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This report describes the CHs4 Flux Inversion system used in CAMS.

The system is to a large extent similar to the system used by the JRC in the pilot projects (MACC,
MACC-III, and MACC-IIl). For a description of the original system we refer to (P. Bergamaschi, Alexe,
& Segers, 2014).

Compared to the pilot projects, the configuration has been adjusted related to increased resolution
and use of latest satellite products. In summary, the main changes are:

1) Resolutions have been changed to either global 6°x4° (without local zoom) on 25 layers
for a low-resolution product or global 3°x2° on 34 layers for a high-resolution product.

2) Time windows for the inversions have been extended to 1 year (coarse resolution) or 3
years (high resolution), plus 6-month spin-up and spin-down.

3) Increased update frequency of meteorological input (ERA-Interim), and use of archived
convective fluxes.

4) A bias-correction between GOSAT XCHs columns and their TM5 representations is
computed from the surface-only inversion, which is then used during the surface+satellite
inversion.

The description of the inversion system starts with an overview of the 4D-var method (Chapter 1).
This is followed by a description of the emission inventories (Chapter 2), the chemistry transport
model TM5 and its configuration (Chapter 3), and the observation processing (Chapter 4). These
components are finally combined in the actual production chain, which is described in Chapter 5.

CAMS73_2018SC1_D73.5.2.2-2019_202001_production_chain_v1 Page 6 of 32



The CAMS flux inversions of CH; are based on the TM5-4DVAR inverse modelling system (P.
Bergamaschi et al., 2010, 2013; Peter Bergamaschi et al., 2009; Meirink, Bergamaschi, & Krol, 2008).
The inversion system estimates monthly global fields of CHa surface fluxes that, when provided as
input to a chemistry-transport model, provide the best possible match between simulated and
observed CH4 concentrations. The various components and configuration of this system are described
below. Notations follow Table 1 from Rayner, Michalak, & Chevallier (2019).

1.1 State vector

The inversion system for CHa fluxes estimates the optimal value of a state vector x that consists of
emission deviation factors and initial concentrations. As described in Chapter 5, the initial
concentrations are part of the state vector only in the low-resolution inversion but not in the high-
resolution inversion that provides the end product. An overview of the elements of the state is given
in Table 1; the associated properties are described in following subsections.

1.1.1 Emission deviation values

The emission deviations are the most essential part of the state vector: this is the main output of the
whole system. The deviations are monthly time series of global 2D fields (longitude, latitude), for a
number of four methane source category groups:
wetlands;
rice fields;

e biomass-burning;

e other sources (anthropogenic).
An element y; ; . for grid cell (i, j) and time t represent the deviation from the background emissions

Eil"j‘t; the actual emission E; ; ; is computed from:
EPir exp(yije) Vije <O
Eije(ije) =7
Efie A+vije) Vije=0

(1)

This semi-exponential formulation is needed to ensure that actual emissions are always positive, since
Yi,j,c could also be strongly negative (decreased emissions).

1.1.2 Initial concentrations

The second part of the state vector is a 3D field with initial concentrations. As will be described later
on, this part is not present in all 4D-var runs.

1.2 Background state

The background state x? is the initial estimate. The ‘x*’ column in Table 1 indicates the chosen values.
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For the emission deviation part, the background values are simply zero, indicating no deviation from
the emission inventories.

The background for the initial concentrations is taken from an available model run, preferably the
result of a previous 4D-run such that concentrations are already in good agreement with
observations.

1.3 Cost function

In the inversion system, the optimal state x is defined as the state where the following cost-function
reaches a minimum value:

JGO) = 5(x - xt) B3 (x —x?) + ~“(H(x) — )R (H(x) - y)

(2)

In summary, the cost-function assigns a penalty when x differs from a background state x?, and when
the simulation H(x) differs from the observations y. The observation operator H consists of the
chemistry-transport model that simulates concentrations given all kinds of input data (meteorological
fields etc.) and the state estimate x, and a sampling operator. The background covariance matrix B
and the observation error covariance matrix R define the relative weight of the two penalties in the
total sum. The covariance matrices are described in detail in section 1.7 and Chapter 4.

The actual definition of the various elements of the cost function is given in the following sections.

