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Abstract

Cyber-intrusion can lead to severe threats to network, i,e., system
paralysis, information leaky, and economic losses. To protect network
security, anomaly detection methods based on generative adversarial
networks (GAN) for hindering cyber-intrusion have been proposed.
However, existing GAN-based anomaly score methods built upon the
generator network are designed for data synthesis, which would get unap-
pealing performance on the anomaly detection task. Therefore, their
low-efficient and unstable performance make detection task still quite
challenging. To cope with these issues, we propose a novel GAN-based
approach GANAD to address the above problems which is specifi-
cally designed for anomaly identification rather than data synthesis.
Specifically, it first proposed for a similar auto-encoder architecture,
which makes up for the time-consuming problem of the traditional
generator loss computation. In order to stabilize the training, the pro-
posed discriminator training replace JS divergence with Wasserstein
distance adding gradient penalty. Then, it utilizes a new training
strategy to better learn minority abnormal distribution from nor-
mal data, which contributes to the detection precision. Therefore, our
approach can ensure the detection performance, and overcome the prob-
lem of unstable in the process of GAN training. Experimental results
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2 GANAD:A GAN-based method for network anomaly detection

demonstrate that our approach achieves superior performance than
state-of-the-art methods and reduces time consumption at the same time.

Keywords: Network anomaly detection, WGAN, Gradient penalty, Spectral
normalization

1 Introduction

At present, the Internet and computer networks has realized the interconnec-
tion of information, accelerated the speed of information transmission, and
changed the way of data transmission. However, the widespread adoption of
computer networks introduces several security threats that may cause misbe-
havior and severe damage. Those threats often keep changing and will evolve
to new unknown variants [1]. To prevent these threats, anomaly detection tech-
nologies are employed by a classification engine that can determine the safety
of the network. Nowadays, an excellent anomaly detection system is required
to discover various anomalies with new network attacks emerging efficiently.
Recently there are plenty of data-driven network intrusion detection, which
has a tendency towards minority attack classes compared to normal traffic
[2]. Firstly, many supervised methods works have been proposed successively
which classify behaviors that do not match the normal behavior as attacks.
Representative supervised methods such as decision tree (DT) [3], support vec-
tor machine (SVM) [4] could analyze and identify these behaviors successfully.
However, they were also shown to not scale to the large real-world network data
sets which the amount of attack traffic in the network is limited. Therefore,
unsupervised and weakly-supervised methods like REPEN [5], PRO [6], and
semi-supervised methods like DeepSAD [7],capable of classifying anomalies
without labeled data, were deemed for defending anomaly threats. However,
they failed to detect all abnormal behaviors efficiently because of unknown
anomalies or data contamination etc. Therefore, these methods can not be
capable of handing the current’s cyber anomaly threats, level of sophistication,
and flexible.

Moreover, the lack of prior knowledge, i.e, the attack Categories (Zero-
day attack) is a important challenge in the detection task, as they need to be
detected quickly to be avoided great damage. On the one hand, many network
infrastructures and individual devices within CPSs or IoT have unknown vul-
nerabilities, which complicate the security solutions. On the other hand, with
the 5G network and Cloud Services fast development, the transmission and
bandwidth of cyber-attack traffic will significantly increase, and thus these
intrusions may be difficult to be detected in real time and stably. However,
GAN [8] has been proposed in this field and achieved excellent performance
on complex network traffic data sets. It is well known that unknown network
intrusions will also behave a pattern more similar to a known anomaly pattern
rather than the normal data [9]. Since GAN is able to learn implicit probability
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distribution, the discriminator can find the generated or fake samples. Recent
work like AnoGAN [10] is the first GAN-based method, which extracts normal
samples features to discriminate anomalies. GANomaly [11] further improves
the generator over the previous work by utilizing an encoder-decoder-encoder
network to change the generator network.

High efficiency and continuous stabilization of detection can be challeng-
ing for current methods. Existing GAN-based anomaly detection methods can
not satisfy the low-latency and stable detection requirement of IDS. In addi-
tion, these work above are mainly focused on data synthesis of generator [12]
and have obtained suboptimal anomalous scores for intrusion detection. Thus,
two main challenges are yet to be addressed. On the one hand, the previous
GAN-based methods get poor performance due to solely relying on the gener-
ator. On the other hand, because of optimization problem which find a latent
variable, extent GAN-based methods [10], [13] cannot well solve the problems
that both satisfy stable training and efficiency, hence they may fail to identify
the anomalies in real-time.

To overcome the above hurdles, we design a WGAN-based model called
GANAD that improves its performance by using an improved GAN network
structure and is applied flexibly. Our architecture models input data as net-
work heterogeneous node and the GAN as similar auto-encoder networks to
handle character features of data. It introduces a new designed encoder with
layers using spectral normalization that can facilitate generator to generate
samples with more wider variety. Besides, This design can accelerate the resid-
ual loss computation by avoiding the use of typical GAN structure [13] which
needs find corresponding latent space iteratively, and increase the efficiency of
detection by eliminating the need for optimization problem of generator. And
the proposed network allows discriminator and generator training with spec-
tral normalization, which can capture important hidden information in the
sample distribution even with little overlap between samples. Moreover, we
improve the architecture [14] by replacing GAN discriminator with no restrain,
required for computing discrimination loss, for a discriminator trained with
gradient penalty, which stabilize the adversarial training. Therefore, it not
only can simulate more accurate data distribution to get superior performance
but also reduce computational cost. Furthermore, our proposed approach uti-
lizes residual loss and discrimination loss to construct a training strategy for
modeling weak abnormal supervisory signal. At last, our work achieves a equi-
librium between optimum detection accuracy and efficient performance. Three
different data sets are conducted to verify the effectiveness and generaliza-
tion of our approach, and experimental results demonstrate that our approach
outperforms the state-of-the-art methods.

