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Abstract

Tactile graphics are an essential tool for conveying visual information to visu-

ally impaired individuals. However, translating 2D plots, such as B´ezier curves,

polygons, and bar charts, into an effective tactile format remains a challenge.

This paper presents a novel, two-stage deep learning pipeline for automating this

conversion process. Our method leverages a Pix2Pix architecture, employing a U-

Net++ generator network for robust image generation. To improve the perceptual

quality of the tactile representations, we incorporate an adversarial perceptual

loss function alongside a gradient penalty. The pipeline operates in a sequential

manner: firstly, converting the source plot into a grayscale tactile representation,

followed by a transformation into a channel-wise equivalent. We evaluate the per-

formance of our model on a comprehensive synthetic dataset consisting of 20,000

source-target pairs encompassing various 2D plot types. To quantify performance,

we utilize fuzzy versions of established metrics like pixel accuracy, Dice coefficient,

and Jaccard index. Additionally, a human study is conducted to assess the visual

quality of the generated tactile graphics. The proposed approach demonstrates

promising results, significantly streamlining the conversion of 2D plots into tac-

tile graphics. This paves the way for the development of fully automated systems,

enhancing accessibility of visual information for visually impaired individuals.

Keywords: Tactile Generation, U-Net++, Perceptual Loss, Gradient Penalty
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1 Introduction

Tactile graphics, encompassing elements like pictures, diagrams, maps, and graphs,
utilize raised surfaces to convey information to individuals with visual impairments.
These graphics serve as a critical means for non-textual communication, translating
visual elements into a tactile format. They represent a subset of accessible image for-
mats, alongside methods like verbal descriptions, sound, and haptic feedback, which
aim to improve image comprehension for visually impaired individuals [1]. Although
braille writing systems and automatic text-to-speech translators have proven effective
in communicating information, they lack the capability to process and interpret graph-
ics and images. Tactile graphics can be created using an embosser, similar to braille,
and can be used to help users understand information through touch.

Tactile graphics leverage a discrete, multi-level grayscale encoding scheme. Fore-
ground information is typically depicted in black, contrasting with a white background.
To convey spatial relationships, controlled variations in height are introduced. These
variations directly correspond to quantized grayscale values, where darker shades map
to progressively raised surfaces. Notably, the number of distinct grayscale levels is
often purposefully limited to eight [2]. This design choice optimizes tactile legibility by
mitigating information overload and ensuring a manageable set of perceivable height
variations. Figure 1 shows a simple tactile example.

Fig. 1 A sample tactile for visually impaired students. After [2]

We propose a novel approach to expedite tactile graphic generation, particularly
in time-sensitive situations requiring prompt access to tactile representations. This
method focuses on producing outputs that seamlessly integrate with existing third-
party SVG generation tools. This approach facilitates the utilization of established
design software, such as Corel Draw, Potrace, Adobe Illustrator, or PowerPoint, for
tactile graphic creation. This leverages existing user familiarity with these tools, poten-
tially streamlining the design process compared to the current method of manual
tactile graphic generation within the same software. Our long-term vision centers
on the development of a deep learning pipeline capable of autonomously converting
RGB images into a format optimized for tactile perception. This automation ideally
minimizes the need for manual designer intervention prior to embosser processing.
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While many image types hold potential for conversion to tactile formats, this work
focuses on automating the conversion of specific elements within statistical represen-
tation charts. These charts are crucial for conveying information in a wide range of
contexts. Specifically, we aim to convert elements like Bézier curves (used for smooth
lines), scatter plots (representing data points), polygon shapes (for various data enclo-
sures), and bar charts – all into a tactile format that can be interpreted by people
with visual impairments.

The development of our image-to-tactile translation model draws inspiration from
the Raster-to-Vector approach [3], for converting rasterized floorplans to vector graph-
ics. While traditional methods often rely on image pre-processing techniques like edge
detection, the Raster-to-Vector approach directly identifies key components of the
floorplan and reconstructs them in a new style within a vector representation. This
focus on semantic understanding, rather than solely low-level features, inspired our
approach of detecting key objects within a 2D image and subsequently translating
them into a tactile representation.

