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A multi-view multi-label learning with incomplete data and

self-adaptive correlations

Abstract

Multi-view multi-label (MVML) learning aims to process MVML data sets represented with multiple
feature sets (i.e., views) and labeled with multiple class labels. While in current scenes, MVML data
sets always encounter to two main phenomena. First, for MVML data, there exist some correlations
among different features, instances, labels and these correlations usually have diverse representations
including within-view, cross-view, and consensus-view representations. Due to there are usually some
certain relationships between information exist, thus these correlations always be changed in a self-
adaptive way. Second, for some unpredictable reasons, MVML data maybe incomplete and loss some
information. To address these phenomena, we pay attention to the self-adaptive measurement of
those correlations in different representations and the process of incomplete data, then a multi-view
multi-label learning with incomplete data and self-adaptive correlations (MVML-IDSaC) is developed.
Extensive experiments on 5 MVML data sets show the superiority of the developed algorithm and
some conclusions are addressed. (1) MVML-IDSaC performs better than some related competitive
algorithms in statistical over AUC and precision; (2) MVML-IDSaC can process incomplete MVML
data much better; (3) considering comprehensive relationships about data and its inferring results
with a feasible way, the performances of a multi-view multi-label algorithm is promoted further.

Keywords: Self-adaptive, Incomplete data, Multi-view multi-label

1 Introduction

1.1 Background

Multi-view multi-label (MVML) data sets are
widely used in current applications and each
MVML instance is represented with multiple fea-
ture sets (namely, views) and labeled with multi-
ple class labels. In order to process these MVML
data sets, many algorithms are developed [1, 2,
3, 4] and two kinds of algorithms are widely con-
cerned. One is the correlation-based algorithm
and the other is incomplete data-based algorithm.
For the former one, algorithms pay more atten-
tion to the correlations among features, instances,
and labels which can be demonstrated in mul-
tiple representations, namely, within-view, cross-
view, and consensus-view representations (see Fig.
1) [5, 6, 7, 8]. Then for the latter one, algo-
rithms aim to process incomplete MVML data
with some strategies including indicator matrix,

reconstruction error, etc. and incomplete data rep-
resent instances with missing labels, features, etc
[9, 10, 11]. On the base of the above two kinds of
algorithms, recent scholars make further promotes
and develop some algorithms with multiple cor-
relations and incomplete data considered [12, 13].

1.2 Main problem

Although the above mentioned algorithms can
process MVML data sets, there still exist some
common problems. First, some algorithms [1, 2, 3,
4, 5, 6, 7, 8] measure correlations among features,
labels, or instances with low-rank preserving terms
or self-adaptive constraints used. But these algo-
rithms are hard to measure multiple correlations
in within-view, cross-view, and consensus-view
representations simultaneously. Moreover, these
algorithms cannot reflect the self-adaptive change
for multiple correlation information authentically.
Second, some algorithms process incomplete data
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Fig. 1 Illustration of within-view, cross-view, and
consensus-view representations. Three shapes (square, cir-
cle, triangle) and six colors (red, orange, yellow, green, dark
green, blue) are used to distinguish different views and
instances, respectively, and the instances of the same color
belong to the same instance. Here, within-view represen-
tation demonstrates data information expressed in a view,
cross-view representation is shared by two different views
and its information can be treated as the source for the
information of two views, consensus-view representation is
shared by all views and its information describes the con-
sensus representation and source of information from all
different views.

without the consideration about multiple correla-
tions in different representations [9, 10, 11] and the
incomplete data cannot be inferred well. Third,
the current algorithms with multiple correlations
and incomplete data considered [12, 13] still mea-
sure the correlations with artificial setting and
ignore the laws of self-adaptive change for multiple
correlation information.

Indeed, how to explore the laws of self-adaptive
change for multiple correlation information and
apply the laws into the incomplete MVML data is
an open problem.

1.3 Proposal and contributions

To solve the problems mentioned in subsec-
tion 1.2, we take the incomplete MVML data
as the research objects and explore the laws
of self-adaptive change for multiple correlation
information in different representations including
within-view, consensus-view, and cross-view ones
according to the data characteristics. Then on

the base of the explored laws, we design some
feasible self-adaptive constraints and introduce
a ‘within-consensus-cross’-based individual- and
mutual- balance model (WCC-IM) to infer the
incomplete data better. Finally, on the base of
self-adaptive constraints, WCC-IM, we propose
a new algorithm named multi-view multi-label
learning with incomplete data and self-adaptive
correlations (MVML-IDSaC).

Compared with the previous algorithms, the
major contributions of this study are (1) MVML-
IDSaC can measure the correlations among fea-
tures, labels, instances for a MVML data more
authentically; (2) WCC-IM helps the MVML-
IDSaC to infer incomplete data in a sound way; (3)
the computational cost of MVML-IDSaC is also
smaller than the traditional one, O(n3)-level.

The main work of this study includes (1) we
put forward a new design concept for models of
multi-view multi-label learning and the infer of
incomplete data. Then we elaborate the corre-
sponding framework, optimization procedure, and
computational cost; (2) we analyze influence of dif-
ferent correlations and laws of their self-adaptive
change in the representations about within-view,
consensus-view, and cross-view; (3) we report the
significant performances of MVML-IDSaC com-
pared with the baselines.