The main contributions of this paper are summarized as follows:

• We propose an anomaly based IDS for network anomaly detection using
improved GAN, called GANAD, which can achieve efficient intrusion detec-
tion. Experiment shows that the novel network architecture can make our



4 GANAD:A GAN-based method for network anomaly detection

approach get optimal performance and overcome the challenge of lack of
prior knowledge.

• Proposal of a novel and faster method for computing the discrimination and
reconstruction loss can improve the detection performance, which can meet
trade-off of the high efficiency and stable requirement.

• To get better evaluation scores, we propose a novel training strategy to
model abnormal weakly labeled data space between majority normal and
minority abnormal samples, and also between the real samples and generated
samples.

• The proposed GANAD is validated on three real-world network datasets
for binary classification and mutil classification tasks. Experimental results
demonstrate that the proposed approach is superior to the state-of-the-
art network anomaly detection approaches, achieving both stabilization and
efficiency.

2 Related work

We have surveyed many research efforts and encouraged progress on network
anomaly detection. In this section, we briefly introduce existing works in this
field according to traditional work, DNN-based work, and GAN-based work.

2.1 Traditional work

In the initial stage, there were traditional methods, and most of them utilized
the supervised machine learning algorithm. For example, the distance-based
method [15] was applied to evaluate whether the data is anomalous by using
the distances of nearest neighbors or clusters in the data. Clustering-based
approaches have also been proposed. Blowers et al. [16] proposed a method
called DBSCAN to identify anomalies in the network. Next, Khan et al. [17]
proposed a method which use genetic algorithm to detect anomalies. Shone et
al. [18] discriminated anomalies using random forest as a classifier. To multi
classify various anomalies, Snehal et al. [19] proposed that combining SVM
and decision tree is to build a multi classification anomaly detection system
which construct multi classification SVM by using binary classification tree.
Selvakumar et al. [20] proposed a fuzzy and rough set based nearest neigh-
borhood algorithm (FRNN) to classify network trace dataset. Representative
marching learning methods based on density evaluation like Local Outlier Fac-
tor (LOF) [21], Robust Covariance [22] and Isolated Forests (IF) [23], which
can solve the problem of too little labeled data to some extent. Due to the rapid
development of new network, network traffics having ultra-high dimensions are
ubiquitous which make these methods ineffective.

2.2 DNN-based work

More recent works were based on deep neural networks (DNN), DNN-based
algorithms have also been widely used in network anomaly detection. In the
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initial stage, Ingre et al. Recurrent neural network (RNN) was used by Tor-
res et al. [24] to capture the temporal features of network data. Deng et
al. [25] combined a structure learning approach with graph neural networks,
additionally using attention weights to provide explainability for the detected
anomalies. Kwon et al. [26] established three different Convolution Neural Net-
work (CNN) architectures based on structural scalability to improve network
anomaly detection performance. In another study on the same task, Zhao et
al. [27] suggested that a network intrusion detection framework use DBN and
probabilistic neural network. This method demonstrated that the effect of com-
bination was better than that of the non-optimized DBN. In the next stage,
Pang et al. [28] adopted a reinforcement learning method called DPLAN that
optimizes learning of marked abnormal data and unmarked abnormal data to
identify unknown anomalies. Wang et al. [29] proposed an unsupervised repre-
sentation learning method called RDP that learns data distance in a random
project space by training a neural network with random mapping. Pang et
al. [30] proposed a method called DevNet that realize abnormal score learn-
ing by using neural deviation learning, and optimized the representation of
abnormal score by integrating neural network, Gaussian priori and Z-Score-
based deviation loss function. Autoencoder (AE) [31], variational autoencoder
(VAE) [32] and deep auto-encoding Gaussian mixture model (DAGMM) [33]
have been successively used for the purpose of abnormal data detection. But
these methods model the data distribution and derive anomaly scoring crite-
ria based on Gaussian mixture. In a follow-up study, Zhai et al. [34] proposed
an energy-based model DSEBM, using the accumulated energy between the
class denoising autoencoder layers to obtain the anomaly score. Lately, Mirsky
et al. [35] proposed a method called Kitsune, a plug and play network intru-
sion detection system (NIDS) which can learn to detect attacks on the local
network, without supervision.

2.3 GAN-based work

Finally, Generative Adversarial Networks (GAN) were applied to network
anomaly detection. The common practice of them was to determine whether
the test sample is in an abnormal state by measuring the discreteness between
the test sample distribution and the learning distribution. AnoGAN [10] gen-
erated real space samples from the latent space, then defined abnormal score
based on the discrepancy between the generated samples obtained by latent
space and the test samples. In addition, this method optimized the update
of the generated network iteratively via the back propagation algorithm. This
iteration optimization process is calculating complexity and time-consuming
which is not applicable to real-time network anomaly detection. Instead of uti-
lizing a typical GAN, Efficient GAN-Based Anomaly Detection (EGBAD) [36]
first brings the BiGAN architecture to the anomaly detection domain. Lately,
ALAD [37] adopted bi-directional GANs that simultaneously learn an encoder
network during training. However, this design avoids the computational expen-
sive in inference procedure, its discriminator training is still time-consuming at
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test time. Because successes of GAN in generating realistic complex datasets,
MAD-GAN [13] used the Long-Short-Term-Memory Recurrent Neural Net-
works (LSTM-RNN) as the base models in the GAN framework to capture the
temporal correlation of time series distributions. Mohammadi [38] proposed an
end-to-end deep architecture for IDS using Generative Adversarial Networks
(GANs) for training deep models in semi-unsupervised setting. f-AnoGAN [39]
improved the computational efficiency by adding an encoder before the gener-
ator to map from data to the latent space. In addition, this method proposed
three different architectures for mapping samples to the latent space. However,
the above work lacked an evaluation on the time cost of these architectures.
Recently, generative adversarial networks (GANs) as a promising unsupervised
approach to detect cyber-attacks, FID-GAN [40] was a unsupervised intrusion
detection system (IDS) for cyber–physical systems which was proposed for a
fog architecture achieving higher detection rates. The work IGAN [41] tack-
led the class imbalance problem by generating new representative instances
for minority classes with an imbalanced data filter and convolutional layers
to the typical GAN. ACGAN [42] proposed an auxiliary classifier genera-
tive adversarial network to generate synthesized samples to augment the ID
datasets.