As illustrated in Figure 2 , a bar chart is initially transformed into a non modi-
fiable tactile representation. Subsequently, a second conversion separates the various
components of the bar chart into distinct channels. This decomposition facilitates
independent manipulation of each element. Both stages of the pipeline leverage neu-
ral network architectures, which will be thoroughly discussed in Section 3. This study
offers several key contributions to the field of tactile graphics generation:

– A Novel Two-Step Pipeline: We propose a novel two-step pipeline for generating
editable tactile representations of statistical data charts.

– Tailored Evaluation Metrics: We introduce a set of tailored evaluation metrics specif-
ically designed for assessing the quality of tactile graphics. These metrics include
pixel accuracy, dice score, and Jaccard coefficient.

– Domain-Specific Dataset Creation: We contribute to the domain by creating a new
dataset of work-related tactile graphics.

The following sections detail the remainder of this paper. Section 2 reviews existing
research relevant to our study. Section 3 describes the proposed model in detail. Section
4 presents the experimental setup and analyzes the obtained results. Finally, Section
6 summarizes the key findings and offers concluding remarks.

2 Related Work

While there are plenty of work on producing the tactiles physically and understanding
them have been done previously, the filed of converting the variations of RGB images
to the tactile forms has been relatively under explored [4–8].

Li et al. [9], presented a hierarchical framework for structuring tactile information
in robotics applications. This framework categorizes tactile data into four levels: raw,
contact, object, and action. Higher levels of information progressively build upon the
data extracted from lower levels. The authors further explored the specific types of
information that can be gleaned from each level within the hierarchy.
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Fig. 2 The proposed pipeline for converting source images to editable tactile format.

Despite the advancements made in image-to-tactile conversion methods, these
approaches can be broadly categorized into two main types: 1)Rule-based methods:

These methods rely on pre-programmed algorithms that define how image features
are translated into tactile elements. Human intervention may be necessary at various
stages to ensure accurate conversion. 2) Machine learning-based methods: These
methods leverage machine learning algorithms to learn a model that can automatically
convert source RGB images into tactile representations.

The first approach relies on expert knowledge of human tactile perception to craft
conversion rules. In contrast, machine learning models learn these patterns auto-
matically by analyzing a training dataset containing source RGB images and their
corresponding tactile representations.It’s worth noting that machine learning-based
approaches can be further subdivided into categories like image-to-image translation
and image segmentation.

There has been previous attempts for automating the process of generating tactiles
from images. The Tactile Graphics Assistant (TGA) is a software program developed
by Ladner et al. [10] to significantly improve the efficiency and accessibility of trans-
lating visual information into tactile graphics. TGA empowers specialists to convert
not only individual figures but entire textbooks of illustrations into a format suitable
for blind and visually impaired individuals. TGA automates several key tasks includ-
ing: image acquisition, image classification and segmentation, character recognition
and tactile output generation. Štampach and Muĺıčková [11], developed a rule based
model which to partly automate the conversion of the map images into tactile form.

Barvir et al. [12], proposed a method for creating interactive tactile maps that
are both affordable and accessible for visually impaired people. The key aspects of
their model are: 1) TouchIt3D technology, this links a 3D-printed tactile map with a
mobile device, providing an interactive experience. 2) OpenStreetMap data, this freely
available data source is used to create the base map information.3) Semi-automated
workflow,the process is designed to be efficient, reducing time and cost compared to
traditional methods. This workflow likely involves automating some map design steps.
Their work focuses on creating tactile maps for three purposes: Walking navigation,
Public transportation use and Tourist exploration.
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The study by Touya et al. [13] presents an initial exploration of adapting existing
automated cartography techniques, such as map generalization, schematization, and
stylization, for the creation of on-demand tactile maps. Their key contribution lies
in demonstrating the potential of such an approach, while highlighting the need for
further research on specific challenges outlined in a comprehensive research agenda.

