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Abstract

In this paper we introduce and study fused lasso nearly-isotonic signal approx-
imation, which is a combination of fused lasso and generalized nearly-isotonic
regression. We show how these three estimators relate to each other and derive
solution to a general problem. Our estimator is computationally feasible and pro-
vides a trade-off between monotonicity, block sparsity and goodness-of-fit. Next,
we prove that fusion and near-isotonisation in one dimensional case can be applied
interchangably, and this step-wise procedure gives the solution to the original
optimization problem. This property of the estimator is very important, because
it provides a direct way to construct path solution when one of the penalization
parameters is fixed. Also, we derive unbiased estimator of degrees of freedom of
the estimator.

Keywords: Constrained inference, isotonic regression, nearly-isotonic regression, fused
lasso

1 Introduction

This work is motivated by recent papers in nearly-constrained estimation in several
dimensions and by the papers in generalised penalized least squared regression. The
subject of penalized estimators starts with L1-penalisation, cf. [1], which is called lasso
signal approximation, and L2-penalisation, which is usually addressed as ridge regres-
sion [2] or sometimes as Tikhonov-Philips regularization [3, 4]. The first generalisation
of lasso is L1-penalisation imposed on the successive differences of the coefficients. For
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a given sequence of data points y ∈ R
n the fusion approximator (cf. [5]) is given by

β̂F (y, λF ) = argmin
β∈Rn

1

2
||y − β||22 + λF

n−1
∑

i=1

|βi − βi+1|. (1)

The combination of fusion approximator and lasso is called fused lasso estimator and
is given by:

β̂FL(y, λF , λL) = argmin
β∈Rn

1

2
||y − β||22 + λF

n−1
∑

i=1

|βi − βi+1|+ λL||β||1. (2)

The fused lasso was introduced in [6] and its asymptotic properties were studied in
detail in [5]. Also, it is worth to note that in the paper [7] the estimator in (1) is called
the fused lasso, while the estimator in (2) is addressed as the sparse fused lasso.

In the area of constrained inference the basic and simplest problem is isotonic
regression in one dimension. For a given sequence of data points y ∈ R

n isotonic
regression is the following approximation

β̂I = argmin
β∈Rn

||y − β||22, subject to β1 ≤ β2 ≤ · · · ≤ βn, (3)

i.e. it is ℓ2-projection of the vector y onto the set of non-increasing vectors in R
n. The

notion of isotonic ”regression” in this context might be confusing. Nevertheless, it is a
standard notion in this subject, cf., for example, the papers [8, 9], where the notation
”isotonic regression” is used for the isotonic projection of a general vector. Also, in this
paper we use notations ”regression”, ”estimator” and ”approximator” interchangeably.
A general introduction to isotonic regression can be found, for example, in [10].

The nearly-isotonic regression, introduced in [11] and studied in detail in [12], is a
less restrictive version of isotonic regression and is given by the following optimization
problem

β̂NI(y, λNI) = argmin
β∈Rn

1

2
||y − β||22 + λNI

n−1
∑

i=1

|βi − βi+1|+, (4)

where x+ = x · 1{x > 0}.
In this paper we combine fused lasso estimator with nearly-isotonic regression and

call the resulting estimator as fused lasso nearly-isotonic signal approximator, i.e. for
a given sequence of data points y ∈ R

n the problem in one dimensional case is the
following optimization:

β̂FLNI(y, λF , λL, λNI) =

argmin
β∈Rn

1

2
||y − β||22+λF

n−1
∑

i=1

|βi − βi+1|+ λL||β||1 + λNI

n−1
∑

i=1

|βi − βi+1|+.
(5)
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Also, in the case of λF ̸= 0 and λNI ̸= 0, with λL = 0, we call the estimator as fused
nearly-isotonic regression, i.e.

β̂FNI(y, λF , λNI) ≡ β̂FLNI(y, λF , 0, λNI) =

argmin
β∈Rn

1

2
||y − β||22+λF

n−1
∑

i=1

|βi − βi+1|+ λNI

n−1
∑

i=1

|βi − βi+1|+.
(6)

This generalisation of nearly-isotonic regression in (6) was proposed in the conclusion
of the paper [11]. Next, one-dimensional fused nearly-isotonic regression was considered
and numerically solved in [13] with time complexity O(n). Nevertheless, first, in this
paper we consider and solve the problem in general dimensions. Second, for fixed
penalisation parameters in one-dimensional case we also provide solution with linear
complexity and exact partly path solution (when one of the parameters is fixed and
the path is with respect the other one) with complexity O(n log(n)).

It is also worth to mention the paper [14], where the authors studied nearly-isotonic
approximator with extra penalisation term

(βi − βi+1)
2 · 1{(βi − βi+1) > 0}

with additial lasso penalty. Also, in the paper [15] the authors did a comparison of
the algorithms to solve lasso with linear constraints, which is called constrained lasso.

In the next step we state the problem defined in (5) for the general case of isotonic
constraints with respect to a general partial order. First, we have to introduce the
notation.

1.1 Notation

We start with basic definitions of partial order and isotonic regression. Let I =
{i1, . . . , in} be some index set. Next, we define the following binary relation ⪯ on I.

A binary relation ⪯ on I is called partial order if

• it is reflexive, i.e. j ⪯ j for all j ∈ I;
• it is transitive, i.e. j1, j2, j3 ∈ I, j1 ⪯ j2 and j2 ⪯ j3 imply j1 ⪯ j3;
• it is antisymmetric, i.e. j1, j2 ∈ I, j1 ⪯ j2 and j2 ⪯ j1 imply j1 = j2.

Further, a vector β ∈ R
n indexed by I is called isotonic with respect to the partial

order ⪯ on I if j1 ⪯ j2 implies βj1 ≤ βj2 . We denote the set of all isotonic vectors in
R

n with respect to the partial order ⪯ on I by B
is, which is closed convex cone in R

n

and it is also called isotonic cone. Next, a vector βI ∈ R
n is isotonic regression of an

arbitrary vector y ∈ R
n over the pre-ordered index set I if

βI = argmin
β∈Bis

∑

j∈I

(βj − yj)
2. (7)
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For any partial order relation ⪯ on I there exists directed graph G = (V,E), with
V = I and E is the minimal set of edges such that

E = {(j1, j2), where (j1, j2) is the ordered pair of vertices from I}, (8)

such that an arbitrary vector β ∈ R
n is isotonic with respect to ⪯ iff βl1 ≤ βl2 , given

that E contains the chain of edges from l1 ∈ V to l2 ∈ V .
Now we can generalise the estimators discussed above. First, equivalently to the

definition in (7), a vector βI ∈ R
n is isotonic regression of an arbitrary vector y ∈ R

n

indexed by the partially ordered index set I if

βI = argmin
β

∑

j∈I

(βj − yj)
2, (9)

subject to βl1 ≤ βl2 , whenever E contains the chain of edges from l1 ∈ V to l2 ∈ V .
Second, for the directed graph G = (V,E), which corresponds to the partial order

⪯ on I, the nearly-isotonic regression of y ∈ R
n indexed by I is given by

β̂NI(y, λNI) = argmin
β∈Rn

1

2
||y − β||22 + λNI

∑

(i,j)∈E

|βi − βj |+. (10)

This generalisation of nearly-isotonic regression was introduced and studied in [12].
Next, fused and fused lasso approximators for a general directed graph G = (V,E)

are given by

β̂F (y, λF ) = argmin
β∈Rn

1

2
||y − β||22 + λF

∑

(i,j)∈E

|βi − βj |, (11)

and

β̂FL(y, λF , λL) = argmin
β∈Rn

1

2
||y − β||22 + λF

∑

(i,j)∈E

|βi − βj |+ λL||β||1. (12)

These optimization problems were introduced and solved for a general graph in [7, 16,
17].

