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Abstract. Over the years, various formal methods have been proposed
and further developed to determine the functional correctness of models
of concurrent systems. Some of these have been designed for application
in a model-driven development workflow, in which model transforma-
tions are used to incrementally transform initial abstract models into
concrete models containing all relevant details. In this paper, we con-
sider an existing formal verification technique to determine that formal-
isations of such transformations are guaranteed to preserve functional
properties, regardless of the models they are applied on. We present our
findings after having formally verified this technique using the Coq the-
orem prover. It turns out that in some cases the technique is not correct.
We explain why, and propose an updated technique in which these issues
have been fixed.

1 Introduction

It is a well-known fact that concurrent systems are very hard to develop correctly.
In order to support the development process, over the years, a whole range of for-
mal methods techniques have been constructed to determine the functional cor-
rectness of system models [3]. Over time, these techniques have greatly improved,
but the analysis of complex models is still time-consuming, and often beyond what
is currently possible.

To get a stronger grip on the development process, model-driven development
has been proposed [6]. In this approach, models are constructed iteratively, by
defining model transformations that can be viewed as functions applicable on
models: they are applied on models, producing new models. Using such trans-
formations, an abstract initial model can be gradually transformed into a very
detailed model describing all aspects of the system. If one can determine that
the transformations are correct, then it is guaranteed that a correct initial model
will be transformed into a correct final model.

Many model transformation verification techniques are focussed on determin-
ing that a given transformation applied on a given model produces a correct new
model, but in order to show that a transformation is correct in general, one would
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have to determine this for all possible input models. There are some techniques that
can do this [1,11], but it is often far from trivial to show that these are correct.

In this work, we formally prove the correctness of such a formal transfor-
mation verification technique proposed in [17,19] and implemented in the tool
Refiner [20]. It is applicable on models with a semantics that can be captured
by Labelled Transition Systems (LTSs). Transformations are formally defined
as LTS transformation rules. Correctness of transformations is interpreted as
the preservation of properties. Given a property ϕ written in a fragment of the
μ-calculus [9], and a system of transformation rules Σ, Refiner checks whether
Σ preserves ϕ for all possible input. This is done by first hiding all behaviour
irrelevant for ϕ [9] and then checking whether the rules replace parts of the input
LTSs by new parts that are branching bisimilar to the old ones. Branching bisim-
ilarity preserves safety properties and a subset of liveness properties involving
inevitable reachability [5]. When no property is considered, the technique checks
for full semantics preservation, useful, for instance, when refactoring models.

The technique has been successfully applied to reason very efficiently about
model transformations; speedups of five orders of magnitude have been measured
w.r.t. traditional model checking of the models the transformations are applied
on [17]. However, the correctness of the transformation verification technique,
i.e. whether it returns true iff a given transformation is property preserving for
all possible input models, has been an open question until now. With this paper
we address that issue.

Contributions. We address the formal correctness of the transformation verifica-
tion technique from [19]. We have fully verified the correctness of this technique
using the Coq proof assistant1, and therefore present proofs in this paper that
have been rigorously checked. The full proof is available at [10]. We have identi-
fied situations in which the technique is in fact not correct for certain cases. We
propose two alterations to repair the identified issues: one involves a more rig-
orous comparison of combinations of glue-states (the states in the LTS patterns
that need to be matched, but will not be transformed), and one means deter-
mining whether a rule system has a particular property which we call cascading.

Structure of the Paper. Related work is discussed in Sect. 2. Section 3 presents the
notions for and analysis of the application of a single transformation rule. Next, in
Sect. 4, the discussion is continued by considering networks of concurrent process
LTSs, and systems of transformation rules. Two issues with the correctness of the
technique in this setting are presented and solutions are proposed. Furthermore,we
present a proof sketch along the lines of the Coq proof for the repaired technique.
Finally, Sect. 5 contains our conclusions and pointers to future work.

2 Related Work

Papers on incremental model checking (IMC) propose how to reuse model
checking results of safety properties for a given input model after it has been
1 http://coq.inria.fr.

http://coq.inria.fr
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altered [14,16]. We also consider verifying models that are subject to changes.
However, we focus on analysing transformation specifications, i.e. the changes,
themselves, allowing us to determine whether a change always preserves correct-
ness, independent of the input model. Furthermore, our technique can also check
the preservation of liveness properties.

