study of the inference process for a given query demon-
strates the interpretability of the model’s relational inference process. The
current interpretable approach still has some limitations. Different from tradi-
tional interpretable solutions, rethinking the interpretability of deep learning
in knowledge graphs in a unique perspective on knowledge graphs is also of
high significance.

7 Conclusion

In this survey, we have conducted a comprehensive overview of deep learning on
knowledge graphs. We provide a taxonomy for core components of deep learn-
ing on the following phases of the knowledge graph lifecycle, such as knowledge
graph construction, knowledge representation, and knowledge graph applica-
tion. According to the taxonomy, we categorize deep learning in knowledge
graph construction into three groups; relation extraction, entity extraction,
and attribute extraction. For the phase of knowledge representation, we divide
deep learning methods into two categories: knowledge graph representation
learning and knowledge graph completion. Then, we provide a comprehensive
review of deep learning in knowledge-aware application on various domains like
recommendation systems, question answering, natural language understand-
ing, domain-specific knowledge graphs, and other state-of-the-art applications.
We provide a thorough review, comparisons, and summarisation of these sys-
tems within or between categories. Finally, we summarise the challenges and
open issues faced in the current study, along with representative research
efforts, which are suggested to be future research directions in this rapidly
growing field.
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[124] Garćıa-Durán, A., Dumančić, S., Niepert, M.: Learning sequence
encoders for temporal knowledge graph completion. In: Proceedings
of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 4816–4821 (2018)

[125] Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for



Springer Nature 2021 LATEX template

Deep Learning Meets Knowledge Graphs: A Comprehensive Survey 41

temporal knowledge base completion. In: Proceedings of the 8th Inter-
national Conference on Learning Representations, pp. 1–12 (2020)

[126] Li, Z., Jin, X., Li, W., Guan, S., Guo, J., Shen, H., Wang, Y., Cheng,
X.: Temporal knowledge graph reasoning based on evolutional represen-
tation learning. In: Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp.
408–417 (2021)

[127] Wu, J., Xu, Y., Zhang, Y., Ma, C., Coates, M., Cheung, J.C.K.: Tie: A
framework for embedding-based incremental temporal knowledge graph
completion. In: Proceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp.
428–437 (2021)

[128] Yu, S., Feng, Y., Zhang, D., Bedru, H.D., Xu, B., Xia, F.: Motif discovery
in networks: a survey. Computer Science Review 37, 100267 (2020)

[129] Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-
constrained random walks. Machine Learning 81(1), 53–67 (2010)

[130] Wang, Q., Liu, J., Luo, Y., Wang, B., Lin, C.-Y.: Knowledge base com-
pletion via coupled path ranking. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1308–1318 (2016)

[131] Das, R., Neelakantan, A., Belanger, D., McCallum, A.: Chains of reason-
ing over entities, relations, and text using recurrent neural networks. In:
Proceedings of the 15th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Volume 1, Long Papers, Valencia,
Spain, pp. 132–141 (2017)

[132] Chen, Z., Wang, Y., Zhao, B., Cheng, J., Zhao, X., Duan, Z.: Knowledge
graph completion: A review. IEEE Access 8, 192435–192456 (2020)

[133] Richardson, M., Domingos, P.: Markov logic networks. Machine Learning
62(1-2), 107–136 (2006)

[134] Qu, M., Tang, J.: Probabilistic logic neural networks for reasoning.
Advances in Neural Information Processing Systems 32, 1–11 (2019)

[135] Wan, G., Du, B.: Gaussianpath: A bayesian multi-hop reasoning frame-
work for knowledge graph reasoning. In: Proceedings of the 35th AAAI
Conference on Artificial Intelligence, vol. 35, pp. 4393–4401 (2021)

[136] Shi, B., Weninger, T.: Open-world knowledge graph completion. In: Pro-
ceedings of the 32nd AAAI Conference on Artificial Intelligence, pp.



Springer Nature 2021 LATEX template

42 Deep Learning Meets Knowledge Graphs: A Comprehensive Survey

1957–1964 (2018)

[137] Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., He,
Q.: A survey on knowledge graph-based recommender systems. IEEE
Transactions on Knowledge and Data Engineering 34(8), 3549–3568
(2020)

[138] Da’u, A., Salim, N.: Recommendation system based on deep learning
methods: a systematic review and new directions. Artif. Intell. Rev.
53(4), 2709–2748 (2020). https://doi.org/10.1007/s10462-019-09744-1
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