1.4 Framework

The study is organized as follows: Section 2
reviews the related works about multi-view learn-
ing, multi-label learning, and multi-view multi-
label learning. Then for each kind of learning,
the algorithms to process incomplete data are
also reviewed. Section 3 shows the framework,
optimization procedure, and computational cost
of MVML-IDSaC. In section 4, we report on
numerous experiments to evaluate the proposed
algorithm. Finally, section 5 concludes this study
and advises the future work.

2 Related work

In this section, we review some important work
about multi-view learning, multi-label learning,
and multi-view multi-label learning. The applica-
tions of them to process incomplete data are also
reviewed.
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2.1 Multi-view learning

Multi-view learning aims to process data sets
which can be represented with multiple feature
sets and many algorithms are developed. For
example, Xue et. al [14] propose a multi-view
learning framework with a linear computational
cost which simultaneously analyze all features by
learning an integrated projection matrix; Niu et.
al [15] propose a multi-view representation learn-
ing with subspace transformation relationships
used and the essential structural information of
multi-view data are fully exploited; Lou et. al [16]
propose two multi-view intuitionistic fuzzy sup-
port vector machines with insensitive pinball loss
that can not only handle the general multi-view
classification problems but also be robust to noisy
data.

Besides for these algorithms, some algorithms
are developed for the incomplete data. For exam-
ple, He et. al [17] develop a multi-view clustering
algorithm to discover the latent cluster structure
and partition the incomplete multi-view data into
different groups with an adaptive instance com-
pletion scheme; Sun et. al [18] develop a graph
learning-based incomplete multi-view clustering
algorithm and learn a common consensus graph
from all incomplete views and obtain a cluster-
ing indicator matrix in a unified framework. Then
a relaxed spectral clustering model is introduced
to obtain a probability consensus representation
with all positive elements that reflect the data
clustering result; Mu et. al [19] propose a tensor-
based incomplete multi-view clustering framework
and the missing views are reconstructed based
on non-negative matrix factorization and self-
representation.

2.2 Multi-label learning

Multi-label learning pays more attention to the
solution of data sets which instances can be
labeled with class labels and many algorithms are
developed. For example, Sun et. al [20] propose
a co-evolutionary multilabel hypernetwork (Co-
MLHN) as an attempt to exploit label correlations
in an effective and efficient way and they can clas-
sify the multi-label data sets better; Che et. al
[21] develop a multi-label algorithm which focuses
on the label correlation adapted to overall data
and the locally targeted information presented by

some instances; Zhai et. al [22] develop a family of
online multi-label classification algorithms, which
can update the model instantly and efficiently, and
make a timely online prediction when new data
arrive.

Besides for these algorithms, some algorithms
are also developed for the incomplete data. For
example, Li et. al [23] propose a multi-label learn-
ing with missing labels (MLML) framework for
facial action unit recognition under incomplete
data. Different from most MLML works which
usually use the same features for all classes,
the proposed method discriminates each action
unit based on the most related features. Select-
ing features for each action unit individually
embeds the observation that occurrences of differ-
ent action units produce feature changes of differ-
ent face regions; Sun et. al [24] propose a weakly-
supervised multi-label learning framework called
WML-LSC, where the low-rank and sparse con-
strain schemes are jointly incorporated to capture
the desired feature information. Then, the robust-
ness of the learning model can be kept; Beigaite et.
al [25] propose an algorithmic approach to reduce
noise in the target labels and improve predic-
tions and this algorithm allows us to preserve the
existing information about the vegetation types
in training data. At the same time, the algorithm
potentially enhances this information by redis-
tributing the fraction of human activity in urban
areas and croplands across the training set;

2.3 Multi-view multi-label learning

Different from multi-view learning and multi-label
learning, the multi-view multi-label learning is
developed for MVML data. For example, Tan et. al
[1] develop an approach named individuality- and
commonality-based multi-view multi-label learn-
ing which improves the discriminant capacity of
classifier toward rare labels and sufficiently consid-
ers the diverse characteristics of individual views;
Zhu et. al [26] simultaneously conduct a hier-
archical feature selection and a MVML learning
for multi-view image classification, via embedding
a proposed a new block-row regularizer into the
MVML framework. Then this framework effec-
tively conduct image classification by avoiding the
adverse impact of both the redundant views and
the noisy features; Ma et. al [27] propose a group-
based model with local feature and label selection.
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The proposed model can project instances into dif-
ferent groups by performing group-based feature
selection with each view having its own impor-
tance for grouping, where each group has its own
related labels. The proposed model can then pre-
dict the semantics of instances by performing
group-based label selection with each group hav-
ing its own weight for prediction. Besides, the
inter-group correlation is also mined and intro-
duced in the above group-based learning process
to ensure effective multi-label classification.