Further, let D denote the oriented incidence matrix for the directed graph G =
(V,E), corresponding to ⪯ on I . We choose the orientation of D in the following way.
Assume that the graph G with n vertexes has m edges. Next, assume we label the
vertexes by {1, . . . , n} and edges by {1, . . . ,m}. Then D is m× n matrix with

Di,j =











1, if vertex j is the source of edge i,

−1, if vertex j is the target of edge i,

0, otherwise.

(13)
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In order to clarify the notations we consider the following examples of partial order
relation. First, let us consider the monotonic order relation in one dimensional case.
Let I = {1, . . . , n}, and for j1 ∈ I and j2 ∈ I we naturally define j1 ⪯ j2 if j1 ≤ j2.
Further, if we let V = I and E = {(i, i+1) : i = 1, . . . , n− 1}, then G = (V,E) is the
directed graph which correspond to the one dimensional order relation on I. Figure 1
displays the graph and the incidence matrix for the graph.

1 2 3 41 2 3 5

1 2 3 4 5

(a) Graph G = (V,E)

D =









1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1









(b) Oriented incidence matrix D

Fig. 1: Graph for monotonic contstraints and oriented incidence matrix

Next, we consider two dimensional case with bimonotonic constraints. The notion
of bimonotonicity was first introduced in [18] and it means the following. Let us
consider the index set

I = {i = (i(1), i(2)) : i(1) = 1, 2, . . . , n1, i
(2) = 1, 2, . . . , n2}

with the following order relation ⪯ on it: for j1, j2 ∈ I we have j1 ⪯ j2 iff j
(1)
1 ≤ j

(1)
2

and j
(2)
1 ≤ j

(2)
2 . Then, a vector β ∈ R

n, with n = n1n2, indexed by I is called
bimonotone if it is isotonic with respect to bimonotone order ⪯ defined on its index I.
Further, we define the directed graph G = (V,E) with vertexes V = I, and the edges

E = {((l, k), (l, k + 1)) : 1 ≤ l ≤ n1, 1 ≤ k ≤ n2 − 1}

∪ {((l, k), (l + 1, k)) : 1 ≤ l ≤ n1 − 1, 1 ≤ k ≤ n2}.

The labeled directed graph for bimonotone constraints and its incidence matrix are
displayed on Figure 2.

1.2 General statement of the problem

Now we can state the general problem studied in this paper. Let y ∈ R
n be a signal

indexed by the index set I with the partial order relation ⪯ defined on I. Next, let
G = (V,E) be the directed graph corresponding to ⪯ on I. The fused lasso nearly-
isotonic signal approximation with respect to ⪯ on I (or, equivalently, to the directed
graph G = (V,E), corresponding to ⪯) is given by

β̂FLNI(y, λF , λL, λNI) = argmin
β∈Rn

1

2
||y − β||22 + λF

∑

(i,j)∈E

|βi − βj |

+ λL||β||1 + λNI

∑

(i,j)∈E

|βi − βj |+.
(14)
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...
0 0 0 0 0 . . . 0 −1







































(b) Oriented incidence matrix D ∈ R
17×12 for

the graph G = (V,E)

Fig. 2: Graph for bimonotonic contstraints and oriented incidence matrix

Therefore, the estimator in (14) is a combination of the estimators in (10) and (12).
Equivalently, we can rewrite the problem in the following way:

β̂FLNI(y, λF , λL, λNI) = argmin
β∈Rn

1

2
||y − β||22 + λF ||Dβ||1

+ λL||β||1 + λNI ||Dβ||+,

(15)

where D is the oriented incidence matrix of the graph G = (V,E). Here we clarify
that in the case of penalisation with the incidence matrix D we assume that β is
indexed according to the indexing of the edges in the graph G = (V,E). Analogously
to the definition in one dimensional case, if λL = 0 we call the estimator as fused
nearly-isotonic approximator and denote it by β̂FNI(y, λF , λNI).

Here it is worth to mention recent papers in constrained estimation [19–21], where
the authors studied the asymptotic properties of the isotonic regression in general
dimensions. Also, in paper [22] ℓ1-trend filterin was generalised for the case of a general
graph.

1.3 Organisation of the paper

The rest of the paper is organized as follows. In Section 2 we provide the numerical
solution to the fussed lasso nearly-isotonic signal approximator. Section 3 is dedicated
to the theoretical properties of the estimator. We show how the solutions to the fussed
lasso nearly-isotonic regression, fussed lasso and nearly-isotonic regression are related
to each other. Also, we prove that in one-dimensional case the new estimator has
agglomerative property and the procedures of near-isotonisation and fusion can be
swaped and provide the solution to the original problem. Next, in Section 4 we derive
the unbiased estimator of the degrees of freedom of the estimator. Further, in Section
5 we discuss the computational aspects, do the simulation study and show that the
estimator is computationally feasible for moderately large data sets. Also, we illustrate
the usage of the estimator for the real data set. The article closes with a conclusion
and a discussion of possible generalisations in Section 6. The proofs of all results are
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given in Appendix. The R and Python implementations of the estimator are available
upon request.

2 Solution to the fused lasso nearly-isotonic signal
approximator

First, we consider fused nearly-isotonic regression, i.e. in (15) we assume that λL = 0.
Theorem 1. For a fixed data vector y ∈ R

n indexed by the index set I with the partial
order relation ⪯ defined on I the solution to the fused nearly-isotonic problem in (15)
is given by

β̂FNI(y, λF , λNI) = y −DT ν̂(λF , λNI) (16)

with

ν̂(y, λF , λNI) = argmin
ν∈Rm

1

2
||y −DTν||22 s. t. − λF1 ≤ ν ≤ (λF + λNI)1, (17)

where D is the incidence matrix of the directed graph G = (V,E) with n vertices and
m edges corresponding to ⪯ on I, 1 ∈ R

m is the vector whose all elements are equal
to 1 and the notation a ≤ b for vectors a, b ∈ R

m means ai ≤ bi for all i = 1, . . . ,m.
Next, we provide the solution to the fused lasso nearly-isotonic regression.