Table 1 - Elements of the 4D-Var state and associated properties.

b

state units shape X sigma correlation length scales

main sub horizontal | vertical | temporal
element element (Gaussian) (exp.)
emission wetlands 1 (lon,lat,time) 0 100% 500 km - 0
deviation - -

rice 1 (lon,lat,time) 0 100% 500 km - 0
values
(semi- biomass 1 (lon,lat,time) 0 100% 500 km - 0
exponential) | burning

other 1 (lon,lat,time) 0 50% 500 km - 9.5

month
initial concentrations ppb | (lon,latlayer) | first NMC 500 km NMC -
guess
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1.4 Minimization algorithm

The state x for which Eq. (2) reaches a minimum is obtained using the M1QN3? algorithm (Gilbert &
Lemaréchal, 1989). The minimum is searched for in an iterative procedure that provides a more
optimal state in every step. The input for each step is formed by:

e the current state estimate x;;

e the evaluated costs J(x;) for this estimate;

e the gradient V,J(x;) (described below) of the cost function with respect to the elements of

the state, evaluated in the current estimate.

The result of an iteration step is a new estimate x;,;of the optimal state. The iteration process is
stopped when convergence is reached.

1.5 Cost-function gradient

The minimization procedure requires evaluation of the gradient of the cost function towards the
elements of the state. The gradient can be computed from:

V.J(x) =B '(x—x") + HHR"*(H(x) — y)
(3)

In here, HT represents the adjoint observation operator, which mainly consists of the adjoint of the
chemistry-transport model towards the state variables. The input for the adjoint observation
operator is the departure vector:

“ 8y =R '(H(x) —y)

4

which consists of the differences between observations y and their simulations H(x), weighted with
the assumed observation representation error covariance R.

The inverse B~ of the background covariance is not explicitly computed; instead, a pre-conditioner
is applied as described below.

1.6 Pre-conditioner

The pre-conditioner is a state transformation that is used to avoid computations with the full
covariance matrix B and its inverse. The pre-conditioned state is defined as:
w = B 1/2(x — xP)

(5)

with the reverse transformation:
x = x? + BY?w

(6)

Formulated in the new state, the minimization should be applied for the cost function:

1 An update of the production is planned that uses a minimization algorithm based on the conjugate-gradient technique
(Lanczos algorithm). This will also provide an estimate of the uncertainty in the end product.

CAMS73_2018SC1_D73.5.2.2-2019_202001_production_chain_v1 Page 9 of 32



Jw) = Jw'w + S(H(x(w)) = »)"R™ (HxW)) — )
(7)

and gradient:
V,.J(w) = BY?V,J(w) = w + B"/?H" 8§y
(8)

The iteration loop of the optimization starts with w = 0, which is the pre-conditioned equivalent of
— b
x=x".

1.7 Background covariance

The background covariance B statistically describes how the true state x deviates from the
background value x?. In this application, it describes the uncertainty in emissions and in the initial
concentrations. The full B matrix is not computed but is only present in the algorithm as a
parameterization; the operations with B (or its inverse, or square root of the inverse) are
implemented using these parameterizations.

The uncertainties in the emission deviation and the initial concentrations are assumed to be
uncorrelated. The B matrix has therefore a block-diagonal form:

(B, 0
B‘(O Bc)

where B. is the background covariance for the emission deviations, and B. for the initial
concentrations.

(9)

1.7.1 Background covariance for emission deviations

The emission deviations are assumed to be uncorrelated between the four categories; their
covariance is therefore block-diagonal:

B,, - O
B, =( P )
0 - B,

Each of the four diagonal blocks describes the covariance in the monthly time series of 2D emission
deviation fields. This covariance is parameterized as the product of a standard deviation and a
correlation:

(10)

B, =S, C. S
(11)

where the § matrix is a diagonal matrix formed from a standard deviation field, and the € matrix
holds the correlations. The assumed standard deviations are listed in the ‘sigma’ column of Table 1.
A standard deviation of 1.0 (100%) is assumed, except for category ‘other’ for which a standard
deviation of 0.50 (50%) is assumed.