In terms of incomplete problems, some corre-
sponding algorithms are developed. For example,
Wen et. al [13] propose an incomplete multi-
view multi-label learning network which is com-
posed of four major parts: view-specific deep
feature extraction network, weighted representa-
tion fusion module, classification module, and
view-specific deep decoder network. By, respec-
tively, integrating the view missing information
and label missing information into the weighted
fusion module and classification module, the pro-
posed algorithm can effectively reduce the neg-
ative influence caused by two such incomplete
issues and sufficiently explore the available data
and label information to obtain the most discrim-
inative feature extractor and classifier; Qu et. al
[12] propose an incomplete multi-view multi-label
active learning (iMVMAL) algorithm to reduce
the cost of querying MVML data with the usage of
Autoencoder to learn the shared/individual repre-
sentations from incomplete multi-view data, and
leverages the commonality and individuality infor-
mation, information from labels and that from
sample features to query the most informative
sample-label pairs; Li et. al [9] propose a concise
yet effective model to simultaneously tackle the
missing labels, incomplete views and non-aligned
views challenges with only one hyper-parameter in
the objective function.

3 Methodology

As what we mentioned before, although recent
algorithms including the ones mentioned in section
2 can process those MVML data, multi-view data,
multi-label data at some extents, they still forget
some issues. First, multiple correlations in within-
view, cross-view, and consensus-view representa-
tions cannot be self-adaptive measured simulta-
neously and the laws of self-adaptive change of

the correlations are not considered. Second, they
cannot infer the incomplete data well without the
consideration about those multiple correlations.

In order to solve those problems, we con-
struct the basic learning model and explore the
laws of self-adaptive change for multiple correla-
tion information. Then we design a model to infer
the incomplete data better. Finally, we develop
a multi-view multi-label learning with incomplete
data and self-adaptive correlations, i.e., MVML-
IDSaC.

3.1 Framework of MVML-IDSaC

Refer to our previous work [28], suppose there is
an incomplete MVML data set D = [X,Y ] with
V views and n instances which are information-
complete or information-incomplete. Information-
complete indicates that the instance has com-
plete features and labels and the information-
incomplete implies that there is some information
missing among features or labels. Then for vth
view, we let Xv ∈ R

n×dv and Y v ∈ R
n×cv be

the set of instances (including the information-
complete instances and information-incomplete
ones) and the corresponding labels. Meanwhile,
XAv ∈ R

nv×dAv and Y Av ∈ R
nv×cAv are the

set of information-complete instances and the cor-
responding labels. Here, dv and cv are feature
dimension and number of labels for vth view
respectively, dAv, cAv are the corresponding fea-
ture dimension, number of labels, respectively
for nv information-complete instances. Compared
with XAv and Y Av, the incomplete parts in Xv

and Y v are set as 0.
Then according to XAv and Y Av, we set four

pre-constructed matrices from the information-
complete instances of vth view. They are S̄v ∈
R

nv×nv , P̄ v ∈ R
dAv×dAv , Q̄v ∈ R

cAv×cAv ,
W̄ v ∈ R

cAv×dAv and each element of them is
non-negative and represents the instance-instance
correlation, feature-feature correlation, label-label
correlation, feature-label correlation between two
information-complete instances, respectively.

Since Xv and Y v include some incomplete
information, thus every pre-constructed matrix
can not reveal the comprehensive relationships
of all instances. Furthermore, D = [X,Y ] can
be represented by within-view, cross-view, and
consensus-view representations.

4



To this end and refer to [28], we should con-
sider that how to infer the incomplete information
with the complete information preserved firstly
and how to reveal the comprehensive relationships
between instances.

3.1.1 Preservation of complete
information

Refer to [28], in order to infer the incomplete
information from vth view, we set four correspond-
ing referred (completed, comprehensive) matrices
which store comprehensive relationships of all
instances ultimately. Namely, Sv ∈ R

n×n, P v ∈
R

dv×dv , Qv ∈ R
cv×cv , W v ∈ R

cv×dv whose
elements represent the instance-instance correla-
tions, feature-feature correlations, label-label cor-
relations, feature-label correlations between two
instances, respectively. Then the correlation infor-
mation of the information-complete instances in
S̄v, P̄ v, Q̄v, W̄ v should be preserved in the
referred matrices Sv, P v, Qv, W v, respectively.
After that, in order to incorporate the detailed
situation of missing information, we let Ev ∈
R

dv×n be the feature missing-index matrix and
F v ∈ R

cv×n be the label missing-index matrix for
vth view, respectively. Here the element Ev

iv,j
(or

F v
kv,j

) in Ev (or F v) is set be 1 if ivth feature (or
kvth label) of jth instance in vth view is available
(or information-complete), and be 0, otherwise.

After that, we extend S̄v, P̄ v, Q̄v, W̄ v to be
S̃v ∈ R

n×n, P̃ v ∈ R
dv×dv , Q̃v ∈ R

cv×cv , and
W̃ v ∈ R

cv×dv (see work [28]) and build the follow-
ing within-view preservation sub-models for vth
view and ||⋆||2F represents the Frobenius norm,
⊙ indicates the element-wise based multiplication
operation.

min
Pv

V∑

v=1

||(P̃ v − P v)⊙ (EvEvT )||2F (1)

min
Qv

V∑

v=1

||(Q̃v −Qv)⊙ (F vF vT )||2F (2)

min
Wv

V∑

v=1

||(W̃ v −W v)⊙ (F vEvT )||2F (3)

Then since elements in Sv are related with
instances, thus Sv-related within-view preserva-
tion sub-models are given as below and they are
related with Ev and F v, respectively.