3 Proposed method

3.1 GAN with MLP

GANs as a powerful modeling frameworks, it is suitable to deal with high-
dimensional data like traffic samples. Designed by game theory, GANs consist
of two adversary networks: a generator G and a corresponding discriminator
D. The generator network plays a role in producing synthetic data samples
which are similar to real sample patterns from a random latent space. In
addition, the discriminator network plays a role in distinguishing generated
or real samples. Following a typical GAN framework, the synthetic samples
generated by generator as the inputs are passed to the discriminator, which
will try to find the generated (i.e. “fake”) data samples from the actual (i.e.
“real”) normal training data samples. The two models of GANs are trained
together in a zero-sum adversarial minimax game, in which the generator tries
to maximize the probability of producing outputs recognized as real, while the
discriminator tries to minimize the same probability. Therefore, they can be
regarded as two agents playing a minimax game with value function V (G,D)
as follows:

min
G

max
D

V (D,G) =Ex∼pdata (X) [logD(x)]

+ Ez∼pz(Z) [log(1−D(G(z)))]
(1)
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Fig. 1 Proposed GANAD: GAN-based anomaly detection

Because of the heterogeneous network, the real-world network traffic data is
diversify and complexity. In order to handle these high-dimensional and diver-
sify data, the discriminator and generator are constructed as MLP networks.
We asume that network traffic data samples are not independent of each other
and there is a unseen relationship among them. Thus, the each layers of this
network will plays a important role in capturing the non-liner and combina-
tion features of network data. In our framework, a single MLP network as one
small part of GAN is to obtain the correlations characters among the data,
which can be prepared for the detection task.

3.2 Network Architecture and Encoder

Referring to the recently developed GAN network architecture, especially
BiGAN proposed by Donahue [14] has one more encoder to map the real sam-
ples to the latent space state. Hence there is no need to find the latent state
again corresponding to the samples in the test process. This design saves time
by avoiding the use of back-propagation algorithms. Inspired by the compu-
tational efficiency of BiGAN, we build a GAN framework that map the input
data samples to the latent space through the encoder network during training.
Our model improves its latent representation ability of data and testing effi-
ciency by adding spectral normalization into the encoder network. The overall
architecture of our model framework is shown in Figure 1. Where x represents
real space variables, z is the random variables sampled from a latent distribu-
tion. z′ is the generated latent space variable obtained by the encoder, x′ is
the new space variable generated by the generator. It consists of three main
parts, the encoder, generator, and discriminator. Firstly, the real data sam-
ples are preprocessed to obtain x. Then x and z are input to the encoder and
generator networks respectively to obtain a accurate latent distribution of z′

as well as a reconstructed generated distribution of x′ .
The discriminator D use Xavier initializer to initialize the weights matrix,

and is trained with the constrain gradient penalty to stabilize the discrim-
ination training. Moreover, it is trained with Adam optimizer to minimize
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the earth-mover distance between its predictions and real labels. Its loss is
presented as Eqs.(2):

LD =

n
∑

i=1

[

E [D(G(zi))]− E [D(xi)] + θE
[

(∥∇x̂i
D(x̂i)∥2 − 1)2

]]

(2)

where n is the number of samples, xi ∀i ∈ {1, . . . , n} are one of training
data samples, which should be distinguished as real and recognized as normal
samples by our network. And zi are the latent space samples, they should
be distinguished as fake and detected as anomalies by discriminator network.
In addition, we define θ is the penalty coefficient, which is used to enforce
the unit gradient norm constraint. x̂i is random samples sampled uniformly
along straight lines between pairs of points sampled from the data distribution
and generator distribution. The weights of generator G are also initialized
with Xavier initializer, it is trained with Adam optimizer to minimize the
Wasserstein-1. And its objective is to fool the discriminator into wrong decision
recognizing the generated samples as real. Its loss value function is given by:

LG =

n
∑

i=1

[E [D(G(zi))]] (3)

In standard GAN architecture, the discriminator D is always used to dis-
criminate real and generated samples. However, discriminator playing funda-
mental role of performance not well, [10] indicates that generator reconstructed
sample can be used to localize the anomalous distribution in classification
tasks. Therefore, our method will adopt a new strategy to detect minority
abnormal samples with a new designed GAN by computing an abnormal score
through the convex combination of reconstruction loss and discriminator loss.
The reconstruction loss measures the dissimilarity between the evaluated real
sample and the generated sample in the input domain space, while the dis-
criminator loss takes into account the discriminator network output. In the
adversarial training phase, generator learned an implicit representation of
evaluated sample always affects the discriminator decision. Thus, the recon-
struction loss is very important since it can be used to measure the probability
of an evaluated sample being an anomaly sample.

As we all known that it is first necessary to find corresponding sample
representation being evaluated in the latent space for computing reconstruction
loss LR. The literature [13] has shown that computing LR is time-consuming
through the inversion of the generator. In order to compute LR more fast,
[40] proposed a encoder mapping from the data pattern space to the latent
space directly, which use the auto-encoder to train the proposed encoder [43].
For this purpose, our architecture builds a new designed encoder that maps
random data patterns to the latent space. In contrast to [40] that train encoder
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Fig. 2 The architecture of Encoder

through auto-encoder, our encoder trained with a simple MLP network which
results in good performance is more suitable for detecting emergency intrusion.