Jiang et al. [14], investigate a semi-automated approach to address the limitations
of manually created tactile maps for visually impaired people. The researchers devel-
oped a system that automates some design tasks involved in generating these maps,
while likely leaving room for specialist input to ensure quality and customize the final
product. Their initial evaluation focused on the graphic design of the produced maps,
assessing clarity, information representation, and effectiveness in conveying intersec-
tion details. By involving tactile graphics professionals, the researchers ensured the
design caters to the needs of visually impaired users.

Chen and Takagi [15], proposed a pattern recognition-based method for automating
the translation of hand-drawn maps into tactile graphics. This method likely utilizes
algorithms capable of identifying and classifying various symbols and features within
the map. By automating these processes, the authors aim to improve the efficiency
and potentially the accuracy of translating hand-drawn maps into tactile formats. This
could make the creation of customized tactile maps for individual needs more feasible.

Engel and Weber [16], investigated the influence of design on the readability and
usability of tactile charts for data exploration. Their analysis encompassed 69 tactile
charts, including various chart types (bar, line, pie, area, and scatter plots) sourced
from publications, accessibility guidelines, and transcription institutes. The study
focused on the design of axes and tick marks, the use of labels and legends, the visual
style of chart elements, and design considerations specific to each chart type. Based
on their findings, the authors propose a foundational set of design guidelines for bar
charts. In the study by Choi et al. [17], the authors present a deep learning approach
that automatically analyzes visualizations to identify key components. This includes
the visualization type, graphical elements, labels, and legends. Most importantly, the
system extracts the underlying data the visualization represents. By leveraging this
extracted information, the system can provide a synthesized reading experience for
visually impaired users.

Watanabe and Mizukami [18], investigated the effectiveness of tactile scatter plots
in conveying relationships between two quantitative variables for blind people. The
study compared three data representations: tactile graphs, tactile tables, and electronic
tables. Participants were tasked with identifying the relationship between variables
in each format. The results revealed that participants understood tactile graphs the
fastest, followed by tactile tables, while electronic tables required the longest time.
Furthermore, both tactile formats received higher subjective ratings for usability
compared to the electronic tables.

Gorniak et al. [19], presented VizAbility, a groundbreaking multimodal accessibility
system. This system merges keyboard navigation with standard interaction methods,
empowering visually impaired users to actively explore and interact with data visu-
alizations. VizAbility leverages an LLM (Large Language Model)-based pipeline to
analyze user queries. By synthesizing information from the underlying data, chart
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structure, user’s focus within the visualization, and external web-based information,
the system generates comprehensive responses to user queries.

Building upon the widespread adoption of machine learning models, tactile image
generation can also be addressed within this framework. Two primary approaches
can be leveraged: image-to-image translation and image segmentation. Image segmen-
tation can be implemented using supervised learning techniques or even rule-based
programming approach. Supervised image-to-image translation tasks can be catego-
rized as binary or multi-domain, and tackled using supervised, semi-supervised, or
unsupervised learning approaches. As a crucial area of computer vision research,
image-to-image translation boasts a wealth of existing research. Popular supervised
approaches include Pix2Pix [20], while CycleGAN [21], exemplifies unsupervised
approaches, both of which have laid the foundation for numerous GAN-based image-to-
image translation solutions. However, the primary challenge associated with supervised
machine learning approaches lies in the limited availability of suitable annotated data.
Acquiring such data is often an expensive endeavor.

The task of image-to-sketch translation holds relevance for the domain of
image-to-tactile translation, as both sketches and tactile graphics represent a human-
interpretable abstraction of an image. Several Generative Adversarial Network (GAN)
models have been proposed for bidirectional image-to-sketch conversion [22]. These
models incorporate features like identity preservation, sketch quality, and composition-
aided generation to synthesize sketches that capture both the essence and key details
of the original image.