min
Sv

V∑

v=1

||(S̃v − Sv)⊙ (EvTEv)||2F (4)

min
Sv

V∑

v=1

||(S̃v − Sv)⊙ (F vTF v)||2F (5)

Furthermore, as we said before, the MVML
data has three representations including within-
view, cross-view, and consensus-view ones. Thus,
we let Xij ∈ R

n×dij and Y ij ∈ R
n×cij be the

cross-view representations for the sets of instances
(including the information-complete instances and
information-incomplete ones) and the correspond-
ing labels between ith view and jth view. dij
and cij are the corresponding feature dimension
and number of labels. Now according to the same
definitions, Sij ∈ R

n×n, P ij ∈ R
dij×dij , Qij ∈

R
cij×cij , W ij ∈ R

cij×dij are four correspond-
ing cross-view referred matrices and the related

extended matrices are S̃ij ∈ R
n×n, P̃ ij ∈ R

dij×dij ,

Q̃ij ∈ R
cij×cij , and W̃ ij ∈ R

cij×dij . Similarly,
Eij ∈ R

dij×n is the cross-view feature missing-
index matrix and F v ∈ R

cij×n is the cross-view
label missing-index matrix between ith view and
jth view. Then refer to the Eq. (1)∼Eq. (5), the
corresponding cross-view preservation sub-models
are given as below.

min
P ij

V∑

i=1

V∑

j=1

||(P̃ ij − P ij)⊙ (EijEijT )||2F (6)

min
Qij

V∑

i=1

V∑

j=1

||(Q̃ij −Qij)⊙ (F ijF ijT )||2F (7)

min
W ij

V∑

i=1

V∑

j=1

||(W̃ ij −W ij)⊙ (F ijEijT )||2F (8)
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min
Sij

V∑

i=1

V∑

j=1

||(S̃ij − Sij)⊙ (EijTEij)||2F (9)

min
Sij

V∑

i=1

V∑

j=1

||(S̃ij − Sij)⊙ (F ijTF ij)||2F (10)

Similar, Xc ∈ R
n×l and Y ij ∈ R

n×k are the
consensus-view representations for instances and
labels of all views where l is the feature dimension,
k is the number of labels in consensus-view repre-
sentation. Their corresponding referred matrices
and extended matrices are Sc ∈ R

n×n, P c ∈ R
l×l,

Qc ∈ R
k×k, W c ∈ R

k×l, S̃c ∈ R
n×n, P̃ c ∈ R

l×l,
Q̃c ∈ R

k×k, and W̃ c ∈ R
k×l. Now the corre-

sponding consensus-view preservation sub-models
are given as below.

min
P c
||(P̃ c − P c)⊙ (EcEcT )||2F (11)

min
Qc
||(Q̃c −Qc)⊙ (F cF cT )||2F (12)

min
W c
||(W̃ c −W c)⊙ (F cEcT )||2F (13)

min
Sc
||(S̃c − Sc)⊙ (EcTEc)||2F (14)

min
Sc
||(S̃c − Sc)⊙ (F cTF c)||2F (15)

Finally, we combine all the above
15 sub-models and build a total preser-
vation model as below where Θ =
{Sv, P v, Qv,W v, Sij , P ij , Qij ,W ij , Sc, P c, Qc,W c}
and ηx is the penalty parameter for Eq. (x) to
balance the importance of the corresponding
constraints.

min
Θ

(η1Eq.(1) + ...+ η15Eq.(15)) (16)

3.1.2 ‘within-consensus-cross’-based
individual- and mutual- balance
model (WCC-IM)

According to subsection 3.1.1, the referred matri-
ces can store comprehensive relationships of all

instances ultimately, thus we try to recover the
incomplete information with them. In order to
recover the incomplete information better, we
should consider both the quantity (‘individual’)
and quality (‘mutual’) of recovering simultane-
ously. The quantity of recovering means that how
many incomplete information has been recovered
and the quality of recovering implies that how
many improvements can the recovered informa-
tion brings to the performances.

First, we take Xv and Y v as example. In
order to measure the quantity of recovering, we
consider the difference between the recovered ver-
sions and the corresponding view-specific data,
i.e., Xv and Y v be small enough so that the avail-
able information can be preserved in the recovered
versions as far as possible. Then we design the
following ‘individual’-measured sub-models where
SvXv, XvP v and SvY v, Y vQv can be regarded as
the recovered versions of Xv and Y v, respectively.

min
Sv

V∑

v=1

||Xv − SvXv||2F (17)

min
Pv

V∑

v=1

||Xv −XvP v||2F (18)

min
Sv

V∑

v=1

||Y v − SvY v||2F (19)

min
Qv

V∑

v=1

||Y v − Y vQv||2F (20)

Similarly, in order to measure the quality
of recovering, we consider the mapping relation-
ship (i.e., W v) between Xv and Y v and W v

is always used to map the Xv into Y v. Then
we design the following ‘mutual’-measured sub-
models where Y vW v andXvW vT can be regarded
as the recovered versions of Xv and Y v, respec-
tively.

min
Wv

V∑

v=1

||Xv − Y vW v||2F (21)
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min
Wv

V∑

v=1

||Y v −XvW vT ||2F (22)