In order to compute LR efficiently, we utilize the simple MLP network
rather than auto-encoder to train encoder E. We train an encoder that
obtains the latent space representations of real data patterns by mapping data
patterns to the latent space. The proposed encoder E is introduced by Figure
2. In addition, we train the generator as the decoder part of autoencoder,
which is to ensure that x and corresponding G(E(z)) are as similar as possi-
ble. Figure 3 shows the relationship between the encoder and generator space
mappings. To stabilize the training of the network, spectral normalization (SN)
[44] is applied to normalize the weight matrix of the full connection layer of
the encoder. Compared with the encoder of [40], our encoder with spectral
normalization is able to learn the latent representation of the optimal data
distribution. Moreover, the encoder is trained by measuring the euclidean dis-
tance between the he input data x and reconstructed data G(E(z)) as follow
function:

LR =

√

√

√

√

n
∑

i=1

[xi −G (E (xi))]
2

(4)

where n is the data dimension.

3.3 System Model

The architecture of our proposed system model showed in figure 4 is based
on the MLP framework and deployed in three parts: 1) input part; 2) GAN
part; 3) anomaly score part. All of them are full connected layers. The input
include training data, testing data and random latent space. The Training data
samples are the normal data patterns used to train the GAN and the encoder.
The testing data patterns that are evaluated by our system model. The GAN
part is equipped with the discriminator, generator and encoder. On the left
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is a GAN framework in which the generator and discriminator are obtained
with iterative adversarial training. Then the encoder is trained within the
MLP architecture while using the trained generator as the decoder. On the
right, the input part send unknown data patterns and real data patterns to be
evaluated by the system. On the top, according to the anomaly score computed
discrimination and reconstruction losses by anomaly detection system, we can
decide whether the evaluated pattern is an anomaly or not.

The discriminator network D is the other part of the whole architecture,
and it is, with the generator part and encoder part, used to build the our GAN
architecture. However, even many modified loss functions proposed can misbe-
have in the presence of a good discriminator [45]. Specially, real-word network
traffic sample quality is always not well, since the abnormal data samples is
minority and unusual. Thus, WGAN value function appearing to correlate
with sample quality isn’t making optimization of the generator easier, which
results in the undesired detection performance. Unlike other approaches that
directly minimizes the training loss value function, adding gradient penalty
constrain to our discriminator is a better solution to optimize the adversarial
training. Gradient penalty term is a model-level constraint that does not affect
the ability of the neural network learning. Hence it allows the discriminator to
approximate the Wasserstein metric more accurately. The input layer is where
the data pairs (x,E(x)) and (z,G(z)) are input. The pairs of data patterns
as input which can contain more hidden information promote the discrimina-
tor detection performance. In addition, spectral normalization is applied on
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the input layers which not only stabilizes the training of the discriminator but
also improves the performance of the discriminator by re-parameterization.
Moreover, it can also update the weight of the hidden layer, which be used
to compensate for the lack of gradient penalty using in a multi-category real
sample scenario applications [46].

Figure 5 describes the architecture of discriminator, Where x, G(z), E(x)
and z are input variables, x is the data samples at a real distribution. z
represents the latent space, G(z) is the generated data samples obtained by
generator, E(x) can generate new latent distribution. Firstly we input z and
E(x) into the x layer while input x and generated latent space G(z) into
y layer to get the vectors which is input into the intermediate layer. Spec-
tral normalization is adding to each of the two input layers. The intermediate
layer is embedded in discriminator, which help to better evaluate the differ-
ence between the pairs of discriminator’s input. This layer is used to soften
the decision of discriminator to obtain a more moderate result, and also used
to be computing loss value as feature matching. Finally, the output layer is
trained by the discriminator loss function d(·) to obtain the final loss value.
Then the output is obtained through the intermediate layer.

3.4 GANAD Training

3.4.1 training strategy

In this paper, GANAD is an anomaly detection approach based on the discrim-
inator that evaluates how different a sample distribution is from other data. We
introduce a WGAN-based GAN to simulate data distribution precisely, then
define anomaly scores of all data samples by quantifying differences of distri-
butions between real samples and generated samples. Finally, we discriminate
the anomalies from normal samples through a testing criterion.

To this end, we first need to model the data distribution accurately: This
means that the generator is used to learn the normal data distribution until
the generated data distribution approximates the normal data distribution:
pG(x) ≈ pX(x). Our model can obtain better latent space representation by the
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encoder, thus it is able to restructure real distribution precisely. In addition,
generator can better simulate the true distribution by the adversary learning.

In this context, we should redefine an novel anomaly score that measures
the attributes of a data sample. Generally, GAN learns the latent feature space
of the data by generator network, and determines whether it is abnormal or
not by calculating the normal probability obtained from the test samples. So,
the residual form between real example and generated example is generally
defined as the anomaly score. Unlike the above define score, there are recon-
struction loss and discriminator loss at the last update iteration of the mapping
procedure to the latent space respectively in the testing stage, defined by us
as scores which constitute the anomaly score. One of them is reconstruction
score Rrec: We adopt the generator to measure the dissimilarity between the
generated samples and the real samples in the real space. The other one is dis-
criminator score Dd: We determines the dissimilarity between the generated
samples and the real samples during adversarial training. Inspired by [10], we
use the convex combination of reconstruction error and discriminator error to
judge whether the sample is abnormal or not. Therefore, the abnormal score
in this paper is designed as shown in the Eqs.(5):

Score = αRrec + (1− α)Dd (5)

Where α is a constant that varies between 0 and 1, the reconstruction score
Rrec and the discriminator score Dd are defined by the reconstruction loss LR

and the discriminator loss LD respectively.

