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1 Introduction

1.1 Two Approaches: The Signal-flow Approach and the Network
of Local LTI Systems Approach

The developments in hardware technology, wireless communication networks and

computational technology contribute to the advancement of large-scale networks of

interconnected systems. The large-scale nature of such networks has started to arouse

curiosity within the systems & control community. A few cases may already be distin-

guished. The exchange of information between the systems interacting in a network

can be known, partially known or be unknown. Examples of networks with known

interconnections include networks of pipelines and electrical grids. Unknown and

abstract connections occur in spatial-temporal systems that are governed by partial

differential equations (PDEs). After discretization of the equations, the dynamics can

be viewed as an array of local dynamical systems that exchange information via

physical interactions between the local models that are each associated to local input

and output signals. Examples include arrays of sensors for measuring the optical

disturbance induced by a spatially and temporally varying windfield that hovers over

a ground-based telescope, and in flow control to stabilize boundary layers and reduce

the drag. A deformable mirror with non-negligible time response that may be used in

optics also belongs to this class of spatial-temporal dynamical systems. In these cases,

the sensor delivers at a high frequency rate a large number of measurements that will

subsequently be processed for data-driven control.

The topic of this book is the system identification of interconnected systems operat-

ing in a network. System identification attempts to find a mathematical representation

for the dynamics by which measured signals are related. Such a mathematical relation-

ship is termed a model. Finding such a model requires a systematic approach towards

designing experiments, specifying model classes, using mathematical methods to find

estimates for the parameters in these models and validating these estimated models.

These topics are well discussed in, for example, Ljung (1999); Verhaegen and Verdult

(2007). This book focuses on the definition of model classes for networks of dynam-

ical systems and presents some system identification methodologies to estimate such

models from input-output measurements.

The main bottlenecks for the extension of classical identification methods to large-

scale networks are the huge volume of data and the large number of parameters neces-

sary to describe these models, even when considering compact local model dynamics.
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2 1 Introduction

A key challenge that will be addressed in this book is how to efficiently deal with

this tremendous degree of complexity while obtaining models that are as accurate as

possible in representing the system behaviour given, for example, by the input-output

response.

Two major system identification approaches for identifying network connected

systems are under full development. These developments occur very much along the

lines of the two model classes that are in use for lumped parameter systems: transfer

function models and state-space models. Many of the system identification approaches

for networks have been inspired by particular applications.

The first main approach for identifying dynamic networks is based on the input-

output transfer functions describing the network. This approach characterizes the net-

work by employing dynamic signal flow diagrams and will be referred to as the

signal flow approach. It starts from a global model representation that, in princi-

ple, can be formulated without knowledge of the way in which the local systems

are connected to each other. If size allows, the global dynamics may be identified

and a special parametrization in the global coefficient matrices may be looked for

afterwards to find out or estimate a network topology. However, we usually strive

for lean parametrizations of the coefficient matrices in these models in order to deal

with the data complexity and overcome the computational bottleneck. Specifying such

models and their consequences on the identification methods to find these models for

data is a challenge to be pursued in this book. These parametrizations may come from

physical insights such as localizability (each local system in the network has a very

limited influence on its neighbours), spatial invariance (all local systems are identical)

or separability of the system dynamics along the physical dimensions. Such models,

which rely on transfer functions, are labelled in this book as global models. Typical

applications are from biological or computer networks (see, for example, Gevers et al.

[2019]; Gonçalves and Warnick [2008]).

The second main approach for identifying networks of dynamic systems is based

on large state-space models with structured system matrices and are developed, among

others, in the scope of designing data-sparse controllers for network connected sys-

tems. For examples of the latter we refer to D’Andrea and Dullerud (2003); Massioni

and Verhaegen (2009); Rice and Verhaegen (2009). Typical areas of application of

such controller design methods are formation flying, cross-directional control in paper

processing, automated highway systems, micro-cantilever array control for massive

parallel data storage and lumped parameter approximations of PDEs. We refer to the

work in D’Andrea and Dullerud (2003) for more details on these applications. Local

models may be related to a physical entity such as cars on an automated highway, or

can be virtual as is often the case when modelling spatial-temporal dynamical systems.