Second, in order to make the recovered infor-
mation be more feasible, namely, neither too much
emphasis on quantity of recovering nor too much
emphasis on quality of recovering, we introduce

a balance factor αv = ( (17)+(18)+(19)+(20)
(21)+(22) ) which

is related to the above ‘individual’-measured sub-
models and ‘mutual’-measured sub-models. In
general, if αv = 0.5, the recovered results are
most feasible. Then we can build a ‘within’-based
individual- and mutual- balance model as below.

min
Sv,Pv,Qv,Wv

(η17Eq.(17) + ...+ (23)

η22Eq.(22) + ηvα
v)

Third, similar with subsection 3.1.1, the above
‘within’-based individual- and mutual- balance
model has its cross-view version (see Eq. (24)).

min
Sij ,P ij ,Qij ,W ij

(η25Eq.(25) + ...+ (24)

η30Eq.(30) + ηijα
ij)

where

min
Sij

V∑

i=1

V∑

j=1

||Xij − SijXij ||2F (25)

min
P ij

V∑

i=1

V∑

j=1

||Xij −XijP ij ||2F (26)

min
Sij

V∑

i=1

V∑

j=1

||Y ij − SijY ij ||2F (27)

min
Qij

V∑

i=1

V∑

j=1

||Y ij − Y ijQij ||2F (28)

min
W ij

V∑

i=1

V∑

j=1

||Xij − Y ijW ij ||2F (29)

min
W ij

V∑

i=1

V∑

j=1

||Y ij −XijW ijT ||2F (30)

are 6 sub-models including the ‘individual’-
measured sub-models and ‘mutual’-measured sub-
models and αij = ( (25)+(26)+(27)+(28)

(29)+(30) ).

Fourth, the consensus-view version of above
‘within’-based individual- and mutual- balance
model is given in Eq. (31).

min
Sc,P c,Qc,W c

(η32Eq.(32) + ...+ (31)

η37Eq.(37) + ηcα
c)

where

min
Sc
||Xc − ScXc||2F (32)

min
P c
||Xc −XcP c||2F (33)

min
Sc
||Y c − ScY c||2F (34)

min
Qc
||Y c − Y cQc||2F (35)

min
W c
||Xc − Y cW c||2F (36)

min
W c
||Y c −XcW cT ||2F (37)

are 6 sub-models including the ‘individual’-
measured sub-models and ‘mutual’-measured sub-
models and αc = ( (32)+(33)+(34)+(35)

(36)+(37) ).

Finally, we combine the Eq. (23), Eq. (24),
and Eq. (31) in together to build the ‘within-
consensus-cross’-based individual- and mutual-
balance model, i.e., WCC-IM.

min
Θ

(Eq.(23) + Eq.(24) + Eq.(31)) (38)

3.1.3 Revealing of comprehensive
relationships

As what we said before, the referred (completed,
comprehensive) matrices can store comprehensive
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relationships of all instances ultimately. In order
to get the better referred matrices, we can explore
the laws of self-adaptive change for multiple cor-
relation information in different representations
including within-view, consensus-view, and cross-
view ones according to the data characteristics.

We consider the within-view representation
firstly. As the summarized of existing work includ-
ing [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], it is
found that the correlations can be described in
self-adaptive ways and they change followed by
some laws. For example, (i) if two instances are
strongly correlated, their corresponding features
and the predictive labels might be more similar;
(ii) if two labels are strongly correlated, their cor-
responding outputs might be more similar; (iii) if
two features are strongly correlated, their corre-
sponding information of features might be more
similar.

Thus in order to realize the first law, we take
vth view as example and utilize two regularizer
terms. One is related with Xv which includes the
information about features, and another is related
with Y v = XvW vT which indicates the informa-
tion about predictive labels. In terms of the former
regularizer term, if the ath instance of Xv (xv

a)
and the bth instance of Xv (xv

b ) are strongly cor-
related, the similarity between xv

a and xv
b will be

large. Similarly, for the latter regularizer term,
if xv

a and xv
b are strongly correlated, their corre-

sponding predictive labels, i.e., yva and yvb will be
large as well. Then we can define the following two
regularizer terms.

n∑
a=1

n∑
b=1

Sv
ab||x

v
a − xv

b || = tr(XvTLSvXv) (39)

n∑
a=1

n∑
b=1

Sv
ab||y

v
a − yvb || = tr(Y vTLSvY v) (40)

= tr(W vXvTLSvXvW vT )

where Sv
ab describes the instance-instance correla-

tion between instance xv
a and instance xv

b and LSv

is the Laplacian matrix for Sv.
In order to realize the second law, take vth

view as an example, we also utilize a regularizer
term. Since Y v = XvW vT and its pth (or qth)
column yvp (or yvq) describes the output of pth
(or qth) label. Then we design a corresponding

regularizer term as below.

cv∑
p=1

cv∑
q=1

Qv
pq||yvp − yvq|| = tr(Y vLQvY vT ) (41)

= tr(XvW vTLQvW vXvT )

where Qv
pq describes the label-label correlation

between pth and qth labels. Similar with LSv , LQv

is the Laplacian matrix for Qv.
In order to realize the third law, we still uti-

lize a regularizer term for vth view. Since rth (or
sth) column xvr (or xvs) describes the informa-
tion of rth (or sth) feature. Then we design a
corresponding regularizer term as below.

dv∑
r=1

dv∑
s=1

P v
rs||xvr − xvs|| = tr(XvLPvXvT )(42)

where P v
rs describes the feature-feature correlation

between rth and sth features. Similar with LSv ,
LPv is the Laplacian matrix for P v.