Theorem 2. For a given vector y indexed by I the solution to the fused lasso nearly-
isotonic signal approximator β̂FLNI(y, λF , λL, λNI) is given by soft thresholding the

fused nearly-isotonic regression β̂FNI(y, λF , λNI), i.e.

β̂FLNI
i (y, λF , λL, λNI) =











β̂FNI
i (y, λF , λNI)− λL, if β̂FNI

i ≥ λL,

0, if |β̂FNI
i | ≤ λL,

β̂FNI
i (y, λF , λNI) + λL, if β̂FNI

i ≤ −λL,

(18)

for i ∈ I.
From this result we can conclude that adding lasso penalisation does not add much

to the computational complexity of the solution. The computational aspects of fussed
nearly-isotonic approximator will be discussed in the Section 5 below. In the next
section we discuss properties of the fussed lasso nearly-isotonic regression.

3 Properties of the fused lasso nearly-isotonic signal
approximator

We start with a proposition which shows how the solutions to the optimization prob-
lems (11), (10) and (15) are related to each other. This result will be used in the
next section to derive degrees of freedom of the fused lasso nearly-isotonic signal
approximator.
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Proposition 3. For a fixed data vector y indexed by I and penalisation parameters
λNI and λF the following relations between estimators β̂F , β̂NI and β̂FNI hold

β̂NI(y, λNI) = β̂F (y −
λNI

2
DT1,

1

2
λNI), (19)

β̂FNI(y, λF , λNI) = β̂NI(y + λFD
T1, λNI + 2λF )

= β̂F (y −
λNI

2
DT1,

1

2
λNI + λF )

(20)

and

β̂FLNI(y, λF , λL, λNI) = β̂FL(y −
λNI

2
DT1,

1

2
λNI + λF , λL), (21)

where D is the oriented incidence matrix for the graph G = (V,E) corresponding to
the partial order relation ⪯ on I.

Further, let us introduce two ”naive” versions of β̂FNI . Instead of simultaniously
penalise by fusion and isotonisation we consider the following two-step procedures:

β̂F→NI(y, λF , λNI) = β̂NI(β̂F (y, λF ), λNI)

≡ argmin
β∈Rn

1

2
||β̂F (y, λF )− β||22 + λNI

∑

(i,j)∈E

|βi − βj |+,
(22)

and

β̂NI→F (y, λNI , λF ) = β̂F (β̂NI(y, λNI), λF )

≡ argmin
β∈Rn

1

2
||β̂NI(y, λNI)− β||22 + λF

∑

(i,j)∈E

|βi − βj |.
(23)

Below we prove that both ”naive” methods in one dimensional case with a simple
monotonic restriction defined above are not only equivalent, but both methods provide
the solution to the fused nearly-isotonic regression.

First, we have to prove that, analogously to fused lasso and nearly-isotonic regres-
sion, as one of the penalization parameters increases the constant regions in the
solution β̂FLNI can only be joined together and not split apart. In the paper [12] this
property of the estimator was called as agglomerative property. We prove this result
only for one dimensional monotonic order, and the general case is an open question.
Proposition 4. (Agglomerative property of FLNI estimator) Let I = {1, . . . , n} with
the natural order for integers defined on it. Next, let λ = (λF , λL, λNI) and λ∗ =
(λ∗

F , λ
∗
L, λ

∗
NI) are the triples of penalisation parameters such that one of the elements

of λ∗ is greater than the corresponding element in λ, while two others are the same.
Next, assume that for some i the solution β̂FLNI(y,λ) satisfies

β̂FLNI
i (y,λ) = β̂FLNI

i+1 (y,λ).

Then for λ∗ we have
β̂FLNI
i (y,λ∗) = β̂FLNI

i+1 (y,λ∗).
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Now we can prove the commutability property of the ”naive” estimators and the
equivalence of the approach to the fussed nearly-isotonic regression.
Theorem 5. (Commutability property of FNI estimator)

Let β̂F→NI(y, λF , λNI) and β̂NI→F (y, λNI , λF ) be the ”naive” versions of the fussed
nearly-isotonic approximator, defined in (22) and (23), in the case of one-dimensional
monotonic constraint. Then, we have

β̂F→NI(y, λF , λNI) = β̂NI→F (y, λNI , λF ) = β̂FNI(y, λF , λNI).

One of the first conclusions of Theorem 5 is commutability of strict isotonisation
(which corresponds to the large values of λNI) and fusion. For big values of λNI fussed
lasso nearly-isotonic signal approximation is, in principle, analogous to the approach
studied in [23], where the authors studied estimation of isotonic piecewise constant
signals solving the following optimization problem

β∗ = argmin
β∈Bis

n,k

n
∑

j=1

(βj − yj)
2 + pen(n, k), (24)

where

B
is
n,k = {β ∈ R

n : there exists {aj}
k
j=0 and {µj}

k
j=1 such that

0 ≤ a0 ≤ a1 ≤ · · · ≤ ak = n,

µ1 ≤ µ2 ≤ · · · ≤ µk, and βi = µj for all i ∈ (aj−1 : aj ]},

and pen(n, k) is a penalization term which depends on n and k but not on y. Therefore,
the result of Theorem 5 provides an alternative approach to obtain exact solution in
the estimation isotonic piecewise constant signals.

4 Degrees of freedom

In this section we discuss the estimation of the degrees of freedom for the fused nearly-
isotonic regression and the fused lasso nearly-isotonic signal approximator. Let us
consider the following nonparametric model

Y = β̊ + ε,

where β̊ ∈ R
n is an unknown signal, and the error term ε ∈ N (0, σ2I), with σ < ∞.

The degrees of freedom is a measure of complexity of the estimator, and following
[24], for the fixed values of λF , λL and λNi the degrees of freedom of β̂FNI and β̂FLNI

are given by

df(β̂FNI(Y , λF , λNI)) =
1

σ2

n
∑

i=1

Cov[β̂FNI
i (Y , λF , λNI), Yi] (25)
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and

df(β̂FLNI(Y , λF , λL, λNI)) =
1

σ2

n
∑

i=1

Cov[β̂FLNI
i (Y , λF , λL, λNI), Yi]. (26)

The next theorem provides the unbiased estimators of the degrees of freedom
df(β̂FNI) and df(β̂FLNI).
Theorem 6. For the fixed values of λF , λL and λNi let

KFNI(y, λF , λNI) = #{fused groups in β̂FNI(y, λF , λNI)},

and

KFLNI(y, λF , λL, λNI) = #{non-zero fused groups in β̂FLNI(y, λF , λL, λNI)}.

Then we have
E[KFNI(Y , λF , λNI)] = df(β̂FNI(Y , λF , λNI)),

and
E[KFLNI(Y , λF , λL, λNI)] = df(β̂FLNI(Y , λF , λL, λNI)).