Key for these models is the interconnection pattern of the network, i.e. how the local

dynamical systems are connected to each other. Priors from physics such as spatial

invariance and separability may also be formulated here although at a local scale,

that is, on the system matrices of the local models. These may eventually translate

into parametrizations of the global matrices. This second approach is referred to as
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1 Introduction 3

the network of local LTI systems-approach, and the mathematical methods derived

in this context can be viewed as identification for distributed control methods that

aim to be efficient for distributed control design. The efficiency envisaged is that the

model structure of the identified model can be exploited to arrive at low-cost controller

design, both in terms of calculating and implementing these controllers.

The examples given so far are illustrative and follow existing literature that

uses either transfer functions or state-space models for subsequent control. Both

approaches may nonetheless be applied succesfully to an application mentioned for

the other approach.

An appropriate model structure is of prime importance for system identification

as has been discussed in Ljung (1999); Verhaegen and Verdult (2007). If the model

structure is not included within the set of candidates that accurately represents the

true system, the estimates derived will be biased irrespective of the size of the dataset

or the convergence properties of the dedicated algorithm. This is the case for small

and medium size models as demonstrated by the bias-variance analysis given, for

example, in Ljung (1999). For large-scale models, this will be even more prominent

because the number of data points available for identification (and validation) is small

compared to the number of parameters to be estimated. One often seeks (data-)sparse

model parametrizations and the enforcing of structure in the system matrices of the

model to be estimated. In general, this may help to reduce the variance of the esti-

mates compared to the unstructured case for the same number of temporal samples.

However, the other side of the coin is that the model quality may degrade: an incorrect

parametrization of the matrices is likely to increase the bias, e.g. when the physical

insights are too crude. Instead of conducting a bias-variance trade-off analysis like that

in Ljung (1999), we develop identification methodologies to estimate model structures

where structural parameters, such as the order of local models, are derived from the

given data. These structural parameters offer the freedom to the user to get the best

model within that model class. This will be the case for the subspace-like identification

methods to be developed in this book.

In this chapter, we will start by providing motivating examples additional to those

already mentioned that demonstrate how a network of dynamical systems arises

through the use of multi-dimensional sensor grids. We will then briefly outline the

remaining chapters of this book.

1.2 Examples of Networks of Dynamical Systems

Dynamical systems with multi-dimensional sensor/actuator arrays consisting of a

large number of nodes appear, or will appear, in the near future in various engineering

applications. These applications range from optics to flow control, but also in many

other applications in economics, systems biology, social network analysis, etc. In this

book, the examples considered are mainly restricted to engineering problems.
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4 1 Introduction

1.2.1 Data-Driven Predictive Control for Large-Scale and Extreme Adaptive Optics

In the current generation of large-scale adaptive optics (AO) and the forthcoming

generation of extreme AO (XAO) being designed for the inspection of exoplanets,

use will be made of (extreme) large multi-dimensional sensor/actuator arrays with

thousands (ten-thousands) of nodes, each processing local signals at the kHz rate.

The imaging of exoplanets using XAO is challenging due to the high contrast ratio

and the small angular separation relative to the star; see Guyon (2018) for more

details. In these AO systems, the turbulence induced in the atmosphere above the

telescope induces a stochastic disturbance that greatly deteriorates the image quality

and, without (real-time) compensation, reduces these extremely expensive telescopes

to something comparable to Newton’s telescope developed in the seventeenth century.

The AO application is further discussed in Chapter 10. Here, we restrict ourselves to

highlighting some identification challenges. Figure 1.1 illustrates the turbulence fields

flowing over a telescope aperture. Such turbulence fields introduce optical aberrations

that reduce the quality of the image recorded by the telescope. This would limit the

science that can be done using such images such as investigating the atmosphere

of exoplanets. Only the wavefront of the optical field aberrations is of interest as

the intensity can often be assumed to be uniform. In order to improve the image

resolution, use can be made of AO in order to reduce the effects of the optical aberra-

tions. An important element in an AO system is the sensor that measures the optical

aberrations.