LR = |x−G(E(x))| (6)

Here, we define LR as the reconstruction loss function as shown in Eqs.(6),
a cost function based on the feature space specifically is used to measure the
variability between the test and generated samples. G(E(x)) denotes samples
reconstructed from the latent space corresponding to x. The encoder and gen-
erator collaborate with each other to reconstruct the input. Then the input
data is passed through the encoder and generator to get the output. There is
a reconstruction error between the input and output. LD represents the dis-
criminator loss function, we have two expressions for it. As shown in Eqs.(7),
the first is that we use the cross-entropy loss function δ to represent the differ-
ence between source representation of real samples x and latent representation
of samples E(x). Next, Eqs.(8) shows that we use the feature matching loss to
define our LD. This evaluates if the reconstructed data has similar features in
the discriminator as the true sample.

LD1 = δ(x,E(x)) (7)

LD2 = fi(x,E(x), G(E(x))) (8)
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In the discriminator loss function, fi is the intermediate layer of the dis-
criminator network. fi(·) is the output of this intermediate layer. Specifically,
fi(·) plays a important role in training procedure which maps the space of data
to the feature space. Generally, when the dataset size is relatively large, mul-
tiple middle layers will help to better evaluate the difference between a pair of
discriminator inputs by features. In our network, we only use one layer. With
the addition of an intermediate layer where we apply L1 regularization to aux-
iliary main function, this enables us to capture the rich feature information of
the sample.

For binary classification task, we only need to distinguish whether the
sample is an anomaly or normal and define the reconstruction error value of
the sample as a score. As shown in Eqs.(9), we propose a cost function Lr to
identify reconstructed sample E(x) from x. Generally, the cross-entropy loss
is adopted to train generator as classifier. Then we obtain the residual value
between them by this loss. In order to simulate weak anomaly supervised signal
over data distribution, we utilize the following objective function Eqs.(10) to
enable the generator to generate data samples that match the statistics of
real data. Generally, the standard cross-entropy loss function is used to enable
the discriminator to correctly distinguish the real samples from the generated
samples. However, for multi classification task, feature matching loss function
is good at improving the performance of GAN training in our work than other
loss functions.

Lr = LD1 (9)

Lfm = LD2 (10)

Our goal is to obtain precise anomalous data distribution that is used
to identify various anomalies. To achieve this, we use the following objective
function Eqs.(11) to train the discriminator as a classifier. When it is for binary
classification task, λ = 1, otherwise, λ = 0.

LD = λLr + (1− λ)Lfm (11)

3.4.2 Model training

To make our model training more stable, we make a series of improvements
that utilize a new network structure and training strategy. Inspired by SN,
we apply SN in the discriminator network to constrain the Lipschitz limi-
tation to reach the saddle point of the discriminator-based loss function. In
addition, discriminator trained with SN allows the parameter matrix to use
as many features as possible for discrimination work while satisfying local 1-
Lipschitz constraint. Unlike Wasserstein distance-based GAN (WGAN) [47]
which directly adopts weight-clipping to deal with 1-Lipschitz weight con-
straint, we adopt gradient penalty [45] as the gradient regulization method
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to solve gradient explosion or disappearance. Here the saddle point problem
minG,E maxD V (D,E,G) includes the gradient regularization Vgr(D) on the
discriminator, and spectral normalization Vsn(D,E) on the discriminator and
encoder. Eqs.(12) defined below solves our saddle-point problem.

V (D,E,G) = Vw(D,E,G) + Vgr(D) + Vsn(D,E) (12)

We deal with the objective function by fining-tune the model training as
show in Eqs.(13)and Eqs.(14):

min
G,E

max
D

V (D,E,G) (13)

V (D,E,G) = Ex∼pX

[

Ez∼pE(z|x)D(x, z)w−gp

]

+ Ez∼pZ

[

Ex∼pG(x|z) [1− ∥D(x, z)∥w]
] (14)

Where D, E, and G respectively represents the discriminator, encoder,
and generator, pX represents the distribution of data samples, and pZ is the
distribution over the latent space. pE(z | x) and pG(x | z) are the joint data
distribution learned by encoder and generator respectively. w − gp represents
Wasserstein distance with gradient penalty term, which constrains the hyper-
parameters to satisfy the 1-lipschitz continuity. w is Wasserstein distance. In
our model, we apply w − gp to train the discriminator D while w is used
to train the encoder and generator. Therefore, the improved discriminator
loss function solves two problems existing in WGAN by setting an additional
gradient penalty mechanism, which are the concentration of parameters and
gradient disappearance or explosion caused by gradient clipping. E used on
the encoder is a non-linear parametric function in the same way as G, and it
can be trained using Wasserstein distance.

4 Experiments

In this section, we conduct experiments on three real-world datasets to val-
idate the effectiveness of the proposed approach. It includes four parts,
datasets processing, simulation experiments, comparison algorithms, detection
performance, and ablation studies.

4.1 Datasets processing

To evaluate the performance of our model, we run experiments including binary
classification, multi classification on KDDCUP’99 (10 percent) [48], NSL-KDD
[48] and UNSW NB15 [49] benchmark datasets. KDDCUP’99 (10 percent) is
a dataset widely used for the testing of network anomaly detector, which is
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Algorithm 1 GAN-based adversarial learning network anomaly detection

input: x, real space variables; z, latent space variables; E, encoder function;
G, generator function; f , the feature layer of D.
Output: S(x), the anomaly score about each sample.