Sketches and tactile graphics both reflect human comprehension of an image, mak-
ing image to sketch translation relevant to the problem. Several GANmodels have been
proposed for one-to-many [23, 24] and bidirectional image to sketch conversion [22].
These models use features like identity preservation, sketch quality, and composition-
aided generative adversarial networks to synthesize sketches and facial features. Key
facial features are learned to be embedded in the features and mapped to real pho-
tos, and a spatial attention pooling module and dual generator training technique are
used in the DeepFacePencil [25] model.

3 Proposed Method

Our proposed method for tactile generation utilizes a pipeline with two modules. The
first module performs image-to-haptic translation, converting RGB images into non-
editable tactile representations. The second module refines these non-editable tactiles
into editable formats suitable for tactile display. This refinement process involves com-
ponent segmentation, where the model identifies individual elements within the tactile
representation. Each element is then mapped to a corresponding channel within the
editable tactile format. Finally, inpainting techniques are employed to address any
gaps or discontinuities that may arise due to the intersection of different components.
A two-step pipeline offers several advantages over a single-step approach for tactile
generation. One key benefit is the reduced need for channel-wise training data. Such
data, where each tactile element is isolated within a specific channel, is significantly
more challenging to acquire compared to grayscale tactile images. In the proposed
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pipeline, the first module leverages readily available grayscale data. This module per-
forms content pre-processing, removing unnecessary details and adjusting the style of
each component to conform to tactile representation conventions. This pre-processing
simplifies the subsequent task of component decomposition handled by the second
module. Since the first module has already established a well-defined tactile represen-
tation, the second module can focus on the more manageable task of identifying and
separating individual components within the pre-processed tactile data.

The proposed pipeline leverages a variant of Pix2Pix [20] with a PatchGAN dis-
criminator [26] for both stages, Unlike standard discriminators that analyze entire
images, PatchGAN acts as a zoomed-in critic in a GAN. It examines tiny image
squares (N x N pixels) and determines if each one is a genuine part of a real image or
a fabrication by the generator.

Notably, we employ U-Net++ [27] instead of the standard U-Net architecture.
U-Net++ offers several advantages over U-Net, including the introduction of nested,
dense skip-connections and a deep supervision scheme. These enhancements facilitate
improved feature fusion, leading to superior segmentation performance and enhanced
gradient flow within the network [27].

To enhance the performance of our model beyond the capabilities of the origi-
nal architecture, we extend the loss function by incorporating two additional terms:
adversarial perceptual loss (APL) [28] and gradient penalty (GP) [29]. APL improves
the perceptual realism of the generated images by guiding them to not only resemble
real data statistically (as achieved by the distance-based loss) but also to deceive a
pre-trained image recognition network. This ensures the generated images capture the
high-level features and details that humans perceive as important. Furthermore, GP
is introduced to promote stable training. By enforcing a penalty on the gradient norm
of the discriminator, GP mitigates the vanishing/exploding gradient problem, leading
to a more efficient and robust training process. The combined effect of these addi-
tional loss terms fosters the generation of perceptually realistic images while ensuring
a well-behaved training trajectory.

The GAN loss term is responsible for implementing adversarial training between
the generator and the discriminator, playing a pivotal role in evaluating the model’s
performance. Equations 1 and 2 represent the formulation of this term. The crite-
rion for the GAN loss, denoted as fc, offers candidates such as mean squared error,
binary cross-entropy, hinge loss, or Wasserstein loss. The patch scores for real data and
generated data are represented by y and ŷ, respectively. To simplify calculations, we
employed J|y| to denote a matrix of ones matching the size of y, and O|ŷ| to denote a
matrix of zeros matching the size of ŷ. The discriminator module is represented by D.

LGAN (G) =
∑

x,z

(

fc
(

D (x,G (x)) , J|ŷ|
))

(1)

LGAN (D) =
∑

x,z

(

fc
(

D (x, z) , J|y|
)

+ fc
(

D (x,G (x)) , O|ŷ|

))

(2)

The distance-based loss term effectively penalizes the generator by comparing its
output to the ground truth, employing L1 loss to ensure the preservation of low-
frequency accuracy and fidelity. This L1 loss term can be expressed as shown in
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equation 3, where x represents the input and z denotes the ground truth.