The sensor measuring these wavefront aberrations in a ground telescope is a

two-dimensional array, as depicted in Figure 1.2. The sensor, for example a Shack–

Hartmann sensor, measures the combined effect of all the layers above the telescope,

with each layer having a different wind speed and direction. A direct measurement

of the optical wavefront aberration is not possible and a reconstruction always needs

to be done. The reconstruction step may benefit from knowledge of model of spatial-

temporal dynamics of the induced wavefront aberrations in order to predict these

disturbances in time. Deriving such a model from the large number of measurements

on an (extreme) large telescope is a challenging problem. The methods to be developed

in this book serve as possible solutions for these types of problems. Based on

the measured wavefront aberrations, a deformable mirror can then compensate

the wavefront of the optical beam. Such a deformable mirror consists of a grid of

actuators that operate under the mirror surface to deform that surface into a shape that

compensates the overall wavefront distortation. Linking the sensor to this actuator is

done by the controller. Modelling this link is also an identification problem that can

be considered with the methods presented in this book.

Many instruments, such as a coronograph or a spectrograph, could benefit from

scalable large-scale AO control algorithms. Examples of such instruments are HAR-

MONI (high angular resolution monolithic optical and near-infrared integral field

spectrograph) for the ESO’s extreme large telescope (ELT) (Neichel et al., 2016), NFI-

RAOS (narrow field infrared adaptive optics system) for the Thirty Meter Telescope

(Ellerbroek, 2011), and GPI (Gemini planet imager) (Poyneer et al., 2016).
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1 Introduction 5

Telescope

Figure 1.1 A schematic representation of a telescope with two layers of the turbulence above

the telescope. Each layer in this plot schematically represents the surface of the optical

wavefront. In this figure we do not plot the isoplanatic angle between the star and the object

of interest. For more details on the nomenclature refer to Chapter 10.

AO is not limited to astronomy. It has been widely used in other application areas,

such as microscopy (Pozzi et al., 2020) and optical coherence tomography for in vivo

high resolution imaging of the human retina (Pircher and Zawadzki, 2017). Although

the control loop usually operates at a few hertz in these applications, there has not

been much development regarding the data-driven minimum variance control of such

systems.

1.2.2 System Identification for Wind Farm Control

Another example of the application of system identification of large-scale systems is

the area of offshore wind farms (Gebraad, 2014). To illustrate, we refer to Figure 1.3
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6 1 Introduction

Figure 1.2 Example of a turbulence field consisting of the sum of two frozen layers propagating

at different speeds: (left) t = t0; (right) t = t1 > t0. The sensor array is of size 10 × 10 and the

sensor nodes are represented by black dots. The correlations are not only spatial but also

temporal. Reprinted/adapted from Sinquin (2019) with permission from TU Delft

Figure 1.3 A 3 × 2 wind plant rotated 10◦ with respect to wind direction. Hub-height wind field

at 800 s simulated time as calculated by the software SOWFA. The black lines indicate the

rotor positions and yaw orientation of each turbine. Reprinted/adapted from Gebraad (2014)

with permission from TU Delft

where six closely spaced wind turbines operate in a wind corridor. The control objec-

tive is to maximize the energy production of these turbines. This requires knowledge

of the spatial-temporal interaction between them. Mathematical models are of use in

the design of model-based controllers for maximizing the energy yield. Even though

the sampling frequency for such applications is in the range of one Hertz (and much

smaller than the AO applications considered in the previous subsection), the challenge

for a mathematical model is that it should allow for an efficient controller design

as well as its real-time operation. One approach to designing such a model is based

on discretizing the Navier–Stokes equation (Boersma et al., 2018), and using this

discretized model in ensemble Kalman filtering techniques (Doekemeijer et al., 2018).

A second approach is to identify a dynamic model based on measurements of the

wind velocity in time and space (e.g. on a 3D regular grid). Such models, can then be

used to predict the future evolution of the wind field (such as its spatially distributed

wind velocity and direction) in a predictive controller. The development of these
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1 Introduction 7

Figure 1.4 A 2D schematic of a multi-dimensional sensor and actuator array for active

boundary control. The actuators are indicated by light circles, while the sensors by dark circles.

The undisturbed flow is indicated by the arrows. The actuators and sensors are arranged in a

regular grid. Reprinted/adapted from Sinquin (2019) with permission from TU Delft

models may be possible using the approaches outlined in this book, though the actual

realization still needs to be done.

1.2.3 Active Boundary Layer Control

The goal of active boundary layer control on, for example, the wing of an airplane is

to reduce the drag induced by the wind flow around the wing and fuselage by delaying

the flow separation and preventing (as far as possible) the laminar flow (low drag) from

transitioning into turbulent flow (high drag). This goal is achieved by using a multi-

dimensional array of pressure sensors and a multi-dimensional array of actuators,

such as blowing or suction actuators, to actively control the boundary flow around

the surface. A possible configuration of these arrays is shown in Figure 1.4.