Then referring to subsection 3.1.1, these reg-
ularizer terms can also be migrated to cross-view
form (see Eq. (43)∼ Eq. (46)) and consensus-view
form (see Eq. (47)∼ Eq. (50)) where ⇒ describes
the migration operation and LSij , LQij , LP ij ,
LSc , LQc , LP c are the Laplacian matrices for the
corresponding matrices.

tr(XvTLSvXv)⇒ tr(XijTLSijXij) (43)

tr(W vXvTLSvXvW vT )⇒ (44)

tr(W ijXijTLSijXijW ijT )

tr(XvW vTLQvW vXvT )⇒ (45)

tr(XijW ijTLQijW ijXijT )

tr(XvLPvXvT )⇒ tr(XijLP ijXijT ) (46)

tr(XvTLSvXv)⇒ tr(XcTLScXc) (47)

tr(W vXvTLSvXvW vT )⇒ (48)

tr(W cXcTLScXcW cT )
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tr(XvW vTLQvW vXvT )⇒ (49)

tr(XcW cTLQcW cXcT )

tr(XvLPvXvT )⇒ tr(XcLP cXcT ) (50)

Followed by above laws, the correlations can be
expressed self-adaptively and we can get a self-
adaptive model as below.

min
Θ

(η39Eq.(39) + ...+ η50Eq.(50)) (51)

3.1.4 Correlations imposed with
nuclear-norm

Since low-rank characteristic of representation can
be enforced by matrix nuclear norm [29, 30], so
we represent each correlation with such norm
and build three nuclear-norm-based sub-models,
namely, ||θv||2∗, ||θ

c||2∗, ||θ
ij ||2∗ where

||θv||2∗ =
∑

C∈S,P,Q,W

ηCv ||Cv||2∗ (52)

||θij ||2∗ =
∑

C∈S,P,Q,W

ηCij ||Cij ||2∗ (53)

||θc||2∗ =
∑

C∈S,P,Q,W

ηCc ||Cc||2∗ (54)

Then the final nuclear-norm-based model is
given as below.

min
Θ

(Eq.(52) + Eq.(53) + Eq.(54)) (55)

3.1.5 Final model of MVML-IDSaC

According to the above mentioned, the final model
of MVML-IDSaC is the combination of four mod-
els, i.e., Eq. (16), Eq. (38), Eq. (51), and Eq. (55)
which is given as below.

min
Θ

(Eq.(16) + Eq.(38) + (56)

Eq.(51) + Eq.(55))

3.2 Optimization

For the optimization of Eq. (56), we also refer to
[28] and gradient descent way is adopted. Namely,
we update a correlation and leave the others fixed,

Table 1 Computation of ∂L
∂C

in Eq. (56) in 9 forms
and A, B, D describe different terms.

Form Computational results
∂||(A−C)⊙B||2F

∂C
2(C ⊙ B ⊙ BT −A⊙ B ⊙ BT )

∂||A−BC||2F
∂C

2(BTBC − BTA)
∂||A−BCT ||2F

∂C
2(CBTB −ATB)

∂||A−BCD||2F
∂C

2(BTBCDDT − BTADT )
∂||A−BCCTD||2F

∂C
−2(DATBC+

BTADT C) + 4BTBCCTDDT C

∂||C||2
∗

∂C
CUCT

V

∂tr(ALCAT )
∂C

1
2
[E]C

∂tr(CACT )
∂C

CAT + CA

∂tr(ACTBCAT )
∂C

BT CATA+ BCAAT

i.e., C(t) ← C(t − 1) − ∂L(t−1)
∂C(t−1) where C describes

a correlation matrix and t represents the iteration
index. According to Eq. (56), the ∂L

∂C
has multiple

forms (see Table 1) and singular value decomposi-
tion of C ∈ R

n1×n2 of rank r is C = CUCΣC
∗
V where

CΣ = diag({σk}k≤i≤r), CU and CV are respec-
tively n1×r and n2×r matrices with orthonormal
columns, and the singular values σk are positive.
Furthermore, [E ]C has the same dimensionality of
C and its pth row and qth column element is
||AT

p,: − A
T
q,:||

2 where Ap,: and Aq,: stand for the
pth and qth rows of A, respectively. The optimiza-
tion procedure will be terminate until the changes
about the normalized value of L is lesser than
some threshold values.

3.3 Computational cost

According to the above contents, the computa-
tions of the correlations determine the compu-
tational cost of MVML-IDSaC. Then with the
computation of these correlations on the basis of
Table 1, it is found the maximum computational
cost for a correlation is DO(Cn2) where C and
D are two constants and this causes the total
computational cost of MVML-IDSaC is less than
NDO(Cn2) where N is the number of correla-
tions. Compared with some existing algorithms
[31, 32, 33, 34] whose computational costs are
O(n3)-levels, the computational cost of MVML-
IDSaC is much smaller.