In [12], an incremental algorithm is presented for updating bisimulation rela-
tions based on changes applied on a graph. Their goal is to efficiently maintain a
bisimulation, whereas our goal is to assess whether bisimulations are guaranteed
to remain after a transformation has been applied without considering the whole
relation. As is the case for the IMC techniques, this algorithm works only for
a given input graph, while we aim to prove correctness of the transformation
specification itself regardless of the input.

In some works, e.g. [4,15], theorem proving is used to verify the preservation
of behavioural semantics. The use of theorem provers requires expert knowledge
and high effort [15]. In contrast, our equivalence checking approach is more
lightweight, automated, and allows the construction of counter-examples which
help developers identify issues with the transformations.

In [2], transformation rules for Open Nets are verified on the preservation of
dynamic semantics. Open Nets are a reactive extension of Petri Nets. The tech-
nique is comparable to the technique thatweverifywith twomain exceptions.First,
they consider weak bisimilarity for the comparison of rule patterns, which pre-
serves a strictly smaller fragment of the μ-calculus than branching bisimilarity [9].
Second, their technique does not allow transforming the communication interfaces
between components. Our approach allows this, and checks whether the compo-
nents remain ‘compatible’.

Finally, in [13], transformations expressed in the DSLTrans language are
checked for correspondence between source and target models. DSLTrans uses a
symbolic model checker to verify properties that can be derived from the meta-
models. The state space captures the evolution of the input model. In contrast,
our approach considers the state spaces of combinations of transformation rules,
which represent the potential behaviour described by those rules. An interesting
pointer for future work is whether those two approaches can be combined.

3 Verifying Single LTS Transformations

This section introduces the main concepts related to the transformation of LTSs,
and explains how a single transformation rule can be analysed to guarantee that
it preserves the branching structure of all LTSs it can be applied on.

3.1 LTS Transformation and LTS Equivalence

We use LTSs as in Definition 1 to reason about the potential behaviour of
processes.

Definition 1 (Labelled Transition System). An LTS G is a tuple (SG ,AG ,
TG , IG), with
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– SG a finite set of states;
– AG a set of action labels;
– TG ⊆ SG × AG × SG a transition relation;
– IG ⊆ SG a (non-empty) set of initial states.

Action labels in AG are denoted by a, b, c, etc. In addition, there is the spe-
cial action label τ to represent internal, or hidden, system steps. A transition
(s, a, s′) ∈ TG , or s

a−→G s′ for short, denotes that LTS G can move from state s

to state s′ by performing the a-action. For the transitive reflexive closure of a−→G ,
we use a−→∗

G . Note that transitions are uniquely identifiable by the combination
of their source state, action label, and target state. This property is sometimes
called the extensionality of LTSs [21].

We allow LTSs to be transformed by means of formally defined transforma-
tion rules. Transformation rules are defined as shown in Definition 2.

Definition 2 (Transformation Rule). A transformation rule r = 〈L,R〉
consists of a left pattern LTS L = 〈SL,AL, TL, IL〉 and a right pattern
LTS R = 〈SR,AR, TR, IR〉, with IL = IR = SL ∩ SR.

The states in SL∩SR are called the glue-states. When applying a transforma-
tion rule to an LTS, the changes are applied relative to these glue-states. For the
verification we consider glue-states as initial states, i.e. IL = IR = SL ∩ SR. A
transformation rule r = (L,R) is applicable on an LTS G iff a match m : L → G
exists according to Definition 3.

Definition 3 (Match). A pattern LTS P = (SP ,AP , TP , IP) has a match
m : P → G on an LTS G = (SG ,AG , TG , IG) iff m is injective and ∀s ∈ SP \
IP , p ∈ SG:

– m(s) a−→G p =⇒ (∃s′ ∈ SP . s
a−→P s′ ∧ m(s′) = p);

– p
a−→G m(s) =⇒ (∃s′ ∈ SP . s′ a−→P s ∧ m(s′) = p).