CAMS73_2018SC1_D73.5.2.2-2019_202001_production_chain_v1 Page 10 of 32



The correlations within the time series of emission deviation fields are assumed to be separable in a
spatial (horizontal) and temporal component, and can therefore be written as a Kronecker product:
C. = Cei,h X Cei,t

(12)

The horizontal correlations are parameterized as being homogeneous (the same everywhere) and
isotropic (independent of direction). The correlation between the emission deviations in two grid cells
therefore only depends on the distance between the grid cells; here a Gaussian decay is assumed:

1 (di;\*
Crij = &XP\ =5\~

where d; ; is the distance between the centers of cell i and j in km, and L is the correlation length
scale. Table 1 shows the chosen length scales, which are in this application 500 km for each of the
emission categories. For the wetlands, rice, and biomass burning categories, no temporal correlations
are prescribed (C; = I). Thus, for these categories large fluctuations in time are allowed, which is in
line with the strong seasonal pattern in the corresponding emissions. For category ‘other’ (mainly
anthropogenic), the deviations are assumed to be smoother in time, and therefore a temporal
correlation is prescribed with an exponential decay that depends on the distance in months:

lm —n|
Ct;mn = €Xp\ ————

(13)

T
(14)

where m and n are the month numbers and tis the temporal correlation scale of 9.5 months (Table
1).

1.7.2 Background covariance for initial concentrations

The background covariance for the initial concentrations is assumed to be separable in a horizontal
and vertical component. It is written as a Kronecker product between a horizontal correlation and a
vertical covariance:

B.=C.n @B,
(15)

Similar as for the emissions, the horizontal correlations are assumed to be homogeneous and
isotropic, and are parameterized using a Gaussian decay:

1 (di;\*
Crij = &XP\ =5\

where d; ; is the distance between the centers of cell i and j, and L=500 km is the correlation length
scale (Table 1).

(16)
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Copernicus Atmosphere Monitoring Service

The vertical covariance is shown in

Figure 1. This covariance was constructed in an earlier study (Meirink, Eskes, & Goede, 2006) by sampling a
covariance from the difference between two model runs driven by different meteorological inputs (NMC
method). Note that this vertical covariance is defined on the 25 vertical layers used for the coarse resolution
version of theTM5 model; since in this project also a model version on 34 layers is used, the vertical covariance
has been projected on the new layer definition too.

Figure 1 - Vertical covariance prescribed for the background covariance of the initial concentrations. Taken
from Fig 1. in (Meirink, Eskes, and Goede 2006).
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1.7.3 Eigenvalue decomposition

The actual operations involving the background covariance are actually not using the B matrix itself,
but only (transposed) square roots. These are implemented using an eigenvalue decomposition of
the correlation matrices; in a general notation:

C=LALT
(17)

where A is the diagonal matrix with (strictly positive) eigenvalues. In terms of these matrices, the
transformation from pre-conditioned to normal state then becomes:

x=x"+SLAY?w
(18)

and the pre-conditioned gradient:
V,,J(w) =w+ AV2LT HT 8y
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(19)

The expression of the covariances in block-diagonal matrices and Kronecker products remains for
the eigenvalue decomposition. It is therefore sufficient to decompose only the individual horizontal
and temporal correlation matrices, and the vertical covariance.

1.8 Observations

The observation vector y collects all measured values that should be used to optimize the state. The
observations are collected for the time window of the 4D-var optimization, which is here either 24 or
48 months.

In this application, the observations are ground-based observations from the NOAA network, and
satellite column-mean mixing ratios from the GOSAT satellite. The measurement network and the
satellite data are described in more detail in Chapter 4 on observations.

1.9 Observation simulations
The observation operator H(x) simulates the observations in y given a state vector x.

The core element of H is the chemistry transport model TM5, which is here used to simulate methane
concentrations given an estimate of the actual emissions, initial concentrations, and other input data
such as meteorology and methane sink rates. The properties and configuration of the model are
described in more detail in Chapter 3.

The other element of H is the algorithm that computes an equivalent of an observation from the
model fields. Typically, this consists of spatial interpolations from the model grid to the observation
locations, aggregation of concentrations into total columns, and averaging in time. Since this strongly
depends on the observation type, the detail will be discussed later in Chapter 4.

The observation representation error R describes the uncertainty in the observation representation.
It should quantify how much the simulations in H(x) are expected to differ from the observations y.
Differences are typically due to instrumental errors and model representation errors that arise from
the limited horizontal and vertical resolutions. The exact formulation of the observation
representation errors is left for the description of the observation data.
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The end of the production chain is made of the optimized surface fluxes of CHs. The optimized fluxes
are deviations from a priori fluxes to provide better agreement with observations when used as input
in the chemistry transport model TM5 described in Chapter 3.