LL1 (G) =
∑

x,z

|z −G (x)| (3)

Building upon the insights from [30], our approach integrates the discriminator’s
feature maps to provide valuable perceptual feedback to the generator throughout the
training process. To achieve this, we utilized the absolute difference instead of the
second norm. This loss term can be viewed as an extension of the L1 loss, as it not
only guides the generator based on the desired output but also takes into account the
feature maps it triggers in the discriminator, promoting a more profound perceptual
comprehension of input images. We refer to this loss term as 4, where φκ represents
the specific feature maps selected from the discriminator immediately after passing
through the activation function.

Lper (G) =
∑

κ∈K

∑

x,z

|φκ (G (x)) − φκ (z)| (4)

To mitigate the imbalanced competition between the generator and discriminator
during training, we employed a modified version of gradient penalty originally proposed
in [29]. By periodically penalizing the discriminator for pronounced changes induced
by strong gradient signals, we ensured its stability without compromising training
speed or convergence. This technique involved interpolating between the input and
generator output, using a random matrix α, to generate an intermediary value that
approximated the ground truth more closely. The specific formulation of this loss term
can be found in equation 5.

Lgp (D) =
∑

x,z

(||∇ẑD (x, ẑ) ||2 − 1)
2

(5)

The optimization problem or minimax game is formed by the collection of the
above loss terms as shown in equation 6. In this formulation, the wight of each loss
term is expressed as a scalar value, denoted by the symbol λ.

G∗ = arg min
G

max
D

LGAN (G, D) + λaLL1 (G)

+ λgpLGP (D) + λperLper (G)
(6)

4 Experimental Setup

This section details our dataset specifically designed for the task of converting 2D
plots into a tactile format suitable for visually impaired users. We then outline eval-
uation metrics to assess model efficacy in achieving this objective. Furthermore, the
experimental settings are detailed at the end of this section.

4.1 Dataset

Recent advancements in deep learning have facilitated the development of end-to-end
models, capable of integrating multiple tasks within a single pipeline. This eliminates
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the need for manual feature extraction and extensive preprocessing or postprocessing
steps, streamlining the overall workflow. However, a critical factor for leveraging these
advancements is access to a sufficiently large and diverse training dataset. To address
this challenge, we have synthesized two comprehensive datasets encompassing a total
of 5,000 samples.

The first dataset caters to a variety of 2D plot types, including Bézier curves,
scatter plots, and polygons, offering a well-rounded representation of common visu-
alizations. The second dataset focuses specifically on bar charts, providing targeted
training data for this prevalent chart type. Both datasets encompass three key
components:

• RGB Images: The original visual representation of the 2D plots.
• Non-Editable Tactile Images: The desired output format, representing the tactile
representation for visually impaired users.

• Channel-wise Tactile Image Triplets: Intermediate representations potentially useful
for model training.

To ensure robust model evaluation, we employ a standard data split. 90% percent
(4,500 samples) of the data is allocated for training the model, while the remaining
10% percent (500 samples) is reserved for unseen testing. This approach mitigates
overfitting and allows for a more accurate assessment of model generalizability on
novel data (refer to Figure 3 for dataset examples).

The channel-wise output structure offers several advantages. Each channel encodes
a distinct tactile component, allowing the model to treat it as an independent grayscale
image. This representation effectively addresses two key challenges: 1) Quality and
Class Imbalance: Compared to a single-step approach, the channel-wise format mit-
igates issues related to data quality and class imbalance. 2) Object Reconstruction
and Inpainting: The separation of information into channels facilitates seamless object
reconstruction and inpainting within the tactile image. This is particularly beneficial
in scenarios where elements overlap in the input image, such as grid lines intersecting
axes. By processing each component independently, the channel-wise approach avoids
discontinuities and ensures a smooth, continuous representation throughout the entire
image and its individual tactile components.