A trade-off in active boundary control is to determine a model for the temporal and

spatial dynamics of the wind speed and vorticity that on one hand is compact, so that

efficient control design and implementation becomes possible, and on the other that

it is accurate enough to enable high performance control. In a number of occasions,

such as the flow in a pipe, the dynamics of the flow close to the boundary of the

pipe can be accurately described around a steady-state wind speed by the linearized

Navier–Stokes equations. This yields a linear PDE for small variations around a steady

state. The system identification methods developed in this book pursue the trade-off

between model complexity and model accuracy using real-life measured data with

multi-dimensional arrays of sensors and actuators.

For preliminary results on the development of compact models for boundary layer

control via system identification we refer to Kim and Bewley (2007) and Inigo (2015).

1.2.4 Varied Applications Ranging from Weather Prediction to Sociology

Even without actuators to control, some datasets can be recast as a multi-dimensional

networks, for example in weather prediction (Tsiligkaridis and Hero, 2013). There

are many examples of geographic information systems that collect data via an array
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8 1 Introduction

of sensors distributed geographically. The notion of dimension may also be more

abstract, for example, in sociology and for studying relational networks (Hoff, 2015)

as it does not feature a sensor grid. This area motivated the introduction of self-

replicating patterns (Leskovec et al., 2010): the network is made up of different clus-

ters that each replicate the same interconnection pattern, the clusters are themselves

made of clusters of subsystems that again interact in a similar pattern. This may also

occur in biology.

Adaptive optics systems, wind farms and flow control all rely on large arrays of

sensors to measure wind field-induced aberrations and are potential applications of

the system identification methods that are developed in this book. These examples

may be recast into the signal flow approach or into the network of local LTI systems

approach. In adaptive optics, identifying the spatial-temporal dynamics of the wave-

front aberrations may be recast into a Signal Flow approach whereas identifying those

of a deformable mirror would be seen as a set of interconnected subsystems with very

limited neighbourhood allowing the use of the local approach. In such cases, there

is already a strong a priori knowledge of the topology of the network that can be

used to enhance the computational efficiency of the system identification. Both the

signal flow approach and the network of local LTI systems may be used to represent

discretized PDEs. This applies to the deterministic behaviour as well as the possible

stochastic disturbances that are modelled by PDEs, such in modelling turbulence via

the Navier–Stokes equations. The models derived may be used in the design of large-

scale observers or Kalman filters.

In Section 1.3, we review the heat equation in the context of distributed systems

to illustrate notions such as topology, subsystems, and how these arise from a

discretized PDE.

1.3 The Spatio-Temporal Impulse Response

For particular type of waves, including the heat conduction or optical wave propaga-

tion in an empty medium, their behaviour is governed by a linear PDE featuring both

spatial and temporal derivatives. At each discretization node of a PDE, a subsystem

is assigned with its own input and output. In other words, the discretization and the

interconnection pattern of the subsystems are highly related. Each subsystem shares

information with its neighbours in time and space that can be pictured by its spatial-

temporal impulse response.

A heat conduction example is used as an illustration. Here, we consider a thin metal

plate with homogeneous material density and a known temperature distribution T0(ξ).

In this notation, ξ represents the spatial variable and t = t0 is the initial time point.

Let the spatial boundary be denoted by Ω. The temporal propagation of the temper-

ature over time t > t0 is governed by thermal conduction principles and subjected to

boundary conditions. Appropriate boundary conditions are the homogeneous Dirichlet

boundary conditions. This results into the following PDE:
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⎧

⎨

⎩

∂
∂t

T (t,ξ) = −c∇2T (t,ξ) + u(t,ξ),

T (t0,ξ) = T0(ξ),

T (t,Ω) = 0.