A match is a behaviour preserving embedding of a pattern LTS P in an LTS
G defined via a category of LTSs [21]. Moreover, a match may not cause removal
of transitions that are not explicitly present in P. The set m(S) = {m(s) ∈ SG |
s ∈ S} is the image of a set of states S through match m on an LTS G.

An LTS G is transformed to an LTS T (G) according to Definition 4.

Definition 4 (LTS Transformation). Let G = 〈SG ,AG , TG , IG〉 be an LTS
and let r = 〈L,R〉 be a transformation rule with match m : L → G. Moreover,
consider match m̂ : R → T (G), with ∀q ∈ SL ∩ SR. m̂(q) = m(q) and ∀q ∈ SR \
SL. m̂(q) /∈ SG, defining the new states being introduced by the transformation.
The transformation of LTS G, via rule r with match m, is defined as T (G) =
〈ST (G),AT (G), TT (G), IG〉 where

– ST (G) = SG \ mL(SL) ∪ mR(SR);
– TT (G) = (TG \ {mL(s) a−→ mL(s′) | s

a−→L s′}) ∪ {mR(s) a−→ mR(s′) | s
a−→R s′}

– AT (G) = {a | ∃s
a−→ s′ ∈ TT (G)}
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Fig. 1. Application of a transforma-
tion rule

Given a match, an LTS transformation
replaces states and transitions matched by
L by a copy of R yielding LTS T (G). Since
in general, L may have several matches
on G, we assume that transformations are
confluent, i.e. they are guaranteed to ter-
minate and lead to a unique T (G). Con-
fluence of LTS transformations can be
checked efficiently [18]. Assuming conflu-
ence means that when verifying transfor-
mation rules, we can focus on having a
single match, since the transformations of
individual matches do not influence each other. An application of a transforma-
tion rule is shown in Fig. 1. The initial and glue-states are coloured black. In
the middle of Fig. 1, a transformation rule r = (L,R) is shown, which is applied
on LTS G resulting in LTS T (G). The states are numbered such that matches
can be identified by the state label, i.e. a state ĩ is matched onto state i. The
left-pattern of r does not match on states 〈1〉, 〈2〉, and 〈3〉 as this would remove
the b-transition.

To compare LTSs, we use the branching bisimulation equivalence relation [5]
as presented in Definition 5. Branching bisimulation supports abstraction from
actions and is sensitive to internal actions and the branching structure of an
LTS. Abstraction from actions is required for verification of abstraction and
refinement transformations such that input and output models can be compared
on the same abstraction level.

Definition 5 (Branching bisimulation). A binary relation B between two
LTSs G1 and G2 is a branching bisimulation iff s B t implies

1. s
a−→G1 s′ =⇒ (a = τ ∧ s′ B t) ∨ (t τ−→∗

G2
t̂

a−→G2 t′ ∧ s B t̂ ∧ s′ B t′),
2. t

a−→G2 t′ =⇒ (a = τ ∧ s B t′) ∨ (s τ−→∗
G1

ŝ
a−→G1 s′ ∧ ŝ B t ∧ s′ B t′)

Two states s, t ∈ S are branching bisimilar, denoted s ↔b t, iff there is a branch-
ing bisimulation B such that s B t. Two sets of states S1 and S2 are called
branching bisimilar, denoted S1 ↔b S2, iff ∀s1 ∈ S1.∃s2 ∈ S2.s1 ↔b s2 and
vice versa. We say that two LTSs G1 and G2 are branching bisimilar, denoted
G1 ↔b G2, iff IG1 ↔b IG2 .

3.2 Analysing a Transformation Rule

The basis of the transformation verification procedure is to check whether the two
patterns making up a rule are equivalent, while respecting that the patterns share
initial states. That is, given a rule r = 〈L,R〉, we are looking for a branching
bisimulation relation R such that for all s ∈ SL ∩ SR, we have s R s.
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Directly applying bisimilarity check-
ing on a pair of LTSs, however, will not
necessarily produce a suitable bisimula-
tion relation. For instance, consider the
rule in Fig. 2 which swaps a and b tran-
sitions. Without the κ-loops, explained
in the next paragraph, the LTS patterns
are branching bisimilar. However, the pat-
terns should be interpreted as possible
embeddings in larger LTSs. These larger LTSs may not be branching bisimilar,
because glue-states 〈1̃〉 and 〈2̃〉 could be mapped to states with different in- and
outgoing transitions, apart from the behaviour described in the LTS patterns.