1: Input x
2: while number of training iterations do
3: for generation-steps do
4: z′ ← E(x), Encoder samples
5: x′ ← G(z), Reconstruct samples
6: W̄sn (WE) := W/∂(W ), updating weights of encoder
7: W̄sn (WD) := W/∂(W ), updating weights of discriminator
8: when training reach stable
9: end for

10: for detection-steps do
11: Procedure inference
12: LR ⇐= |x−G(z′)|
13: LD ⇐= fx(x, z)
14: if binary classify then
15: LD = Lr = δ(z′, G(z′))
16: else
17: LD = Lfm = f(x, x′, z′)
18: end if
19: S(x)⇐= |(1− α)LR + αLD|
20: end procedure.
21: end for
22: end while
23: return S(x)

built based on the data captured by DARPA’98, and it can simulate four
attack scenarios well: DoS, probe, U2R and R2L. NSL-KDD is an iterative and
updated version of dataset KDDCUP’99, which discards the shortcomings of
previous data sets: redundant records, duplicate records and data imbalance,
make attack more realistic. UNSW NB15 is a dataset mixed with real modern
normal and modern network traffic comprehensive attack activities, which can
best simulate the traffic activities in the real network environment. It includes
a wide range of attack scenarios that contains nine different families of attacks
like backdoors, DoS, exploits, fuzzers, or worms etc. For each data set, accord-
ing to the contaminate rate, we constructe a training and a testing set. The
former with only normal data and the latter with both normal and attack data.

KDDCUP’99 1 contains 805050 records with 41 dimensions features,
includes three types: inherent features, content features and traffic features.
There are some originally discrete data which are inherent features ’proto-
col type’, ’service’, ’flag’, ’land’, ’logged in’, ’is host login’, ’is guest Login’,

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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which is processed by using dummy coding or one hot coding. We label the
“normal” samples as “abnormal” and the ’abnormal’ samples as the ’normal’
following the dataset setup of [36] due to the detection in this experiment is
pure binary classification, and this trick will not affect the identification ability
of model. Next, we randomly divide the original dataset (about 500000 sam-
ples) into two groups. Then we choose the normal label samples as the training
set from one of the two sets to train our model. We do not consider the abnor-
mal samples (remove them). At last, normal label and abnormal label samples
are selected as the test set according to the contaminate rate.

NSL-KDD 2 contains 148517 data patterns with 41 features, but there
is additional class label in each sample. It represents nine weeks of raw TCP
dump data for a local-area network (LAN) simulating a typical U.S. Air Force
LAN. We label each class category into five types respectively: DoS, probe,
U2R, R2L, and normal. We will conduct additional multi classification experi-
ments on this dataset. In the preprocessing stage, we first combine the training
set and test set. Then each classification feature is encoded into one hot vector
or dummy vector and is scaled to be in the range [0,1]. The division of training
set and test set is similar to that of KDDCUP’99.

UNSW NB15 3 is captured by traffic data which contains data packet
headers based on the traffic between hosts (i.e., client to server or server to
client). It covers the in-depth characteristics of network traffic, which con-
tains 257673 samples with 49 dimensions features. And it is composed of flow
features, basic features, content features, time features and additional genera-
tion features. In addition, we use Dummy Encoding or One-Hot Encoding to
process three main nominal features like protocol types, state types and ser-
vices. So these discrete features will be transformed into numeric features. The
division of training set and testing set is similar to that of KDDCUP’99.

4.2 Simulation experiments

The network anomaly detection problem is for anomalies without prior knowl-
edge where the latent space distributions between the minority abnormal
samples and majority normal samples. For this target, we use the additional
encoder to model the latent space distribution of data examples. In addition,
we assume that all the training data patterns are normal. Moreover, we use
spectral normalization as optimizer to train MLP network with hidden layers
for the encoder, and discriminator. We use MLP networks with depth 3 and 1
intermediate layer for the discriminator, and use depth 3 and 1 hidden layer for
Generator, and encoder. In order to generate better samples, we find a latent
space dimension of 32 is the best choose in our study. However, by introducing
an encoder, our proposal is expected to improve both the detection precision
and the the detection efficiency. Therefore, we compare our method to the
work in [11], [13], [40], [37], which all detect anomalies using GAN architecture
and additional network that help reconstructs data samples. The detection

2http://205.174.165.80/CICDataset/NSL-KDD/
3https://research.unsw.edu.au/projects/unsw-nb15-dataset
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performance is evaluated using precision, recall and F1 score. The detection
efficiency is evaluated using the mean computing time from the beginning of
training to the end of test. In addition, we evaluate the effect of combination
of gradient penalty term (GP) and spectral normalization (SN). In a nutshell,
we call this ablation studies 4.5. We expect that a better detection rate can
be achieved when considering a combination of both GP and SN.

4.3 Comparison algorithms

To validate the effectiveness of our own approach, we compare it with some
other anomaly detection methods, such as isolated forests (IF) [23], One
Class Support Vector Machine (OC-SVM) [50], autoencoder-based model
(DAGMM) [33] and some GAN-based models AnoGAN [10] and ALAD [37].
The following is a brief introduction about these methods:

Isolated Forests (IF) is a classical traditional machine learning method,
which is generally used for anomaly detection of structured data. Anomalies
are defined as those ”outliers easy to be isolated”, which is also understood as
sparse space distribution. Firstly, the randomly selected segmentation values
are utilized to construct a tree on the randomly selected features. Then, the
anomaly score is defined as the average path length from a specific sample to
the root.

One Class Support Vector Machine (OC-SVM) is an unsupervised
novelty detection method based on libsvm, that is used to evaluate the high-
dimensional distribution by learning the decision boundary around the normal
example.

Deep Autoencoding Gaussian Mixture Model (DAGMM) is a
method for anomaly detection using a model of the autoencoder. The training
algorithm is based on an algorithm that determines the possibility of latent
and reconstruction features of samples as a criterion for anomaly detection.
And its main idea is to first train an autoencoder to generate both poten-
tial spatial features and reconstructed features of a sample. Then we train an
evaluation network, which outputs the Gaussian mixture model parameters of
low-dimensional potential space for sample modeling.