2.1 Emission categories

The CH4 fluxes will be estimated for four different emission categories:
wetlands;
rice fields;
e biomass burning;
e other sources, mainly anthropogenic.
These categories have a different spatial and/or temporal distribution such that the inversion system
is able to distinguish their individual impact on concentrations.

2.2 Emission inventories

A priori estimates for the defined categories are composed from different inventories. Table 2 and
Figure 2 illustrate which inventories are used throughout the inversion period.

2.2.1 Wetland emissions

Wetland emissions are taken from a simulation with LPJ-wsl (Zhang et al. 2018). This set provides
emissions for 1990-2017, for earlier years the 1990 simulations are used too, and for later years the
2017 simulations.

2.2.2 Anthropogenic emissions

Rice fields and the ‘other’ anthropogenic sources are taken from the EDGAR v4.3 inventory
(Janssens-Maenhout, 2017). This inventory provides emissions up to 2012. The inventory consists of
gridded maps of yearly total emissions for a number of source categories. Two postprocessings are
made to this set.

e For years after 2012, an extrapolation in time is made using yearly growth factors that are
applied to the gridded fields valid for 2012. The growth factors are based on proxies for global
fossil fuel and agricultural production, taken from BP and FAO respectively. If these statistics
are not available for the most recent years, a linear extrapolation is used. An illustration of
this procedure is shown in Figure 3.

e For the year 2010, the inventory also includes gridded maps per month. The relative time
profile per grid cell for this year is used for all years of the inventory, including the temporal
extrapolation for recent years.

Note that for rice fields the monthly time provided with the 2010 emissions was found to be incorrect,
since it actually represents the activity of agricultural soil management (Margarita Choulga, personal
communication). Therefore, for rice emissions the seasonality from “Matthews” that was used before
in combination with EDGAR v4.2 also applied with the new inventory.
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2.2.3 Biomass burning

Biomass burning emissions are taken from GFAS (Kaiser et al., 2012), as available from the CAMS fire
emission service from 2003 onwards. For the 1990-2002 period the ACCMIP/MACCity inventory is
used (Granier et al., 2011).

2.2.4 Remaining sources and soil sink
Climatologies are used for the remaining sources (oceans, wild animals, and termites), as well as for
the soil sinks.

Table 2 - Overview of a priori emission inventories used for the CH,4 inversions. The colors represent the
different emission super-categories that are optimized by the inversion.

‘ Category Period Source
wetlands climatology Kaplan
rice 1989-2008 EDGAR v4.2 with Matthews seasonality
2009-2017 EDGAR v4.2 with Matthews seasonality (valid for 2008)
biomass burning 1989-1996 ACCMIP-MACCity
1997-2011 GFED v3.1
2012-2017 GFED v3.1 climatology 1997-2010
other 1989-2008 EDGAR v4.2
anthropogenic 2009-2017 EDGAR v4.2 (valid for 2008)
oceans climatology Lambert
wild animals climatology Olson
soil sink climatology Ridgwell
termites climatology Sanderson

Figure 2 — Timeline of a priori emission inventories used during for the CH, inversions.
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Figure 3 — lllustration of extrapolation of EDGAR v4.3 emissions using yearly growth factors.
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2.3 Resolutions

The horizontal resolution of the inverted emission fluxes is globally 3°x2° (high resolution product,
an intermediate inversion on 6°x4° is performed too), with monthly temporal resolution. These
resolutions are bounded by the information content of the observations and the computational
resources available; the a priori emission estimates might have a higher spatial (anthropogenic) or
temporal resolution (biomass burning). The sub-monthly variations remain those of the a priori
emissions.

2.4 Emission uncertainties

The optimization of emissions requires specification of uncertainties. In the current application,
uncertainties are assigned to the emissions using semi-exponential factors as defined in Eq. (1). The
amplitude and spatial and temporal correlations are listed in Table 1. In summary:

e For wetlands, rice, and bio-mass burning an uncertainty of 100% is defined; for the other

sources (anthropogenic), this is 50%.

e Spatial correlations have a Gaussian-shaped decay with a correlation length scale of 500 km.
Uncertainties in the ‘other’ sources (anthropogenic) are assumed to be smooth in time, with a
temporal correlation with exponential decay and a length scale of 9.5 months. Emissions in wetlands,
rice, and biomass burning are allowed to vary from month to month, without temporal correlation.
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The global atmospheric transport model used is TM5 (Huijnen et al., 2010; Krol et al., 2005). The
components of the model relevant for the production chain are described in the following sections,
except for the emission input that has been described in Chapter 2.

