

Denoising Self-Attentive Sequential Recommendation

Huiyuan Chen, Yu-San Lin, Menghai Pan, Lan Wang, Michael Yeh, Yan Zheng, Xiaoting Li, Fei Wang, Hao Yang

1. Problem

• Task: Predict next item, based on a user's historical profile

Item sequences

next item

Challenge: Irrelevant item-item dependencies in the Transformer

2. Proposed Model

Differentiable Masks

$$\mathcal{R}_{M} = \sum_{l=1}^{L} \left\| \mathbf{Z}^{(l)} \right\|_{0} = \sum_{l=1}^{L} \sum_{u=1}^{n} \sum_{v=1}^{n} \mathbb{I} \left[\mathbf{Z}_{u,v}^{(l)} \neq 0 \right]$$

• Jacobian Regularization The standard dot-product self-attention is not Lipschitz continuous and is vulnerable to the quality of input sequences.

3. Experimental Results

Overall Performance

Dataset	Mo	vieLens	В	eauty	G	ames	Mov	ries&TV	S	team
Metrics	Hit@10	NDCG@10								
FPMC [36]	0.7478	0.4889	0.2810	0.1792	0.5231	0.3410	0.4806	0.3174	0.6012	0.4084
GRU4Rec [17]	0.5582	0.3383	0.2123	0.1205	0.2943	0.1939	0.4210	0.2343	0.4184	0.2687
Caser [39]	0.7213	0.4672	0.2670	0.1531	0.4315	0.2652	0.4987	0.3120	0.7137	0.4810
SASRec [23]	0.7434	0.5012	0.4345	0.2765	0.6748	0.4622	0.6521	0.4093	0.7723	0.5514
SASRec+Denoiser	0.7980	0.5610	0.4783	0.3025	0.7391	0.5439	0.7056	0.4718	0.8345	0.5946
+RI (%)	7.34%	11.93%	10.08%	9.40%	9.53%	17.68%	8.20%	15.27%	5.05%	7.83%
BERT4Rec [38]	0.7549	0.5245	0.4528	0.3013	0.6812	0.4815	0.6701	0.4216	0.7901	0.5641
BERT4Rec+Denoiser	0.8045	0.5814	0.4883	0.3348	0.7415	0.5310	0.7212	0.4875	0.8410	0.6223
+RI (%)	6.57%	10.85%	7.84%	11.12%	8.85%	10.28%	7.63%	15.63%	6.45%	10.32%
TiSASRec [27]	0.7365	0.5164	0.4532	0.2911	0.6613	0.4517	0.6412	0.4034	0.7704	0.5517
TiSASRec+Denoiser	0.7954	0.5582	0.4962	0.3312	0.7331	0.4984	0.6914	0.4671	0.8414	0.6320
+RI (%)	7.80%	8.10%	9.49%	13.78%	10.86%	10.34%	7.93%	15.79%	9.22%	14.56%
SSE-PT [47]	0.7413	0.5041	0.4326	0.2731	0.6810	0.4713	0.6378	0.4127	0.7641	0.5703
SSE-PT+Denoiser	0.8010	0.5712	0.4952	0.3265	0.7396	0.5152	0.6972	0.4571	0.8310	0.6133
+RI (%)	8.01%	13.31%	14.47%	19.55%	8.61%	11.68%	9.31%	10.76%	8.76%	13.51%

 $f_{i}^{(l)}(\mathbf{x} + \boldsymbol{\epsilon}) - f_{i}^{(l)}(\mathbf{x}) \approx \boxed{\frac{\partial f_{i}^{(l)}(\mathbf{x})}{\partial \mathbf{x}}}_{\text{Jacobian}}$

$$\|\mathbf{J}^{(l)}\|_{F}^{2} = \operatorname{Tr}\left(\mathbf{J}^{(l)}\mathbf{J}^{(l)^{\top}}\right) = \mathbb{E}_{\boldsymbol{\eta}\in\mathcal{N}(0,\mathbf{I}_{n})}\left[\left\|\boldsymbol{\eta}^{\top}\mathbf{J}^{(l)}\right\|_{F}^{2}\right]$$

Overall Optimization

1 Initialize model parameters Θ ;

$$\mathcal{L}_{Rec-Denoiser} = \mathcal{L}_{BCE} + \beta \cdot \mathcal{R}_M + \gamma \cdot \mathcal{R}_J,$$

Algorithm

Algorithm 1: Rec-denoiser with AR estimator

Input: The training sequences S, the number of attention layers L, the number of heads H, and the regularization coefficients α , β , and γ .

• Robustness

Fig. 3. Overall performance on the training data are corrupted by synthetic noises.

Parameter Studies

² Initialize mask parameters Φ ; ³ **for** each mini-batch **do** for $l \leftarrow 1$ to L do 4 Compute the full attention $A^{(l)}$ in Eq. (5) 5 Draw $U^{(l)} \sim \text{Uniform}(0, 1);$ 6 Compute the mask $Z^{(l)} = \mathbb{I}[U^{(l)} < g(\Phi^{(l)})];$ 7 Compute the sparse attention $M^{(l)} = A^{(l)} \odot Z^{(l)}$; 8 Feed $\mathbf{M}^{(l)}$ to the rest modules of Transformer; 9 end 10 Compute the loss $\mathcal{L}_{Rec-Denoiser}$ in Eq. (13); 11 Update the model parameters Θ and mask parameters Φ (Eq. (11)) via Stochastic Gradient Descent; 12 13 end **Output:** A well-trained Transformer.

• Dataset

Table 1. The statistics of five benchmark datasets.

Dataset	#Users	#Items	Avg actions/user	#Actions
MovieLens	6,040	3,416	163.5	0.987M
Beauty	51,369	19,369	4.39	0.225M
Games	30,935	12,111	6.46	0.2M
Movies&TV	40,928	37,564	25.55	1.05M
Steam	114,796	8,648	7.58	0.87M

4. Conclusion

Fig. 5. Effect of regularizers β and γ on ranking performance (Hit@10).

• We introduce the idea of denoising item sequences for better of training self-attentive sequential recommenders

 We present a general Rec-Denoiser framework with differentiable masks that can achieve sparse attentions by dynamically pruning irrelevant information.

• We propose an unbiased gradient estimator to optimize the binary masks and apply Jacobian regularization on the gradients of Transformer blocks to further improve its robustness.