AnoGAN is the first anomaly detection method based on GAN. This
method uses the common basic architecture DCGAN for unsupervised learning
of the latent spatial distribution characteristics of normal samples. Then it
restores the latent representation of each test sample in the reference stage
to obtain the result that determines sample abnormality when it exceeds a
certain threshold.

ALAD is a bidirectional GAN-based adversarial learning method of
anomaly detection, which captures adversarial learning features for abnormal
detection tasks. Then the reconstruction error is used to determine whether
the data sample is abnormal or not. Moreover, the model is built on the basis
of the cyclic consistency loss in real space and latent space and the stable GAN
training. Its performance of anomaly detection achieves SOTA.



18 GANAD:A GAN-based method for network anomaly detection

Table 1 Binary classification performance on three datasets

Dataset Model Precision Recall F1 score

KDDCUP’99 IF 0.9216 0.9373 0.9294
OC-SVM 0.7457 0.8523 0.7954
DAGMM 0.9297 0.9442 0.9369
AnoGAN 0.8786 0.8297 0.8865
ALAD 0.9427 0.9577 0.9501

MAD-GAN 0.8691 0.9479 0.9000
FID-GAN 0.8031 0.8031 0.8859
GANAD 0.9749 0.9761 0.9755

NSL-KDD IF 0.9217 0.7831 0.8467
OC-SVM 0.8328 0.5574 0.7158
DAGMM 0.7440 0.8928 0.8117
AnoGAN 0.7222 0.8666 0.7879
ALAD 0.9264 0.9263 0.9263

MAD-GAN 0.8001 0.8742 0.8355
FID-GAN 0.9054 0.8873 0.8084
GANAD 0.9583 0.9580 0.9581

UNSW NB15 IF 0.9137 0.7681 0.8346
OC-SVM 0.4543 0.4418 0.4490
DAGMM 0.8092 0.9110 0.8571
AnoGAN 0.8283 0.8801 0.8534
ALAD 0.9190 0.9210 0.9200

MAD-GAN 0.7675 0.8640 0.8595
FID-GAN 0.6083 1 0.7518
GANAD 0.9482 0.9483 0.9482

MAD-GAN is a method which proposed a multivariate anomaly detec-
tion with GAN framework to detect attacks using a novel anomaly score
called DR-Score. This score exploits both the discriminator and generator
networks, which are LSTM-RNN networks, by computing and combining a
reconstruction loss to the discrimination loss.

FID-GAN is a novel fog-based, unsupervised intrusion detection method
for CPSs using GANs. It is proposed for a fog architecture, which brings com-
putation resources closer to the end nodes and thus contributes to meeting
low-latency requirements.

4.4 Results and Discussion

4.4.1 Detection performance

We use the precision, recall and F1 score as the performance metric to evaluate
the detection performance of anomalies. Our experimental results of the three
datasets are shown in the table 1 2. It demonstrates that our method is better
than both GAN-based methods AnoGAN, ALAD, MAD-GAN and FID-GAN
by comparing with the above methods. From experimental results, in general,
we can observe that:
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• For the KDDCUP’99 dataset, refining into each metric, our approach is
about 2% and 3% higher than the best baseline methods. In the meantime, it
achieves that our approach surpasses other SOTA methods in terms of accu-
racy. From the experimental results of classify NSL-KDD and UNSW NB15
datasets in table 1, which are more complex and more challenging to detect
intrusions from, since their precision are, in general, lower than the results
of the KDDCUP’99 data set.

• For the NSL-KDD dataset, our approach significantly outperforms all the
above methods in all metrics. It is also known from the result that the
lack of sufficient training data will leads to the poor performance of all
the data-based deep learning methods. We guess that MAD-GAN and FID-
GAN perform not well since NSL-KDD dataset is more complex and more
challenging. Given that our method can accurately learn the distribution of
real normal and generated data, and identify the subtle differences between
the data. Hence it is good for efficient detection even if the dataset is not
large.

• In UNSW NB15 dataset, our method is slightly better than ALAD and
AnoGAN, but it outperforms the other methods in terms of accuracy and F1
scores. In the precision case, IF is higher than AnoGAN. However, the other
two cases of IF results are weaker than the latter deep learning methods,
which again verify the deficiency of machine learning methods in discriminat-
ing anomalies. FID-GAN’s precison seems poor, but it achieves a near 100%
recall value. This is unacceptable in the real-world setting as the number for
false positive sample is too large.

We oberseve from the result that MAD-GAN not considering the comput-
ing complexity would hinder the intrusion detection performance. FID-GAN
is the improved version of MAD-GAN which is still Inefficient. In addition,
FID-GAN adopting computing optimization is not suitable to discriminate
anomalies since gradient-based optimizer is easy to get struck in local opti-
mal. Because of the disadvantage of the KDDCUP’99 dataset itself which is
no classification or specification of specific attack categories, it is not suitable
for the multi classification task. Of note, MAD-GAN and FID-GAN are not
able to be employed to the specific category discrimination. However,it still
can be observed from table 2 that our approach completely surpasses various
existing baseline approaches. And the results show excellent detection perfor-
mance of our approach. This is because novel training strategy, which is used
in our method, is capable of learning more complex data distributions better
than other GAN-based method. Overall, looking at the relative performance
of GANAD with other GAN-based methods, we can see that GAN-based
anomaly detection is unable compete our method since we model latent space
distribution of samples appropriately.
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Table 2 Multi classification performance on two datasets

Dataset NSL-KDD UNSW NB15

Metrics Precison Accuracy Precison Accuracy

IF 0.2533 0.7445 0.0232 0.0232
One-Class SVM 0.2854 0.7146 0.4564 0.4418

DAGMM 0.8666 0.8714 0.9010 0.9009
AnoGAN 0.8775 0.8837 0.9021 0.9024
ALAD 0.8154 0.8238 0.9021 0.9022
GANAD 0.9082 0.9125 0.9802 0.9803