We can potentially use the estimate of degrees of freedom for unbiased estimation
of the true risk E[

∑n

i=1(β̊i − β̂FLNI
i (Y , λF , λL, λNI))

2], which is given by Ĉp statistic

Ĉp(λF , λL, λNI) =
n
∑

i=1

(yi − β̂FLNI
i (y, λF , λL, λNI))

2 − nσ2 + 2σ2KFLNI(Y , λF , λL, λNI).

Though, we note that in a real application the variance σ2 is unknown. The variance
estimator for the case of one-dimensional isotonic regression was introduced in [25].
To the authors’ knowledge, the variance estimator even for one dimensional nearly-
isotonic regression is an open problem.

5 Computational aspects, simulation study and
application to a real data set

First of all, recall that the dual of (6) is given by

ν̂(y, λF , λNI) = argmin
ν∈Rm

1

2
||y −DTν||22 subject to − λF1 ≤ ν ≤ (λF + λNI)1,

where D is the incidence matrix displayed in Figure 1 (a) for one-dimensional case.
The matrix D is full raw ranked, therefore, the problem is strictly convex. Next, we
have similar box-type constraints as in the problem of L1-trend filtering example and
we can solve the problem with O(n) time complexity.
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Second, note that in one-dimensional case the time complexities of path solu-
tion algorithms for nearly-isotonic regression and fusion approximator are equal to
O(n log(n)), cf. [11, 17, 26] with the references therein. Therefore, if we have λF

fixed, then using the result of Theorem 5 we can get the solution path with respect
to λNI with the time complexity O(n log(n)). Further, if we fix λNI then, again,
using Theorem 5 we can obtain the solution path with respect to λF with complexity
O(n log(n)). In the paper [13] one-dimensional fussed nearly-isotonic regression was
solved for fixed values of penalisation parameters. Therefore, one dimentional fussed
lasso and nearly-isotonic regression have been studied in detail, therefore, in our paper
we focus in two-dimensional case.

The case of several dimensions is more complicated. Note, that, for example, even
in the case of two dimensions the matrix D, displayed on Figure 2, is not full raw
ranked. Therefore, the dual problem is not strictly convex. At the same time one
can see that the matrix D is sparse digaonal. Therefore, we apply recently developed
algorithm OSQP algorithm, cf. [27]. The time complexity of the solution is linear with
respect to the number of edges in the graph, i.e. it is O(|E|).

The exact solution for fixed values of penalisation parameters can be obtained using
results of the paper [12], where the author proposed the algorithm for a general graph

with computational complexity O(n|E| log( n2

|E| )). Therefore, in principle, using the

relation between fused nearly-isotonic regression and nearly-isotonic regression proved
in Proposition 3 it is possible to obtain exact solution to the fussed nearly-isotonic
approximation for a general graph.

First, recall that from Theorem 2 it follows that the solution with λL ̸= 0 is given
by soft-thresholding of the solution with λL = 0. Therefore, lasso penalization does not
add much to the complexity, and we concentrate on the case with λL = 0. Following
[12], we use the following bi-monotone functions (bisigmoid and bicubic) to test the
performance of the fused nearly-isotonic approximator:

fbs(x
(1), x(2)) =

1

2

( e16x
(1)−8

1 + e16x(1)−8
+

e16x
(2)−8

1 + e16x(2)−8

)

,

fbc(x
(1), x(2)) =

1

2

(

(2x(1) − 1)3 + (2x(2) − 1)3
)

+ 2,

where x(1) ∈ [0, 1) and x(2) ∈ [0, 1).
The simulation experiment is performed in the following way. First, we generate

homogeneous grid k × k:

x
(1)
k =

k − 1

d
and x

(2)
k =

k − 1

d
,

for k = 1, . . . , d. The size of the side d varies in {2× 102, 4× 102, 6× 102, 8× 102, 103}.
Next, we uniformly generate penalisation parameters λF and λNI from U(0, 5). We
perform 10 runs and compute computational times for each d. Analogously to [27], we
consider two cases of OSQP algorithm: low precision case with εabs = εrel = 10−3, and
high precision case with εabs = εrel = 10−5 (for the details of the settings in OSQP we
refer to [27]). Figure 3 below provides these computational times. All the computations
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were performed on MacBook Air (Apple M1 chip), 16 GB RAM. From these results
we can conclude that the estimator is computationally feasible for moderate sized data
sets (i.e. for the grids with millions of nodes).
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Fig. 3: Computational times vs side size of a square grid for OSQP solution of fussed
nearly-isotonic approximator in two dimensions

Next, Figure 4 visualizes the fussed nearly-isotonic approximator. We use Adult
data set, available from the UCI Machine Learning repository [28]. The target variable
in this data set is either a person’s salary is greater than 50 000 dollars per year or
less. We use two features (education number and working hours per week) and each
bar at the figure is the proportion of people making more that the amount of money
mentioned above. This data set was used, for example, in [29].

From Figure 4 we can see that fussed nearly-isotonic regression provides a trade-off
between monotonicity, block sparsity and goodness-of-fit.

6 Conclusion and discussion

In this paper we introduced and studied fussed lasso nearly-isotonic signal approixi-
mator in general dimensions. The main result is that the estimator is computationally
feasible and it provides interplay between fusion and monotonisation. Also, we proved
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Fig. 4: Data visualisation for different levels of fusion and isotonisation

that the properties of new estimator are very similar to the properties of fusion
estimator and nearly-isotonic regression.

In our opinion, one of the most important results is Theorem 5, where we proved the
commutability property of fusion and nearly-isotonisation, because for the fixed values
of one of the penalisation parameters we can immediately obtain the path solution
with respect to the other one. Path algorithm for fussed lasso exists [7, 17]. At the
same time, to the authors’ knowledge, path algorithm for nearly-isotonic regression
in general dimensions has not been developed yet. Therefore, further direction could
be the solution for the nearly-isotonic regression, and, next, to prove if commutability
holds in a general dimensional case.

One of the other possible direction is to study the asymptotic properties. In partic-
ular, it is interesting to understand the rate of convergence for different model selection
and cross-validation procedures of choosing penalisation parameters.

Another direction is to study properties of the solution when λF and λNI are not
the same for each vertex. An example where one must use different penalisation param-
eters is the case when the data points are measured along non-homogeneously spaced
grid. It is important to note that, as discussed in [12], this case is different and even in
one dimensional case the estimator will behave differently. In particular, agglomerative
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property of the nearly-isotonic regression holds if the penalisation parameters satisfy
the certain relatio, cf. Proposition A.1. in [12], which is crucial for the solution path.