3.1 Horizontal resolution

The final product is obtained using a model version configured on a global 3°x2° horizontal grid, and
34 vertical layers (see below). Near the poles, the number of cells is reduced to avoid presence of
small grid cells and associated requirement of small time steps.

An intermediate coarse-resolution product is defined on a global resolution of 6°x4° and 25 vertical
layers. This grid is similar to what was used in the pilot projects (MACC), but without a local zoom.

3.2 Vertical layers

The vertical layers in the model are coarsened from the original 60 of the meteorological input data.

Figure 6 shows the distribution of the original layers (ERA-Interim, L60) and the model versions.
Compared to the pilot projects, the product also includes a high(er) resolution result defined on 34
vertical layers, while an intermediate product on a coarse resolution with 25 layers is used. The high-
resolution configuration (34 layers) coarsens the original layers especially in the stratosphere and the
lower troposphere. The coarse-resolution configuration (25 layers) is a further coarsening of the 34
layers, with layers taken together in the upper troposphere too.

3.3 Meteorological input

The meteorological input for the model is taken from ECMWF’s ERA5 re-analysis (Hersbach et al.,
2018). Compared to the previous production chain based on ERA-Interim, the resolution of the
meteorological data has increased from ~60 to ~30 km, and the number of layers has increased from
60 to 137; note that the TM5 model uses a lower resolution. The input frequency of the
meteorological data is increased to hourly, which is only used for the surface field to limit storage and
reading time of 3D fields; the fields are anyway interpolated to the model time step. The configuration
of the meteorological input is summarized in Table 3.

Table 3 - Configuration of meteorological input.

Configuration Setting

Originating center ECMWF

Dataset ERA-5

Horizontal resolution ~ 30 km, regridded to model resolutions

Number of layers 137, regridded to model levels

Datatype Forecasts from 06:00 and 18:00 over 1-12 hours

Temporal resolution 1 hourly for surface fields and 3 hourly for model level fields,
linear interpolation to model time step

Remarks Data includes archived convective fields (updraft and downdraft
fluxes, entrainment and detrainment rates)
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The change in meteorological data from ERA-Interim to ERA-5 has been validated by model
simulations of CHa over the entire 1990-2017 period. Figure 4 shows the observed and simulated
concentrations in 2017 for South Pole station. The difference between the simulations with either
ERA-Interim or ERA-5 is small, and anyway smaller than the difference with the observations. Similar
small differences are seen in Figure 5 which shows a comparison between XCH4 columns observed by
the TCCON network and the simulations. In general, the latitudinal gradient is too strong, with
simulations that are too high at the northern hemisphere and too low at the southern hemisphere.
This gradient is slightly improved when using ERA-5, but remains present. From this and other
comparisons it was concluded that the change in meteorological data was implemented correctly.

Figure 4 — Concentration of CH4 at South Pole station after 28 year of TM5 simulations with either ERA-Interim
or ERA-5 meteorological data.
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Figure 5 — Comparison between TCCON XCH,4 observations and TM5 simulations as function of latitude and
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For the loss of CHs by chemistry the system uses loss rates computed off-line by full-chemistry

transport models.

e For the tropospheric sink, loss rates are based on monthly OH fields simulated by the TM model,
which were optimized to be in agreement with methyl chloroform (P. Bergamaschi et al., 2005;

Houweling, Dentener, & Lelieveld, 1998).

e Stratospheric loss rates due to OH, Cl, and O(!D) are taken from ECHAMS5/MESSy1 (Jockel et al.,

2006).
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Figure 6 - Vertical layers in meteorological input (ERA-Interim, L60) and TMS5 high resolution (34 layers) and
coarse resolution (25 layers).
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3.5 Dry air mixing ratios

To compare the model simulations with observations it is necessary to know how to interpret
simulated mixing ratios with respect to dry or wet air. To ensure mass conservation, TM5 uses a
constant global total air mass. This should be interpreted as a dry air mass, since the actual air mass
is not constant but fluctuates with the water load.