4 Experiments

In order to validate the effectiveness of the
developed MVML-IDSaC, we adopt 5 real-world
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MVML data sets for experiments and answer the
following questions.

1) How effective is MVML-IDSaC compared
with other related algorithms in process MVML
data sets?

2) What is the impact of those multiple corre-
lations and related terms on MVML-IDSaC?

4.1 Experimental setup

Data setting: we refer to [28] and also adopt 5
MVML data sets for experiments (see Table 2).
Their detailed information can be found in [28].
Moreover, where to download them are also given.

Compared algorithms: to study the perfor-
mance of MVML-IDSaC, we compare it with
3 state-of-the-art MVML algorithms including
NAIM3L [9], iMVMAL [12], DD-IMvMLC-net
[13].

Parameter setting: for the compared algo-
rithms, the selection of corresponding optimal
parameter values can be referred to the
original papers. For MVML-IDSaC, the ele-
ments in any variable A ∈ Θ where Θ =
{Sv, P v, Qv,W v, Sij , P ij , Qij ,W ij , Sc, P c, Qc,W c}
are initialized in equipartition and updated
according to subsection 3.2. For penalty param-
eters ηs, their optimal parameter values can be
selected from the set {0.1, 0.2, ..., 0.8, 0.9}. For
the incomplete setting, the missing rates of fea-
tures and labels are 50% and we remove some
information so as to obtain this rate.

Evaluation: we use AUC and precision as the
main metrics for experimental comparisons and
some further comparison including convergence
and training time are also given.

Selection of optimal parameters: there are
some tuning parameters in MVML-IDSaC. In
order to select the optimal parameter values, avoid
over-fitting in model selection, and ensure the
authenticity of experimental results, we adopt the
same way given in [28]. In simple speaking, for
each data set, we select 70% instances for train-
ing and validation and the rest for testing. Then
the optimal parameter values can be selected with
ten-fold cross-validation (Here, AUC is adopted
as the metric to select the optimal parameters).
The operations to select optimal parameters are
repeated for five times independently and the

average performances and the corresponding stan-
dard deviations of algorithms on the used data
sets are also reported.

Experimental environment: the operation sys-
tem is RedHat Linux Enterprise 9.0, the processor
is Intel Core i7-12700 (12 CPUs), and the coding
environment is MATLAB 2022b.

4.2 Performance and efficiency

study

Here, we use Fig. 2 to demonstrate the AUC,
precision, and corresponding standard deviations
of all algorithms on all data sets. Then Fig.
3 demonstrates the training time comparison
results. Moreover, Fig. 4 demonstrates the conver-
gence of MVML-IDSaC on all used data sets. In
this figure, left sub-figure shows the convergence
curve and the right sub-figure reports the iteration
index1.

According to these figures, it can be found
that in terms of AUC and precision, although
the performance of MVML-IDSaC is not the best
stable, it still outperforms the other algorithms
in most cases with a relatively low training time
kept. Moreover, although there are many terms
are considered in the model of MVML-IDSaC, it
can get a convergence within 30 iterations in our
experiments.

4.3 Statistical analysis

To validate the effectiveness of the MVML-IDSaC
further, we adopt Friedman-Nemenyi statistical
test [35] for statistical analysis and check if the
differences between MVML-IDSaC and other com-
pared algorithms are significant or not. Here,
for convenience, we use AUC and precision for
statement.

(1) According to the AUC results, we demon-
strate the average ranks of all used algorithms,
rank differences between MVML-IDSaC and oth-
ers, and corresponding statistical values (see Fig.
5-(a) and Fig. 5-(b)).

Then refer to [35], (i) we carry out Fried-
man test at first. Since we adopt 5 data sets
and 4 algorithms (i.e., N = 5 and k = 4) for

1Iteration index stands for the index when the changes of
normalized objective value is smaller than 0.01.
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Table 2 Summarized information of used data sets where ALPI indicates Avg. label per instance .

data sets No. instances No. labels ALPI URL
Corel5k 4999 260 3.396 http://archive.ics.uci.edu/ml/datasets/Corel

+Image+Features
Espgame 20770 268 4.686 https://www.kaggle.com/datasets/parhamsalar/espgame
IAPRTC12 19627 291 5.719 https://www.imageclef.org/photodata
Mirflickr 25000 38 4.716 https://press.liacs.nl/mirflickr/
Pascal07 9963 20 1.465 http://host.robots.ox.ac.uk/pascal/VOC/
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Fig. 2 AUC, precision, and corresponding standard deviation (std.) comparisons.
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Fig. 3 Training time and the corresponding standard deviation (std.) comparisons.
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Fig. 4 Convergence of MVML-IDSaC on the used data sets and the objective value has been normalized.
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Fig. 5 Statistical analysis for MVML-IDSaC in terms of AUC and precision.

experiments, then we can get Friedman statis-
tic as follows. χ2

F = 12×N
k(k+1) [1.0000

2 + 3.60002 +

3.00002 + 2.40002 − k(k+1)2

4 ] = 11.16, FF =
(N−1)χ2

F

N(k−1)−χ2

F

= 11.625, F0.05(k − 1, (k − 1)(N −

1)) = F0.05(3, 12) = 3.4903, and F0.10(k − 1, (k −
1)(N − 1)) = F0.10(3, 12) = 2.6055. Since FF >