Finally, in our opinion, it is interesting to study different combinations of penali-
sation estimators, even though, practically, in this case one needs more data, because
there will be more penalisation parameters to estimate.
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Appendix A Proofs of the results

Proof of Theorem 1. First, following the derivations of ℓ1 trend filtering and gener-
alised lasso in [30] and [7], respectively, we can write the optimization problem in (6)
in the following way

minimize
β,z

1

2
||y − β||22 + λF ||z||1 + λNI ||z||+ subject to Dβ = z ∈ R

m.

Further, the Lagrangian is given by

L(β, z,ν) =
1

2
||y − β||22 + λF ||z||1 + λNI ||z||+ + νT (Dβ − z), (A1)

where ν ∈ R
m is a dual variable.

Note that

min
z

(

λF ||z||1 + λNI ||z||+ − νTz
)

=

{

0, if − λF1 ≤ ν ≤ (λF + λNI)1,

−∞, otherwise,

and

min
β

(1

2
||y − β||22 + νTDβ

)

= −
1

2
νTDDTν + yTDTν = −

1

2
||y −DTν||22 +

1

2
yTy.

Next, the dual function is given by

g(ν) = min
β,z

L(β, z,ν) =

{

− 1
2 ||y −DTν||22 +

1
2y

Ty, if − λF1 ≤ ν ≤ (λF + λNI)1,

−∞, otherwise,

and, therefore, the dual problem is

ν̂(y, λF , λNI) = argmax
ν

g(ν) subject to − λF1 ≤ ν ≤ (λF + λNI)1,
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which is equivalent to

ν̂(y, λF , λNI) = argmin
ν

1

2
||y −DTν||22 subject to − λF1 ≤ ν ≤ (λF + λNI)1.

Lastly, taking first derivative of Lagrangian L(β, z,ν) with respect to β we get

the following relation between β̂FNI(λF , λNI) and ν̂(y, λF , λNI)

β̂FNI(y, λF , λNI) = y −DT ν̂(y, λF , λNI).

□

Proof of Theorem 2. The proof is similar to the derivation of solution of the
fused lasso in [16]. Nevertheless, for compliteness of the paper we provide the proof

for β̂FLNI(y, λF , λL, λNI).
The subgradient equations (which are necessary and sufficient conditions for the

solution of (5)) for βi, with i ∈ I, are

gi(λL) = − (yi − βi) + λNI(
∑

j:(i,j)∈E

qi,j −
∑

j:(j,i)∈E

qj,i)

+ λF (
∑

j:(i,j)∈E

ti,j −
∑

j:(j,i)∈E

tj,i) + λLsi = 0,
(A2)

where

qi,j :











= 1, if βi − βj > 0,

= 0, if βi − βj < 0,

∈ [0, 1], if βi = βj ,

ti,j :











= 1, if βi − βj > 0,

= −1, if βi − βj < 0,

∈ [−1, 1], if βi = βj ,

(A3)

si :











= 1, if βi > 0,

= −1, if βi < 0,

∈ [−1, 1], if βi = 0.

Next, let qi,j(λL), ti,j(λL) and si(λL) denote the values of the parameters defined
above at some value of λL. Note, the values of λNI and λF are fixed. Therefore, if
β̂FLNI
i (y, λF , 0, λNI) ̸= 0 for si(0) we have

si(0) =

{

1, if β̂FLNI
i (y, λF , 0, λNI) > 0,

−1, if β̂FLNI
i (y, λF , 0, λNI) < 0,

and for β̂FLNI
i (y, λF , 0, λNI) = 0 we can set si(0) = 0.

Next, let β̂ST (λL) denote the soft thresholding of β̂FLNI(y, λF , 0, λNI), i.e.
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β̂ST
i (λL) =











β̂FLNI
i (y, λF , 0, λNI)− λL, if β̂FLNI

i (y, λF , 0, λNI) ≥ λL,

0, if |β̂FLNI
i (y, λF , 0, λNI)| ≤ λL,

β̂FLNI
i (y, λF , 0, λNI) + λL, if β̂FLNI

i (y, λF , 0, λNI) ≤ −λL.

The goal is to prove that β̂ST (λL) provides the solution to (14).
Note, analogously to the proof for the fused lasso estimator in Lemma A.1 at [16], if

either β̂ST
i (λL) ̸= 0 or β̂ST

j (λL) ̸= 0, and β̂ST
i (λL) < β̂ST

j (λL) or β̂
ST
i (λL) > β̂ST

j (λL),

then we also have β̂ST
i (0) < β̂ST

j (0) or β̂ST
i (0) > β̂ST

j (0), respectively. Therefore, soft

thresholding of β̂FLNI(y, λF , 0, λNI) does not change the ordering of these pairs and
we have qi,j(λL) = qi,j(0) and ti,j(λL) = ti,j(0). Next, if for some (i, j) ∈ E we have

β̂ST
i (λL) = β̂ST

j (λL) = 0, then qi,j ∈ [0, 1] and ti,j ∈ [−1, 1], and, again, we can set
ti,j(λL) = ti,j(0), and qi,j(λL) = qi,j(0).

Now let us insert β̂ST
i (λL) into subgradient equations (A2) and show that we can

find si(λL) ∈ [0, 1], for all i ∈ I.

First, assume that for some i we have β̂FLNI
i (y, λF , 0, λNI) ≥ λL. Then

gi(λL) = − (yi − β̂FLNI
i (y, λF , 0, λNI))− λL

+ λNI(
∑

j:(i,j)∈E

qi,j(λL)−
∑

j:(j,i)∈E

qj,i(λL))

+ λF (
∑

j:(i,j)∈E

ti,j(λL)−
∑

j:(j,i)∈E

tj,i(λL)) + λLsi(λL)

= − (yi − β̂FLNI
i (y, λF , 0, λNI))

+ λNI(
∑

j:(i,j)∈E

qi,j(0)−
∑

j:(j,i)∈E

qj,i(0))

+ sλF (
∑

j:(i,j)∈E

ti,j(0)−
∑

j:(j,i)∈E

tj,i(0)) + λLsi(λL)− λL = 0.

Note, that

− (yi − β̂FLNI
i (y, λF , 0, λNI)) + λNI(

∑

j:(i,j)∈E

qi,j(0)−
∑

j:(j,i)∈E

qj,i(0))

+ λF (
∑

j:(i,j)∈E

ti,j(0)−
∑

j:(j,i)∈E

tj,i(0)) = 0,

because β̂FNI(y, λF , λNI) ≡ β̂FLNI(y, λF , 0, λNI).

Therefore, if si(λL) = signβ̂ST
i (λL) = 1, then gi(λL) = 0.

The proof for the case when β̂FLNI
i (y, λF , 0, λNI) ≤ −λL is similar and one can

show that gi(λL) = 0 if si(λL) = signβ̂ST
i (λL) = −1.