4.2 Evaluation Metrics

Common image quality metrics, such as Fréchet Inception Distance (FID) [31] and
Inception Score (IS) [32], are not well-suited for evaluating the quality of tactile images
generated by our model. These metrics rely on pre-trained image classifiers, which are
designed for natural scene images and may not capture the nuances of tactile repre-
sentations. For instance, FID and IS might penalize slight variations in background
texture that are acceptable or even desirable in tactile graphics.

We required metrics that better reflect the segmentation nature of our task and
treat pixel intensities as continuous values. Fuzzy logic provided a suitable framework
for this purpose. Inspired by the concept of membership functions, we modeled pixel
intensities using smooth set memberships. This allows for a more nuanced evaluation
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Fig. 3 Examples of the synthesized dataset. The left column shows the source domain. The other
three columns show axes, gridlines, and content channels, respectively.

by incorporating a flexible range of values between 0 and 1, rather than relying solely
on discrete class labels.

Consequently, we introduce fuzzy adaptations of standard segmentation metrics:
pixel accuracy, Dice score, and Jaccard coefficient (formulated in Equations 7, 8, and
9 respectively), where ri represents the pixels of the ground truth and gi represents
those of the generated output.

Pixel Accuracy =

∑

i (min (ri, gi))
∑

i (ri)
(7)

Dice Score =
2
∑

i (ri . gi)
∑

i (r
2

i + g2i )
(8)

Jaccard Coefficient =

∑

i (ri . gi)
∑

i (r
2

i + g2i − ri . gi)
(9)

This approach offers several advantages over traditional metrics. By leveraging
fuzzy logic, we can capture the inherent complexities of tactile image quality. Pixel
intensities in tactile images represent continuous values, unlike the discrete classes used
in natural scene images. Fuzzy logic allows us to account for this fuzziness by treat-
ing intensities as degrees of membership in fuzzy sets. This enables a more nuanced
evaluation that considers partial matches between the ground truth and generated
images.

Furthermore, the proposed fuzzy adaptations reward the presence of accurate con-
tent pixels in the foreground regions. Conversely, they penalize the introduction of
artifacts or unwanted elements in the background areas. This comprehensive evalua-
tion ensures the model prioritizes faithful representation of the desired tactile features
while minimizing background noise.

To prioritize visual quality, we conducted qualitative evaluations alongside quanti-
tative measures. An anonymous web application was developed for human annotators
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to rank assorted images generated by different models compared to the ground truth.
The ranking was based on criteria such as reduced artifacts, accurate position and
color translation, and style consistency. A subset of 100 randomly selected test images
per model received annotations, averaging the results. Without imposing specific pri-
orities or weights, annotators ranked the images naturally and fairly. The findings
confirmed the superior performance of our model, demonstrating higher quality tactiles
compared to the base model.

4.3 Experimental settings

To improve model generalizability and robustness to input variations, we incorporated
a data augmentation strategy within our data loader pipeline. This strategy involved
a series of random transformations applied to the input data with pre-defined proba-
bilities: Horizontal Flipping: Randomly flipped the image horizontally with a 50%
chance, augmenting the dataset with mirrored versions and enhancing the model’s
ability to learn rotation-invariant features. Shifting: Randomly shifted the image
content within a range of 10% of its original dimensions in both horizontal and ver-
tical directions. This simulates potential misalignments during data acquisition and
improves the model’s tolerance to slight spatial variations. Scaling: Randomly scaled
the image size up or down within a 20% range of its original dimensions. This intro-
duces variations in object size and helps the model learn features at different scales.
Rotation: Randomly rotated the image by up to 15 degrees in either direction. This
augments the dataset with rotated versions and improves the model’s ability to rec-
ognize objects regardless of their orientation. Partial Occlusion: Randomly applied
partial occlusion to the image with a 50% chance. This can simulate scenarios where
parts of the input data might be obscured and strengthens the model’s ability to
handle incomplete information.

5 Results and Ablation Analysis

To facilitate a performance comparison, we employed Pix2Pix as the baseline model.
To evaluate the contribution of individual components within our method, we con-
ducted an ablation analysis. This involved systematically replacing or removing
elements and observing the impact on performance.