The observation data used to optimize methane fluxes includes surface observations (NOAA) and
satellite total columns (GOSAT). An additional set of independent observations is used for validation;
these include surface and satellite observations that are not used in the inversion, total column
observations, and aircraft observations.
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4.1 NOAA surface observations

Surface observations are available from the NOAA Earth System Research Laboratory (ESRL) global
cooperative air sampling network (Dlugokencky et al., 2009). These concern CHs dry air mole fractions
measured at the surface or on towers. The observations are acquired preliminary from the official
release through personal communication with the providers, within 2-3 months after observation.

4.1.1 Station selection

The observation stations selected for this application are similar to those used in (P. Bergamaschi et
al., 2013); Locations are shown in Figure 7. The selection excluded observation sites with significant
local influence as well as observations from towers. In addition, sites are only selected if long time
series without significant data gaps are available, to minimize temporal variations in the network
geometry.

Figure 7 - Locations of ground based stations included in the inversion (analyzed) and other locations used for
validation.
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4.1.2 Observation pre-processing

A pre-processing is applied to the raw data in order to average the samples within 3-hourly windows.
Multiple observations at these small temporal scales are present from sites with duplicate sampling
or high temporal frequency.

For an estimate of the uncertainty, the NOAA product comes with an analysis error value; this is
currently not used however, and a constant error standard deviation of 3 ppb is assigned to each
(averaged) observation.
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4.1.3 Observation representation

Surface observations are simulated in TM5 from (dry air) mixing ratios. In the horizontal, the
concentrations are interpolated from the model grid to the station location using bi-linear
interpolation. In the vertical, the concentrations are interpolated to the altitude of the site (in m
above sea level); this is not necessarily the lowest model, since the model orography is at coarse
resolution and therefore a smooth version of the true orography. In case the site is located below the
model orography (e.g., in a valley), the concentrations at the surface are used.

The observation representation error is computed following (P. Bergamaschi et al., 2010). The base
is the assumed measurement uncertainty of 3 ppb, with additional contributions for the model
representation error based on 3-D gradients of simulated CHs mixing ratios, local emissions, and
boundary layer height development.

4.2 Satellite XCH, columns

From 2009 onwards, satellite observations from GOSAT are available to constrain the surface fluxes
too. The total columns XCHs from this instrument have been proven to be a useful source of
information on methane concentrations (P. Bergamaschi et al., 2013). The inversion setup follows
(Pandey et al., 2016) with respect to the treatment of XCHa.

4.2.1 GOSAT data

For the optimization of the CHa fluxes, the production chain uses GOSAT XCHa columns. The product
used is the RemoteC XCHs PROXY, as retrieved by SRON for the ESA/CCI? project (Detmers &
Hasekamp, 2016). The PROXY product is based on the ratio between the CHs and CO; signal, and
assume proper knowledge of the CO; field (Schepers et al., 2012).

The product includes a bias correction as function of the retrieved albedo, based on comparison of
the retrievals with TCCON XCH4 observations.

For the v18rl(s) releases data version v2.3.9 was used for 2009-2018; at production time, no data
was available for the final 6-month spin-down in 2019.

4.2.2 Observation representation

In the 4DVAR optimization, TM5 is sampled according to the time and location of each valid GOSAT
retrieval, using the corresponding averaging kernel. Following (Pandey et al., 2016), a bias correction
is applied to the GOSAT XCHa. The correction is based on comparison of the TM5 inversion using
NOAA surface observations only (“S1” stream) and the original retrieval product. It accounts for
inconsistencies between inversions using in situ and satellite data, caused most likely by a
combination of transport model and spectroscopic uncertainties. The current bias correction is
computed per month and per latitude band of 5 degrees. The left panel of Figure 8 shows an example
of the relative bias for the month of June, which shows that the TM5 model underestimates the

2 www.esa-ghg-cci.org
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GOSAT XCHa values towards southern latitudes. The right panel of the same figure shows the collected
relative bias as a function of month and latitude band; the data from this panel is used for the bias
correction. The bias correction is positive above 50N for each month with values reaching +0.5%;
below 50N, the bias correction becomes negative with values down to minus 0.8%. At Antarctic
latitudes the bias is strongly positive and is rather scattered; for this, all GOSAT retrievals below 60S
are ignored.