Second, assume that |β̂FLNI
i (y, λF , 0, λNI)| < λL. Then, β̂

ST
i (λL) = 0, and
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gi(λL) = − yi + λNI(
∑

j:(i,j)∈E

qi,j(λL)−
∑

j:(j,i)∈E

qj,i(λL))

+ λF (
∑

j:(i,j)∈E

ti,j(λL)−
∑

j:(j,i)∈E

tj,i(λL)) + λLsi(λL)

= − yi + λNI(
∑

j:(i,j)∈E

qi,j(0)−
∑

j:(j,i)∈E

qj,i(0))

+ λF (
∑

j:(i,j)∈E

ti,j(0)−
∑

j:(j,i)∈E

tj,i(0)) + λLsi(λL) = 0.

Next, if we let si(λL) = β̂FLNI
i (y, λF , 0, λNI)/λL, then, again, we have

gi(λL) = − (yi − β̂FLNI
i (y, λF , 0, λNI))

+ λNI(
∑

j:(i,j)∈E

qi,j(0)−
∑

j:(j,i)∈E

qj,i(0))

+ λF (
∑

j:(i,j)∈E

ti,j(0)−
∑

j:(j,i)∈E

tj,i(0)) = 0,

Therefore, we have proved that β̂FLNI(y, λF , λL, λNI) = β̂ST (λL). □

Proof of Proposition 3. First, from [11] the solution to the nearly-isotonic
problem is given by

β̂NI(y, λNI) = y −DT v̂(y, λNI),

with

v̂(y, λNI) = argmin
v∈Rn−1

1

2
||y −DTv||22 subject to 0 ≤ v ≤ λNI1,

and from [7] it follows

β̂F (y, λF ) = y −DT ŵ(y, λF ),

with

ŵ(y, λF ) = argmin
w∈Rn−1

1

2
||y −DTw||22 subject to − λF1 ≤ w ≤ λF1.

Second, let us introduce a new variable v∗ = v − λNI

2 1. Then

β̂NI(y, λNI) = y −DT λNI

2
1−DT v̂∗(y, λNI),

where

v̂∗(y, λNI) = argmin
v∗∈Rn−1

1

2
||y −DT λNI

2
1−DTv∗||22 s. t. −

λNI

2
1 ≤ v∗ ≤

λNI

2
1.
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Therefore, we have proved that β̂NI(y, λNI) = β̂F (y − λNI

2 DT1, 1
2λNI).

The proof for the fused lasso nearly-isotonic estimator is the same with the change
of variable u∗ = u+DTλF1 in (16) and (17) for the proof of the first equality in (20)
and with u∗ = u− λNI

2 1 for the second equality.
Next, we prove the result for the case of fused lasso nearly-isotonic approximator.

From Theorem 2 we have

β̂FLNI
i (y, λF , λL, λNI) =











β̂FNI
i (y, λF , λNI)− λL, if β̂FNI

i ≥ λL,

0, if |β̂FNI
i | ≤ λL,

β̂FNI
i (y, λF , λNI) + λL, if β̂FNI

i ≤ −λL,

for i ∈ I.
Further, using (20) we have

β̂FLNI
i (y, λF , λL, λNI) = β̂F

i (y −
λNI

2
DT1,

1

2
λNI + λF )− λL,

if β̂F
i (y − λNI

2 DT1, 1
2λNI + λF ) ≥ λL,

β̂FLNI
i (y, λF , λL, λNI) = 0,

if |β̂F
i (y − λNI

2 DT1, 1
2λNI + λF )| ≤ λL,

β̂FLNI
i (y, λF , λL, λNI) = β̂F

i (y −
λNI

2
DT1,

1

2
λNI + λF ) + λL,

if β̂F
i (y − λNI

2 DT1, 1
2λNI + λF ) ≤ −λL.

Therefore, we obtain

β̂FLNI(y, λF , λL, λNI) =

argmin
β∈Rn

1

2
||y −

λNI

2
DT1− β||22 + (

1

2
λNI + λF )||Dβ||1 + λL||β||1 ≡

β̂FL(y −
λNI

2
DT1,

1

2
λNI + λF , λL).

□

Let us consider the following cases separately.
Case 1: λNI and λF are fixed and λ∗

L > λL. The result of the proposition for
this case follows directly from Theorem 2.

Case 2: λF and λL are fixed and λ∗
NI > λNI . Let us consider the fused

nearly-isotonic regression and write the subgradient equations

gi(λNI) = −(yi − βi) + λNI(qi(λNI)− qi−1(λNI)) + λF (ti(λNI)− ti−1(λNI)) = 0,
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where qi and ti, with i = 1, . . . , n, are defined in (A3), and, analogously to the proof
of Theorem 2, q(λNI), t(λNI) denote the values of the parameters defined above at
some value of λNI .

Assume that for λNI in the solution β̂FNI(y, λF , λNI) we have a following constant
region

β̂FNI
j−1 (y, λF , λNI) ̸= β̂FNI

j (y, λF , λNI) = . . .

= β̂FNI
j+k (y, λF , λNI) ̸= β̂FNI

j+k+1(y, λF , λNI),
(A4)

and in the same way as in [11] for λ∗
NI we consider the subset of the subgradient

equations
gi(λNI) = −(yi − βi) + λ∗

NI(qi(λ
∗
NI)− qi−1(λ

∗
NI))

+ λF (ti(λ
∗
NI)− ti−1(λ

∗
NI)) = 0,

(A5)

with i = j, . . . , k, and show that there exists the solution for which (A4) holds, qi ∈
[0, 1] and ti ∈ [−1, 1].

Note first that as λNI increases, (A4) holds until the merge with other groups
happens, which means that qj−1, qj+k ∈ {0, 1} and tj−1, tj+k ∈ {−1, 1} will not change
their values until the merge of this constant region. Also, as it follows from (A3),
for i ∈ [j, j + k] the value of ti is in [−1, 1]. Therefore, without any violation of the
restrictions on ti we can assume that ti(λ

∗
NI) = ti(λ) for any i ∈ [j, j + k − 1].

Next, taking pairwise differences between subgradient equations for λNI we have

λNIAq̃(λNI) + λFAt̃(λNI) = Dỹ + λNIc(λNI) + λFd(λNI),

where D is displayed at Figure 1,

A =















2 −1 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 2















, (A6)

and

ỹ = (yj , . . . , yj+k),

q̃(λNI) = (qj(λNI), . . . , qj+k−1(λNI)),

t̃(λNI) = (tj(λNI), . . . , tj+k−1(λNI)),

c(λNI) = (qj−1(λNI), 0, . . . , 0, qj+k(λNI)),

d(λNI) = (tj−1(λNI), 0, . . . , 0, tj+k(λNI)).
Since A is invertible we have

λNI q̃(λNI) + λF t̃(λNI) = A−1Dỹ + λNIA
−1c(λNI) + λFA

−1d(λNI),

and, since q̃(λNI) and t̃(λNI) provide the solution to the subgradient equations (A5),
then

−λF ≤ λNI q̃(λNI) + λF t̃(λNI) ≤ λNI + λF . (A7)
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Next, as pointed out at [16] and [11]

(A−1)i,1 = (n− i+ 1)/(n+ 1) and (A−1)i,n = i/(n+ 1),

then, one can show that

−λF1 ⪯ λNIA
−1c(λNI) + λFA

−1d(λNI) ⪯ λNI1+ λF1. (A8)

Further, let us consider the case of λ∗
NI > λNI . Then we have

λ∗
NI q̃(λ

∗
NI) + λF t̃(λ

∗
NI) = A−1Dỹ + λ∗

NIA
−1c(λ∗

NI) + λFA
−1d(λ∗

NI).