Firstly, we investigated the limitations of the original generator architecture in
handling channel-wise outputs. We replaced it with a modified version to address these
limitations. Subsequently, a gradient penalty loss term was introduced to improve the
stability of the training process. Finally, a perceptual loss term was incorporated to
further enhance the quality of the generated outputs.

The quantitative results of the comparison are presented in Tables 1 and 2. Table
1 displays the results on 2D plots including Bézier curves, scatter plots, and poly-
gons, while Table 2 utilizes bar charts for visualization. There are two modules in the
pipeline. We trained each module using different loss components. The +upp on the
left denotes the base model but U-Net++ instead of U-Net as the generator of the
first module. The +upp on the top row denotes the base model but U-Net++ instead
of U-Net as the generator of the second module. The +gp on the left denotes the base
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model with U-Net++ and gradient penalty in the first module. The +gp on the top
row denotes the base model with U-Net++ and gradient penalty in the second module.
Likewise, +per denotes the base model but with U-Net++ and gradient penalty and
adversarial perceptual loss. The three values reported in each cell are pixel accuracy
(PA), dice (DS), and Jaccard coefficient (JC), respectively. The results demonstrate
the effectiveness of each additional component in the proposed method. Furthermore,
in the last column, we report the result of a single-step approach for directly convert-
ing RGB source images to editable tactiles. It is evident that the proposed two-step
pipeline outperforms the single step approach.

Our evaluations (Tables 1 & 2) demonstrate that directly converting RGB images
to editable tactiles outperforms the baseline model across all metrics. Further improve-
ments are achieved by replacing the U-Net with a U-Net++ architecture in the first
module. Additionally, incorporating a gradient penalty term in the first module leads
to further performance gains.

Interestingly, adding the adversarial perceptual loss to the first module while using
the base configuration for the second module shows no significant impact on the 2D
plots but does affect the bar chart outputs. Replacing the U-Net with a U-Net++
architecture in the second module while maintaining the base configuration for the first
module leads to a substantial performance increase. Notably, the best performance is
achieved when the U-Net++ architecture, gradient penalty, and adversarial perceptual
loss are all incorporated in the second module, alongside the base configuration in the
first module.

While using both modules with all proposed modifications (U-Net++, gradient
penalty, adversarial perceptual loss) yields improved performance, our results suggest
that omitting the adversarial perceptual loss from the first module achieves the optimal
outcome.

1
2

base +upp +gp +per direct

b
a
se

PA 73.96 76.15 87.31 88.06 86.43
DS 91.81 94.03 95.10 93.93 92.85
JC 85.23 88.98 90.90 88.84 87.25

+
u
p
p PA 74.10 75.65 87.16 87.94 85.09

DS 91.93 93.72 95.04 95.38 92.83
JC 95.50 88.55 90.90 91.45 87.33

+
g
p PA 76.45 78.46 90.37 91.26 87.63

DS 94.94 95.86 97.24 97.66 87.33
JC 88.96 92.19 94.75 95.49 78.14

+
p
er PA 73.41 74.82 87.33 88.50 91.05

DS 91.58 93.14 94.72 95.19 96.19
JC 84.88 87.53 90.24 91.01 93.31

Table 1 Ablation analysis on 2D plots. +upp:
U-Net++ instead of U-Net in the base module, +gp:
plus gradient penalty added to +upp, +per: adversarial
perceptual loss added to +gp. 1 and 2 stand for module1
and module2 respectively.
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1
2

base +upp +gp +per direct

b
a
se

PA 55.76 57.09 60.62 84.00 59.79
DS 74.96 74.97 77.94 92.57 78.96
JC 63.86 63.66 68.06 87.23 69.58

+
u
p
p PA 58.19 59.75 63.90 85.71 62.41

DS 78.62 79.00 81.98 93.42 82.85
JC 67.29 67.75 71.96 88.63 73.27

+
g
p PA 67.20 68.62 74.04 92.45 72.55

DS 89.00 88.64 92.57 97.39 93.41
JC 81.17 80.66 86.84 95.23 88.27

+
p
er PA 67.77 68.76 74.58 90.49 82.80

DS 89.55 88.79 93.17 96.70 94.81
JC 83.15 83.03 90.76 94.17 90.96

Table 2 Ablation analysis on bar charts. +upp:
U-Net++ instead of U-Net in the base module, +gp:
plus gradient penalty added to +upp, +per: adversarial
perceptual loss added to +gp. 1 and 2 stand for module1
and module2 respectively.