Figure 8 - lllustration of bias correction between GOSAT XCH4 columns and TM5 inversions from the “S1”
stream (surface observations only). The left panel shows the relative bias as function of latitude as a density
plot (number of samples per latitude/percentage box), computed for June over the years 2009-2015. The mean
value per latitude band is computed if at least 500 samples are present for a band. The right panel shows the
collected mean relative biases for all months, smoothed with a moving average over 3x3 values.

years 2009-2015 month 6

N
T

-
T

o

latitude [degrees]

|
=
T

(sim-obs)/obs*100 GOSAT XCH4 [%]
|
N

-3 i L i i i
-90 -60 -30 0 30 60 90
latitude [degrees]

0 80 160 240 320 400 480 560 (sim-obs)/obs*100 GOSAT XCH4 [%]

The uncertainty assigned to satellite retrievals in the inversion is a combination of the GOSAT retrieval
uncertainty and a model representation error. The latter is calculated as the standard deviation of
modeled XCH4 in grid boxes surrounding the location of a single GOSAT sounding, calculated from a
simulation using a priori emissions.

4.3 Validation data

Observations from other sources are available for validation. Here we briefly summarize the data sets
that could be used.

4.3.1 Surface observations
Apart from the NOAA observations used to constrain the CH, fluxes, additional observations are

available that were excluded from the inversion. These include locations with significant local
influence, as well as observations made at tower sites.
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4.3.2 Aircraft observations

Aircraft measurements including CHs are available from various campaigns. For the current CHa
inversions (reanalysis 2000-2014, extension with 2015), flight observations have been collected from
various campaigns. For computation of the Key-Performance-Index-2 as defined in section 6.2 only
observations for the free troposphere are needed, which is here defined as all observations taken
between the boundary layer and an altitude of 10 km; locations where such data is available is shown
in Figure 9..

Figure 9 - Locations of aircraft observations collected for validation of the CH,4 flux inversions.
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4.3.3 Ship cruises

Ship cruises provide tracks of mixing ratios observations over the oceans. These observations are
available from NOAA.

4.3.4 Ground based total columns

The Total Carbon Column Observing Network (TCCON) provides observations of the total CH4 column
(and other tracers) using ground-based Fourier Transform Spectrometer (FTS) instruments. The
reported total columns are smoothed versions of the actual columns, since the instrument is less
sensitive to concentrations in the top of the atmosphere. For comparison with model profiles it is
therefore essential to take the averaging kernels provided with the product into account. Also the
water content of the atmosphere should be taken into account. An extensive description of the how
to compare the TCCON observations with model simulations is available on the TCCON wiki® and in
(Wunch et al., 2010). The observed columns are expressed as mixing ratio’s (XCHa) in ppb.

3 tccon-wiki.caltech.edu/Network Policy/Data Use Policy/Auxiliary Data
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4.3.5 Satellite products

The following satellite products are available for validation purposes.

e For the years prior to 2012, total CHs4 columns of the SCIAMACHY instrument are available.
These have been analyzed in the inversion system in the past, but were shown to require
rather large bias corrections (Monteil et al., 2013), and have therefore not been considered
for the inversion. However, for comparison with previously obtained results, it might still be
informative to use this data in the validation phase.

e Tropospheric columns from the IASI satellite instrument (Razavi et al., 2009).

5.1 Introduction

The inversion system is used to perform multi-year re-analyses for the period 1990-2018. To speed
up the inversion, the multi-year time series is analyzed in blocks that can be processed in parallel.
However, the number of blocks should not be too large to limit the number of transitions, and
therefore rather long time windows are used. The target inversion on high resolution (processed in
parallel) is preceded by a coarse resolution inversion that provides the proper initial conditions
(processed serially).

The processing with coarse/high resolution inversions is performed for two different streams: the
first stream (S1) only analyses surface observations, while the second stream (S2) also analyses
satellite observations.

5.2 Coarse resolution inversions

The processing in different resolutions is illustrated in Figure 10. The first step in the processing is a
coarse-resolution inversion (A), which provides initial concentrations for the high resolution run
performed later on. The coarse resolution run is performed on 6°x4° and 25 layers. The inversion is
split into optimizations that target at 1-year time windows, each with 6 months spin-up and spin-
down. Each of these 24-month inversions optimize emissions but also the initial concentrations. The
inversion is started from a first-guess initial concentration obtained from the optimized concentration
from the previous year. The coarse-resolution inversions are therefore necessarily performed
sequentially one after another, which is feasible due to the limited computation time needed at this
resolution.