Recall, above we set t̃(λ∗
NI) = t̃(λNI), and qj−1, qj+k, tj−1 and tj+k does not change

their values until the merge, which means that c(λ∗
NI) = c(λNI), and d(λ∗

NI) =
d(λNI).

Therefore, the subgradient equations for λ∗
NI can be written as

λ∗
NI q̃(λ

∗
NI) + λF t̃(λNI) = A−1Dỹ + λ∗

NIA
−1c(λNI) + λFA

−1d(λNI).

Next, since the term A−1Dỹ is not changed, −λF ≤ λF t̃(λNI) ≤ λF , and

−λF1 ⪯ λ∗
NIA

−1c(λNI) + λFA
−1d(λNI) ⪯ λ∗

NI1+ λF1,

then we have
0 ⪯ q̃(λ∗

NI) ⪯ 1.

Therefore we proved that β̂FNI
i (y,λ∗) = β̂FNI

i+1 (y,λ∗). Since β̂FLNI
i (y,λ∗) is given by

soft thresholding of β̂FNI
i (y,λ∗), then β̂FLNI

i (y,λ∗) = β̂FLNI
i+1 (y,λ∗) for i ∈ [j, k].

Case 3: λNI and λL are fixed and λ∗
F > λF . The proof for this case is virtually

identical to the proof for the Case 2. In this case we assume that qi(λ
∗
F ) = qi(λ2) for

any i ∈ [j, j + k − 1]. Next, qj−1, qj+k, tj−1 and tj+k do not change their values until
the merge, which, again, means that c(λ∗

F ) = c(λF ), and d(λ∗
F ) = d(λF ). Finally, we

can show that
−1 ⪯ t̃(λ∗

F ) ⪯ 1.
□

Proof of Theorem 5. For some fixed λF and λNI let us write subgradient
equations for the fussed lasso nearly-isotonic approximator:

gi = −(yi − βi) + λNI(qi − qi−1) + λF (ti − ti−1) = 0,

for i = 1, . . . , n, where qi and ti, with i = 1, . . . , n− 1, are given by

qi :











= 1, if βi − βi+1 > 0,

= 0, if βi − βi+1 < 0,

∈ [0, 1], if βi = βi+1,

ti :











= 1, if βi − βi+1 > 0,

= −1, if βi − βi+1 < 0,

∈ [−1, 1], if βi = βi+1,

(A9)
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and q0 = qn = t0 = tn = 0.
Second, assume that in the solution β̂FNI(y, λF , λNI) there areK distinct constant

regions A(λF , λNI) = {A1, . . . , AK}, and fj and lj are the first and last indices,
respectively, in the region Aj . Therefore, using the telescoping sums, for k ∈ Aj the

solution β̂FNI(y, λF , λNI) can be written as

β̂FNI
k (y, λF , λNI) =

∑lj
i=fj

yi

|Aj |
− λNI

qfj+1
− qlj

|Aj |
− λF

tfj+1
− tlj

|Aj |
,

with |Aj | = #{j : yj ∈ Aj}.
We, first, prove that

β̂F→NI(y, λF , λNI) = β̂FNI(y, λF , λNI).

Let us fix some λF , and take λ∗
NI > λNI such that β̂FNI(y, λF , λ

∗
NI) has the

same constant regions as β̂FNI(y, λF , λNI). Therefore, analogously to the case of one
dimensional nearly-isotonic regression in [11], for a fixed λNI the solution is linear
function of λNI in between the values of λNI (which are called knots) where some
constant regions merge.

Assume now that λNI = 0. Next, assume that in the solution β̂FNI(y, λF , 0) there
are K(0) distinct constant regions A(λF , 0) = {A1, . . . , AK}, and fj and lj are the
first and last indices, respectively, in those region Aj .

Next, we increase the value of λ∗
NI > λNI and assume that we still have the same

constant regions as for λF and λNI , i.e.

β̂FNI
k (y, λF , λ

∗
NI) =

∑lj
i=fj

yi

|Aj |
− λ∗

NI

qfj+1
− qlj

|Aj |
− λF

tfj+1
− tlj

|Aj |
,

i.e. at the value λ∗
NI not merge has happened, which means that

β̂FNI
k (y, λF , λ

∗
NI) ̸= β̂FNI

k′ (y, λF , λ
∗
NI)

if k and k′ are not in the same Aj ∈ A(λF , 0). Next, recall that for any k ∈ Aj we have

β̂F
k (y, λF ) = β̂FNI

k (y, λF , 0) =

∑lj
i=fj

yi

|Aj |
− λF

tfj+1 − tlj
|Aj |

. (A10)

Therefore, β̂F
k (y, λF ) has the same constant regions as β̂FNI

k (y, λF , 0).
Then, recall that

β̂F→NI(y, λF , λNI) = β̂NI(β̂F (y, λF ), λNI)

Next, let us choose λ′
NI < λ∗

NI such that, again, the constant regions of

β̂NI(β̂F
k (y, λF ), λ

′
NI) are the same as for β̂F

k (y, λF ) and β̂FNI
k (y, λF , λNI). Then, for
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k ∈ Aj the solution is given by

β̂F→NI
k (y, λF , λ

′
NI) =

∑lj
i=fj

β̂F
i

|Aj |
− λ′

NI

qfj+1 − qlj
|Aj |

,

and using (A10) we get

β̂F→NI
k (y, λF , λ

′
NI) =

∑lj
i=fj

yi

|Aj |
− λ′

NI

qfj+1 − qlj
|Aj |

− λF

tfj+1 − tlj
|Aj |

,

which means that the solution is linear function of λ′
NI until some constant regions

merge.
Note now

β̂F→NI(y, λF , λ
′
NI) = β̂FNI(y, λF , λ

′
NI)

and, obviously, this equality holds at least until constant regions merge. Let λ
(1)
NI be

the first value of λNI when the first merge happens. At the value λ
(1)
NI the equality

β̂F→NI(y, λF , λ
(1)
NI) = β̂FNI(y, λF , λ

(1)
NI)

holds, since β̂NI is continuous in λNI .