To complement the quantitative analysis, we conducted a qualitative evaluation on
a randomly selected subset of 100 samples from the test set. In a double-blind exper-
iment, two users were asked to rank the outputs of the proposed model and baseline
models without knowledge of their corresponding labels. The results consistently indi-
cated that the proposed model generated tactiles of superior quality, demonstrating
a significant performance advantage over the baseline models. Tables 3 and 4 provide
a detailed summary of our evaluation for 2D plots and bar charts respectively. To
address the challenges associated with ranking a vast number of images, we employed
a fixed U-Net++ architecture with gradient penalty in the first module of our pro-
posed model. We then explored the impact of various configurations in the second
module on image ranking performance.

Base model (Pix2Pix) Base model, U-Net++ Base model, U-Net++, GP Base model, U-Net++, GP, Perceptual
Avg rank (1-4) 2.89 3.11 2.31 1.69

Table 3 Qualitative Evaluation (Ranks) of Tactile Generator Models on 2D Plots.

Base model (Pix2Pix) Base model, U-Net++ Base model, U-Net++, GP Base model, U-Net++, GP, Perceptual
Avg rank (1-4) 3.51 3.26 2.05 1.18

Table 4 Qualitative Evaluation (Ranks) of Tactile Generator Models on Bar Charts

As depicted in Table 3 and 4, the proposed model, with its second module incor-
porating U-Net++, gradient penalty, and perceptual loss, consistently achieved the
highest ranking (lowest value) for both chart types.
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6 Conclusion and Future Work

In this study we explored the generation of tactile graphics using deep generative mod-
els for diverse 2D plots, including curves, polygons, scatter plots, and bar charts. We
propose a novel approach that modifies the Pix2Pix model by employing a U-Net++
generator, incorporating an enhanced loss function, and generating multi-channel
outputs for individual plot component access. Additionally, we introduce tailored
evaluation metrics including pixel accuracy, dice score, and Jaccard coefficient. Our
results demonstrate significant improvements over the baseline model across all plot
categories.

Our proposed method significantly improved the generation of tactile graphics
across various plot categories. The results demonstrate a notable improvement in
the model’s ability to accurately represent these plots. Pixel accuracy increased by
4.83 percentage points (from 86.43% to 91.26%), indicating better classification of
individual pixels in the tactile representation. Additionally, the dice coefficient rose
from 92.85 to 97.66, signifying a significant improvement in capturing the overall
structure and spatial relationships within the plots. This is further corroborated by the
Jaccard coefficient, which increased from 87.25 to 95.49, indicating better agreement
between the model’s output and the desired tactile representation.

Similar improvements were observed for bar charts. Pixel accuracy saw a dramatic
increase from 59.79% to 92.45%, suggesting a significant enhancement in generating
the specific tactile elements of bar charts. This includes the bars themselves and poten-
tially additional information like axes or labels. The dice coefficient (78.96 to 97.39)
and Jaccard coefficient (69.58 to 95.23) also showed substantial improvements, align-
ing with the findings for the combined category. These results indicate a better match
between the model’s generated tactile bar charts and the desired representations.

However, while our approach demonstrates promising results for these core plot
categories, further exploration is necessary to expand the model’s capabilities. Future
work should investigate the generation of additional plot types, such as pie charts,
maps, and molecule diagrams. Additionally, the current dataset comprised of syn-
thesized examples necessitates further development for increased diversity. A more
diverse dataset encompassing real-world tactile graphics will be crucial for ensuring
the model’s generalizability to a wider range of scenarios.
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