5.3 High-resolution inversion

The target flux is estimated from a high-resolution inversion (3°x2°, 34 layers) processed with long
time windows of preferably 3 years. Similar as for the coarse-resolution inversion, a 6-month spin-up
is used to minimize the impact of the initial conditions, and a 6-month spin-down constrains emissions
in the 3-year target period with future observations. Observations are therefore collected for a
window of 48 months.
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The high-resolution inversions are processed in parallel, using initial concentrations optimized by the
coarse resolution run. Only emissions are optimized in this step, leaving the initial concentrations
fixed.

5.4 Stream 1: surface only

The first stream (S1) that provides optimized CHa fluxes only analyzes NOAA ground observations.
These provide high quality long time series. A substantial amount of stations have time series from
1990 onwards. S1 uses these observations to contribute to the optimized CH4 fluxes for the full period
from 1990 until now. For the sake of consistency, the station selection for this stream is limited to
sites with long time records available, although the number of observation sites in the network has
increased with the years.

5.5 Stream 2: surface + satellite

The second production stream (S2) analyses not only NOAA surface observations but also satellite
observations. The currently most suitable product comes from the GOSAT instrument that has been
operational since 2009. The S2 production therefore covers the period 2009 onwards, with the first
two 3-year high resolution inversions for the period 2009-2014. For the years prior to 2012, total CH4
columns of the SCIAMACHY instrument are available too. These have been analyzed in the inversion
system in the past, but were shown to require rather large bias corrections (Monteil et al., 2013);
these have therefore not been considered for the inversion.

The first low-resolution inversion of the S2 stream (targeting 2009) is initialized with the same
concentrations as used for the corresponding inversion window in the S1 stream. The S2 stream also
uses a TM5-GOSAT bias correction (see subsection 4.2.2) computed from the S1 results; thus, the
production of the S2 stream is only start after the S1 stream is finished.
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Figure 10 - lllustration of the CH,4 inversion chain with streams using surface observations only (Stream 1) and
surface plus satellite observations (Stream 2). The surface plus satellite stream is connected with the surface
only stream by the first initial concentration and the TM5-GOSAT bias correction. Both streams use inversions
at coarse resolution (A) and high resolution (B); the coarse resolution is performed sequentially to provide
optimized initial concentrations for the high resolution inversion that is processed in parallel.
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The efficiency of this CAMS production chain, the scientific quality of its products, and the user up-
take/satisfaction are characterized with key performance indicators (KPIs). In this chapter the
relevant KPI’s for the CHa4 inversion are described.

6.1 KPI: Delay in production time

One of KPI’s is related to the timeliness of the production. For the CH4 production chain the timeliness
is determined by the time needed to release the inversion products and validation report, starting
from the moment that all required input data is available. The following data needs to be acquired.

e Meteorological input data for the TM5 model. The production chain is based on
meteorological data from ECMWF’s ERA Interim archive (see Chapter 3), which is available
after 2 months from the time for which it is valid. Since the inversion windows have a 6-month
spin-down period, the required meteorological data is available in September.

e Emission inventories. As described in Chapter 2, most emission inventories are only available
for periods more than 2 years ago. Inversions for the previous year are therefore simply using
what is available, and no extra delay is involved with acquisition of new emissions.

e Observations that are used for the inversions are obtained directly from their providers
(Chapter 4): NOAA for surface observations, and SRON for GOSAT retrievals. Both set of
observations are expected to be available in the 3@ month after measuring. In view of the 6-
month spin-down period of the inversions, the required observations are therefore available
in September.

The acquisition of input data is therefore finished in the month of September following the target
year of the inversion. Production of a single year of inversions is estimated to take 3 months, which
leads to an expected delivery in November.

6.2 KPI: Bias and standard deviation in free troposphere

The KPI’s related to the quality of the product can be summarized as:
“Mean absolute bias (standard deviation) between the posterior simulation and a large set of
independent aircraft measurements in the free troposphere.”
The thresholds are currently set to 10 ppb for the absolute bias, and 20 ppb for the standard
deviation.
Aircraft measurements including CH4 are available from various past and ongoing campaigns, as
described in section 4.3.2. The flight tracks of these campaigns are collected, and simulations are
stored from the production chain. To compute these KPI’s, a selection for the free troposphere is
applied on the available aircraft measurements, keeping all measurements taken above the boundary
layer height computed by ECMWF and below 10 km altitude. The bias and standard deviation
between these simulations and the observed values are computed per year.
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