Assume for simplicity of notation that at λNI = λ
(1)
NI the constant region Aj merges

with constant region Aj+1. Therefore, for k ∈ Aj ∪Aj+1 we have

β̂FNI
k (y, λF , λ

(1)
NI) =

∑lj+1

i=fj
yi

|Aj |+ |Aj+1|
− λ

(1)
NI

qfj+2
− qlj

|Aj |+ |Aj+1|
− λF

tfj+2
− tlj

|Aj |+ |Aj+1|
,

and for k ∈ Am ̸= Aj ∪Aj+1:

β̂FNI
k (y, λF , λ

(1)
NI) =

∑lm
i=fm

yi

|Am|
− λ

(1)
NI

qfm+1
− qlm

|Am|
− λF

tfm+1 − tlm
|Am|

.

Further, for β̂F→NI(y, λF , λ
(1)
NI) for k ∈ Aj ∪Aj+1 we have

β̂F→NI
k (y, λF , λ

(1)
NI) =

∑lj+1

i=fj
β̂F
i

|Aj |+ |Aj+1|
− λ

(1)
NI

qfj+2
− qlj

|Aj |+ |Aj+1|
= β̂FNI

k (y, λF , λ
(1)
NI),

and for k ∈ Am ̸= Aj ∪Aj+1:

β̂F→NI
k (y, λF , λ

(1)
NI) =

∑lm
i=fm

β̂F
i

|Am|
− λ

(1)
NI

qfm+1
− qlm

|Am|
= β̂FNI

k (y, λF , λ
(1)
NI).
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Next, let us increase λ
(1)
NI by δλ so that no merge in β̂FNI(y, λF , λNI+δλ) happens.

Then, for k ∈ Aj ∪Aj+1 we have

β̂FNI
k (y, λF , λ

(1)
NI + δλ) =

∑lj+1

i=fj
yi

|Aj |+ |Aj+1|
− (λ

(1)
NI + δλ)

qfj+2
− qlj

|Aj |+ |Aj+1|

− λF

tfj+2
− tlj

|Aj |+ |Aj+1|
,

and for k ∈ Am ̸= Aj ∪Aj+1:

β̂FNI
k (y, λF , λ

(1)
NI + δλ) =

∑lm
i=fm

yi

|Am|
− (λ

(1)
NI + δλ)

qfm+1 − qlm
|Am|

− λF

tfm+1 − tlm
|Am|

.

Further, in the case of β̂F→NI(y, λF , λ
(1)
NI) we increase λ by δλ′ < δλ and, therefore,

we have for k ∈ Aj ∪Aj+1:

β̂F→NI
k (y, λF , λ

(1)
NI + δλ′) =

∑lj+1

i=fj
β̂F
i

|Aj |+ |Aj+1|
− (λ

(1)
NI + δλ′)

qfj+2
− qlj

|Aj |+ |Aj+1|
,

and for k ∈ Am ̸= Aj ∪Aj+1:

β̂F→NI
k (y, λF , λ

(1)
NI + δλ′) =

∑lm
i=fm

β̂F
i

|Am|
− (λ

(1)
NI + δλ′)

qfm+1 − qlm
|Am|

.

Therefore, before the next merge happens we have the following relation between the
estimators β̂F→NI(y, λF , λNI) and β̂FNI(y, λF , λNI)

β̂FNI
k (y, λF , λ

(1)
NI + δλ) = β̂F→NI

k (y, λF , λ
(1)
NI + δλ′) + (δλ− δλ′)

qfj+2
− qlj

|Aj |+ |Aj+1|
,

if k ∈ Aj ∪Aj+1, and

β̂FNI
k (y, λF , λ

(1)
NI + δλ) = β̂F→NI

k (y, λF , λ
(1)
NI + δλ′) + (δλ− δλ′)

qfm+1
− qlm

|Am|
,

for k ∈ Am ̸= Aj ∪Aj+1.
We have proved that before the second merge we have

β̂F→NI(y, λF , λNI) = β̂FNI(y, λF , λNI)

and at the value of λ
(2)
NI when the second merge of some constant regions happens we

have
β̂F→NI(y, λF , λ

(2)
NI) = β̂FNI(y, λF , λ

(2)
NI)

by the continuity.
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We can continue this process until the last knot point in the path. Therefore we
proved the equality of the estimators. The proof of

β̂NI→F (y, λF , λNI) = β̂FNI(y, λF , λNI).

is virtually the same with qj suitably changed to tj and λNI to λF and using the
propertis of fused lasso from [17]. □

Proof of Theorem 6. First, for the fused estimator β̂F (y, λF ) let

KF (y, λF ) = #{fused groups in β̂F (y, λF )}.

Then, as it follows from [7], for β̂F (y, λF ) we have

E[KF (Y , λF )] = df(β̂F (Y , λF )).

Next, from Proposition 3, it follows

β̂FNI(y, λF , λNI) = β̂F (y −
λNI

2
DT1,

1

2
λNI + λF ).

Therefore, using the property of covariance we have

df(β̂FNI(Y , λF , λNI)) =

n
∑

i=1

Cov[β̂FNI
i (Y , λF , λNI), Yi] =

n
∑

i=1

Cov[β̂F
i (Y −

λNI

2
DT1,

1

2
λNI + λF ), Yi] =

n
∑

i=1

Cov[β̂F
i (Y −

λNI

2
DT1,

1

2
λNI + λF ), Yi −

λNI

2
[DT1]i] =

E[KF (Y −
λNI

2
DT1,

1

2
λNI + λF )] ≡ E[KFNI(Y , λF , λNI)],

where [a]i denotes i-th element in the vector a ∈ R
n.

Next, we prove the result for the fused lasso nearly-isotonic approximator. From
Proposition 3 we have

β̂FLNI(y, λF , λL, λNI) = β̂FL(y −
λNI

2
DT1,

1

2
λNI + λF , λL).

Next, for the fused lasso β̂FL(y, λF , λL) defined in (2) let

KFL(y, λF , λL) = #{non-zero fused groups in β̂FL(y, λF , λL)},
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and from [7] it follows

E[KFL(Y , λF , λL)] = df(β̂FL(Y , λF , λL)).

Further, again, using the property of the covariance, we have

df(β̂FLNI(Y , λF , λL, λNI)) =

n
∑

i=1

Cov[β̂FLNI
i (Y , λF , λL, λNI), Yi]

=

n
∑

i=1

Cov[β̂FL
i (Y −

λNI

2
DT1,

1

2
λNI + λF , λL), Yi]

=

n
∑

i=1

Cov[β̂FL
i (Y −

λNI

2
DT1,

1

2
λNI + λF , λL), Yi −

λNI

2
[DT1]i]

= E[KFL(Y −
λNI

2
DT1,

1

2
λNI + λF , λL)]

≡ E[KFLNI(Y , λF , λL, λNI)].

Lastly, we note that the proof for the unbiased estimator of the degrees of freedom
for nearly-isotonic regression, given in [11], can be done in the same way as in the
current proof, using the relation (19) and, again, the result of the paper [7] for the

fusion estimator β̂FLNI(Y , λF ). □
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