F0.05(3, 12) and FF > F0.10(3, 12), so we reject

the null-hypothesis and draw a conclusion that
the differences between all compared algorithms
on multiple data sets are significant. (ii) Then we
carry out Nemenyi test for pairwise comparisons.
Since N = 5 and k = 4, thus critical value at
q0.05 is 2.5690 and corresponding critical difference

(CD) is CD0.05 = q0.05

√
k·(k+1)

6·N = 2.0976 while

the one at q0.10 is 2.2910 and corresponding CD
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is CD0.10 = q0.10

√
k·(k+1)

6·N = 1.8706. Since under

the case of CD0.05 and CD0.10, rank differences
between MVML-IDSaC and NAIM3L are larger
than CD0.05 and CD0.10, so we say on this case,
the performance of MVML-IDSaC is significant
better than NAIM3L. Similar, MVML-IDSaC is
significant better than iMVMAL when α = 0.10.

(2) Similarly, Fig. 5-(c) and Fig. 5-(d) demon-
strates the statistical analysis about MVML-
IDSaC on the precision. According to this figure,
in terms of precision, our MVML-IDSaC is sig-
nificant better than NAIM3L as well when α =
0.05 and α = 0.10 and is significant better
DD-IMvMLC-net when α = 0.10.

In general, our MVML-IDSaC performs best
as demonstrated by statistical tests, especially
compared with NAIM3L.

4.4 Parameter study

According to the objective function of MVML-
IDSaC (i.e., Eq. (56)), there are 60 parameters can
be adjusted and different parameter values lead to
diverse average AUC, precision, training time, and
convergence. In order to validate the influence of
parameters to the average performances vary, we
take data set Corel5k for statement (for other data
sets, the conclusions are similar) and the influence
can be found in Fig. 6.

From this figure, it is found that if we want
to get a better AUC or precision, (i) for terms
about balance factors which are related to the
‘individual’-measured sub-models and ‘mutual’-
measured sub-models, we can set the correspond-
ing penalty parameters be 0.8 or 0.9. This indi-
cates that the balance factors are more important
to balance the difference between ‘individual’-
measured sub-models and ‘mutual’-measured sub-
models; (ii) for terms about nuclear-norm-based
sub-models, they have little effects on the per-
formance and we can set their corresponding
penalty parameters be in random; (iii) for other
terms about within-view parts, penalty parame-
ters can be set as 0.4 or 0.5; for other terms about
consensus-view parts, penalty parameters can be
set as 0.5 or 0.6; for other terms about cross-view
parts, penalty parameters can be set as 0.6 ∼
0.8. This conclusion indicates that compared with
within-view information and consensus-view infor-
mation, the cross-view information is more impor-
tant.

To this end, in the future experiments, we
can set the parameters referring to the above
conclusions.

4.5 Ablation study

As we know, the model of MVML-IDSaC con-
sists of many terms and we want to see which
term is essential. To this end, we carry out abla-
tion study. In simple speaking, we set a penalty
parameter be 0 which equals to removing the
corresponding term and see the average vary of
performances about AUC and precision on all used
data sets. In this subsection, we adopt data set
Mirflickr for statement and for other data sets, the
conclusions are similar. Results are given in Fig.
7 and in this figure, curve ‘best’/‘worst’ stands
for the best/worst performances when we adjust
the penalty parameter values while curve ‘abla-
tion’ stands for the performances when we set the
penalty parameter values be 0, namely, removing
the corresponding terms.

According to this figure, it can be seen
that removing terms about balance factors which
are related to the ‘individual’-measured sub-
models and ‘mutual’-measured sub-models brings
a greater reduction to the performances and this
validates the essential of WCC-IM, especially for
the within-view one and the cross-view one. More-
over, removing terms about revealing of the com-
prehensive relationships also bring some reduction
to the performances to a certain extent. This also
means that considering the comprehensive rela-
tionships about MVML data can improve the
ability of algorithms to process MVML data sets
effectively.

5 Conclusion and future work

To process multi-view multi-label data sets
more effectively, this study develops a multi-
view multi-label learning with incomplete data
and self-adaptive correlations (MVML-IDSaC).
Different from state-of-the-art algorithms, the
MVML-IDSaC considers correlations among dif-
ferent instances, features, labels in consensus-
view, within-view, and cross-view representations
and explores the laws of self-adaptive change for
these correlations. Moreover, the developed algo-
rithm can process incomplete MVML data well
with a ‘within-consensus-cross’-based individual-
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Fig. 6 Average influence of parameter values for MVML-IDSaC on the used data set Corel5k of AUC and precision.

and mutual- balance model introduced. Exper-
iments completed on several benchmark data
sets demonstrate the superiority of MVML-IDSaC
over related competitive ones.

With the complexity of tasks and the arrival
of big data era, traditional sampling equipments
have no ability to capture data information in real
time and this leads to an online study problem
which also affect the performances of MVML-
IDSaC. Thus, in the future, we plan to design a
new algorithm on the basis of MVML-IDSaC to
solve these online study problems.
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