To restrict bisimilarity checking to exactly those bisimulations that adhere
to relating glue-states to themselves, we introduce a so-called κ-transition-loop
for each glue-state, as defined in Definition 6. The resulting κ-extended trans-
formation rule can now be defined as rκ = (Lκ,Rκ), and is specifically used for
the purpose of analysing r, it does not replace r. The κ-loop of a glue-state s is
labelled with a unique label κs /∈ AL∪AR. If we add κ-loops to the rule in Fig. 2,
the analysis is able to determine that the rule does not guarantee bisimilarity
between input and output LTSs.

Definition 6 (κ-extension of an LTS). The LTS P extended with κ-loops is
defined as: Pκ = (SP ,AP ∪ {κs | s ∈ IP}, TP ∪ {(s, κs, s) | s ∈ IP}, IP).

The Analysis. A transformation rule preserves the branching structure of all
LTSs it is applicable on if the patterns of a transformation rule extended with
κ-loops are branching bisimilar. This is expressed in Proposition 1.

Proposition 1. Let G be an LTS, let r be a transformation rule with matches
m : L → G and m̂ : R → T (G) with m(s) = m̂(s) for all s ∈ SL ∩SR. Then,

Lκ ↔b Rκ =⇒ G ↔b T (G)

Intuition. A match of pattern L is replaced with an instance of pattern R.
If Lκ ↔b Rκ, then these two patterns exhibit branching bisimilar behaviour.
Therefore, the behaviour of the original and transformed systems (G and TG
respectively) are branching bisimilar.

4 Verifying Sets of Dependent LTS Transformations

In this section, we extend the setting by considering sets of interacting process
LTSs in so-called networks of LTSs [7] or LTS networks. Transformations can
now affect multiple LTSs in an input network, and the analysis of transformations
is more involved, since changes to process-local behaviour may affect system-
global properties. We address two complications that arose while trying to prove
the correctness of the technique using Coq and propose how to fix the technique
to overcome these problems. Finally, we provide a proof-sketch of the correctness
of the fixed technique based on the complete Coq proof.
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4.1 LTS Networks and Their Transformation

An LTS network (Definition 7) describes a system consisting of a finite number
of concurrent process LTSs and a set of synchronisation laws which define the
possible interaction between the processes. The explicit behaviour of an LTS
network is defined by its system LTS (Definition 8). We write 1..n for the set of
integers ranging from 1 to n. A vector v̄ of size n contains n elements indexed
from 1 to n. For all i ∈ 1..n, v̄i represents the ith element of vector v̄.

Definition 7 (LTS network). An LTS network M of size n is a pair (Π,V),
where

– Π is a vector of n concurrent LTSs. For each i ∈ 1..n, we write Πi =
(Si,Ai, Ti, Ii).

– V is a finite set of synchronisation laws. A synchronisation law is a tuple (t̄, a),
where t̄ is a vector of size n, called the synchronisation vector, describing
synchronising action labels, and a is an action label representing the result of
successful synchronisation. We have ∀i ∈ 1..n. t̄i ∈ Ai ∪ {•}, where • is a
special symbol denoting that Πi performs no action.

Definition 8 (System LTS). Given an LTS network M = (Π,V), its system
LTS is defined by GM = (SM,AM, TM, IM), with

– SM = S1 × · · · × Sn;
– AM = {a | (t̄, a) ∈ V};
– IM = {〈s1, . . . , sn〉 | si ∈ Ii}, and
– TM is the smallest relation satisfying:

(t̄, a) ∈ V ∧ ∀i ∈ 1..n.