(1.1)

where c is a positive constant, ∇2 is the Laplacian operator and u(t,ξ) is a spatially

(shown by its dependency on ξ) temporally (shown by its dependency on t) dis-

tributed input quantity. The discretisation of the PDE in Equation (1.1) can be obtained

by finite-differencing in both time and space. This gives rise to a lumped parame-

ter system model. When considering a uniform two-dimensional spatial grid of size

N × N , the discrete spatial-temporal model of Equation (1.1) becomes,

⎧

⎪

⎨

⎪

⎩

Ti1,i2 (k + 1) = (1 + 4α)Ti1,i2 (k) − α
∑

(ī1,ī2)∈N(i1,i2)
Tī1,ī2

(k) + ∆tui1,i2 (k),

Ti1,i2 (0) = T0(i1,i2),

TΩ(k) = 0.

(1.2)

where ∆t,∆ξ are the temporal and spatial discretisation steps, respectively, α is equal

to c ∆t

∆ξ2 and N(i1,i2) includes the four closest neighbours of node (i1,i2). This is a

dynamic model (either in state-space form at or in difference equation format) that

shows how local variables (temperatures) are modified by communication with its

neighbours and the environment (input). Such dynamic models are local dynamic

models, and the global model is a network between these local models. Their inter-

action can, for example, be displayed by considering the spatial-temporal impulse

response of the dynamic systems. This is shown for two sets of model parameter values

in Figure 1.5. Here, we restricted the spatial dimension to one in order to simplify the

illustration.

In Figure 1.5, this spatial-temporal impulse response is displayed for a rod that

is discretized spatially in 50 equidistant points (nodes). A non-zero initial condi-

tion is only provided at node 25 (while keeping the other initial conditions at zero).

Figure 1.5 Spatial-temporal map for a one-dimensional string of subsystems

xi(k + 1) = axi (k) + α(xi−1(k) + xi+1(k)), with (Left) (a,α) = (0.7,0.15), and (Right) for a

case with no spatial delay when propagating the state that corresponds to sequentially

semi-separable systems that we will review in Chapter 3. Reprinted/adapted from Sinquin

(2019) with permission from TU Delft
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10 1 Introduction

From Figure 1.5, the spatial and temporal dynamics become clear. This figure illus-

trates how fast information travels from one node to the other. The further away in

both time and space, the less it matters to the local dynamics. The larger the value in

the map (indicated by the lighter colour), the more the state of the neighbour (possibly

in the past) contributes to the temperature of the system at node 25. The further away

in time, the more neighbouring nodes contribute to the value of the state of the system

at node 25.

To make the spatial-temporal connectivity analysis of this example more system-

atic, use can be made of the so-called funnel causality for a spatially-invariant system

(that is when all subsystems in the grid are identical). This notion was introduced

in Bamieh and Voulgaris (2005) and is a function defined for every possible distance

between two nodes that is equal to the first time at which a node is affected by a change

of another node located at a given distance. This distribution in time is fixed for the

PDE in Equation (1.2) and resembles a cone. As the model in Equation (1.2) belongs

to the class of sequentially semi-separable (SSS) systems (Rice and Verhaegen, 2009),

Figure 1.5 shows that the wider the displayed cone (like in the figure in the right), the

further away the local states are instantaneously shared with all the neighbours in that

cone. This notion of funnel causality is closely related to the parametrization of the

system matrices, some of which are detailed in Chapter 3, for the signal flow approach,

and Chapter 4 for the network of local LTI systems approach.

As a conclusion to this introduction, the computational limitations of system iden-

tification algorithms in handling large input-output datasets (e.g. from large sensor

arrays) have spurred the analysis of alternatives for deriving algorithms with lin-

ear computational complexity with respect to the number of sensor measurements

for data-driven control. It is then relevant to introduce further parametrization on

the matrices that stems from physical insights, for example whether the system is

deterministic or stochastic, which is strongly linked to whether the network topology

is known or not, or whether it has invariances, such that the best trade-off between

scalability and model accuracy is found.

1.4 Organization of the Book

The core part of this book consists of nine chapters in addition to this introduction and

the conclusion. There are three main parts. The first part (Chapters 2–5) discusses the

models. The second part (Chapters 6–9) discusses identification methods. The third

part (Chapter 10) illustrates the potential of some of the methods using the challenging

case study of large-scale adaptive optics.

The chapters dedicated to the models start with a refresher, in Chapter 2, of different

generic models that have been used for the identification of (classical) lumped param-

eter systems. These include input-output transfer function models and state-space

models. As a preparation for network systems, a variant of input-output models indi-

cated in the literature as dynamic or structure function (DNF or DSF) models is also

discussed. Though these models have been introduced for the purpose of modelling
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