(a) The time cost of binary classification
experiments

(b) The time cost of multi classification
experiments

Fig. 6 Time cost comparison between GANAD and the two other methods

4.4.2 Time cost performance

To validate the efficiency of our approach, we compare the time spent on
experiments to other GAN-based methods. We train the model for 50 epochs
for all methods. From the results of figure 6(a) and figure 6(b), it is obvious
that our methodology is better than the other two methods. From experimental
results, in general, we can observe that:

• Since the detection of anomalies is a latency constrained application, the
anomaly detection score needs to be computed in a short time. This mainly
depends on the computation of the discrimination and reconstruction losses.
So, most GAN-based methods are suffer from time consuming. In the
KDDCUP’99 dataset, the results in figure 6(a) show that our approach is sig-
nificantly superior to AnoGAN. In contrast to our architecture, MAD-GAN
and FID-GAN model data as time series and use RNN-LSTM networks to
consider data dependencies. Thus, our method only using fully connected
layers compared with them requires a lower computing time. It also indi-
cates that we can deal with big high-dimension data faster and efficiently.
In addition, from the time cost in NSL-KDD and UNSW NB15 datasets, we
can see the time difference between our method and the other four meth-
ods are not so obvious. We guess the reason is that the datasets is not big
enough for experiment. Even so, our evaluation results are still the best.

• For multi classification experimental results, figure 6(b) shows the advan-
tage of our approach over the other two methods that GANAD is good
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Table 3 Binary classification performance of ablation study on three datasets

Model Precision Recall F1 score

KDDCUP’99

Basemodel 0.9733 0.9761 0.9745
Basemodel+GP 0.9730 0.9761 0.9745
Basemodel+SN 0.9735 0.9761 0.9748

Basemodel+GP+SN 0.9749 0.9761 0.9755

NSL-KDD

Basemodel 0.9493 0.9492 0.9493
Basemodel+GP 0.9542 0.9541 0.9541
Basemodel+SN 0.9576 0.9575 0.9575

Basemodel+GP+SN 0.9583 0.9580 0.9581

UNSW NB15

Basemodel 0.9188 0.9194 0.9191
Basemodel+GP 0.9189 0.9188 0.9189
Basemodel+SN 0.9188 0.9191 0.9190

Basemodel+GP+SN 0.9482 0.9483 0.9482

at multi-classification. The cost time of ALAD is about twice that of our
approach, which validates the success of the combination of gradient penalty
and spectral normalization. This is because finding the latent representa-
tion of a sample and computing its reconstruction loss demands time. And
the encoder in our architecture enables a major reduction in the time taken
to detect anomalies because it obtains the latent representation of patterns
through a direct mapping. Since training GANs is not always an easy task
due to mode collapse and stabilization issues, this is a disadvantage in the
use of ALAD for improving existing GAN-based IDSs. In contrary to ALAD,
our method stabilize the training by adding constrain to loss computation.

4.5 Ablation studies

To better demonstrate the detection performance of our model, we perform
ablation experiments by adding and deleting model components. In particu-
lar, we perform experiments with and without gradient penalty term (GP)
optimization, with spectral normalization and without spectral normalization
(SN) to examine the performance of the full model (with gradient penalty
term and spectral normalization) respectively. From experimental results, in
general, we can observe that:

• As shown in table 3, generally speaking, our approach is overall balanced in
all aspects of metrics, and the addition of both SN and GP can improve the
model performance on the UNSW NB15 dataset. But the addition of GP
and SN alone does not seem to work more significantly on the KDDCUP’99
and NSL-KDD datasets.
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Table 4 Multi classification performance of ablation study on two
datasets

Dataset NSL-KDD UNSW NB15

Metrics Precison Accuracy Precison Accuracy

Basemodel 0.9065 0.9101 0.9802 0.9799
Basemodel+GP 0.9009 0.9013 0.9800 0.9800
Basemodel+SN 0.9065 0.9101 0.9799 0.9790

Basemodel+GP+SN 0.9082 0.9125 0.9802 0.9803

• From the table 4, we can see that our ablation experiments do not well
reflect the superiority of the overall framework well, and the performance
of each variant approach is almost the same. In the NSL-KDD experiment,
our variant approaches have been slightly improved, which indicates that
the effectiveness of the experiment still exists. In the UNSW NB15 dataset,
either adding gradient penalty or adding spectral normalization can only
make the model more stable or more computational efficient. We guess the
reason is related to the large difference in the number of attack types.

5 Conclusion and future work

In this artical, we proposed GANAD, a novel system using a GAN which is
specifically-designed for detecting network anomalies. The detection is based
on the novel training strategy, which can better learn minority abnormal
distribution from normal data patterns. In addition, we utilize a additional
encoder to mapping data samples to the latent space, such that the genera-
tor loss computation is optimized. Furthermore, to address the severe GAN
unstable training problem that hinders the detection task, our approach is
proposed within discriminator training replace JS divergence with Wasserstein
distance adding gradient penalty. The empirical evaluation on three datasets
demonstrates that our model outperforms the previous GAN-based model in
most cases with respect to recall, precision, F1 score. In addition, it reduces
the training cost and time consumption. Moreover, we further conduct abla-
tion experiments to validate the effectiveness of our method. Therefore, our
approach provides a new way to detect network anomalies.

The information about the distribution of anomalous samples in the exist-
ing network data is so vague and undetectable, hence abnormal behavior are
only slightly deviated and masked in the data space. In future works, we plan
to explore network anomaly detection at a deeper level. we will investigate the
use of GANs in the unsupervised detection of cyber-intrusion and approaches
to further enhance the detection performance of unknown abnormal traffic.
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