(
(t̄i = • ∧ s̄i = s̄′

i ∧ s̄i ∈ Si)

∨ (t̄i �= • ∧ s̄i
t̄i−→i s̄′

i)

)
=⇒ s̄

a−→M s̄′

The system LTS is obtained by combining the processes in Π according to the syn-
chronisation laws in V. The LTS network model subsumes most hiding, renaming,
cutting, and parallel composition operators present in process algebras, but also
more expressive operators such as m among n synchronisation [8]. For instance,
hiding can be applied by replacing the a component in a law by τ . A transition of
a process LTS is cut if it is blocked with respect to the behaviour of the whole sys-
tem (system LTS), i.e. there is no synchronization law involving the transition’s
action label on the process LTS.

Figure 3 shows an LTS network M = (Π,V) with two processes and three
synchronisation laws (left) and its system LTS (right). To construct the system
LTS, first, the initial states of Π1 and Π2 are combined to form the initial state
of GM. Then, the outgoing transitions of the initial states of Π1 and Π2 are
combined using the synchronisation laws, leading to new states in GM, and so
on. For simplicity, we do not show unreachable states.
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Fig. 3. An LTS network M =
(Π,V) (left) and its system LTS GM
(right)

Law (〈a, a〉, a) specifies that the
process LTSs can synchronise on their
a-transitions, resulting in a-transitions
in the system LTS. The other laws
specify that b- and d-transitions can syn-
chronise, resulting in e-transitions, and
that c-transitions can be fired inde-
pendently. Note that in fact, b- and
d-transitions in Π1 and Π2 are never able
to synchronise.

The set of indices of processes par-
ticipating in a synchronisation law (t̄, a)
is formally defined as Ac(t̄) = {i | i ∈
1..n ∧ t̄i �= •}; e.g. Ac(〈c, b, •〉) = {1, 2}.

Branching bisimilarity is a congruence
for construction of the system LTS of
LTS networks if the synchronisation laws do not synchronise, rename, or cut
τ -transitions [7]. Given an LTS network M = (Π,V), these properties are for-
malised as follows:

1. ∀(t̄, a) ∈ V, i ∈ 1..n. t̄i = τ =⇒ Ac(t̄) = {i} (no synchronisation of τ ’s);
2. ∀(t̄, a) ∈ V, i ∈ 1..n. t̄i = τ =⇒ a = τ (no renaming of τ ’s);
3. ∀i ∈ 1..n. τ ∈ Ai =⇒ ∃(t̄, a) ∈ V. t̄i = τ (no cutting of τ ’s).

In this paper, we assume these properties hold.

Transformation of an LTS Network. A rule system is used to define transfor-
mations for LTS networks. A rule system Σ is a tuple (R,V ′, V̂), where R is a
vector of transformation rules, V ′ is a set of synchronisation laws that must be
present in networks that Σ is applied on, and V̂ is a set of synchronisation laws
introduced in the result of a transformation. A rule system Σ = (R,V ′, V̂) is
applicable on a given LTS network M = (Π,V) when for each synchronisation
law in V ′ there is a synchronisation law in V, and no other synchronisation laws
in V involve behaviour described by the rules in R. As R is a vector, we identify
transformation rules in R by an index. We write Li and Ri for the left and right
patterns, respectively, of rule ri, where i ∈ 1..|R|.

Furthermore, the rule system must satisfy three analysis conditions related
to transformation of synchronising behaviour in a network. The first condition
concerns the applicability of a rule system on an LTS network. A rule transform-
ing synchronising transitions must be applicable on all equivalent synchronising
transitions:

∀Πi ∈ M, rj ∈ R, (t̄, a) ∈ V ′. ({j} ⊂ Ac(t̄) ∧ ∃m:Lj → Πi) (AC1)
=⇒ ∀(s, t̄j , s′)∈Ti. ∃m′ : Lj → Πi, p, p′∈SLj

. m′(s) = p ∧ m′(s′)=p′

Suppose Σ is applied on a network M and Σ contains a rule transforming
synchronising a-transitions. If not all a-transitions are transformed it is unclear



Verifying a Verifier: On the Formal Correctness 391

how this affects synchronisation between the processes, since the original and
the transformed synchronising behaviour may coexist. The second and third
conditions concern how a rule system is defined. The second condition requires
that Σ is complete w.r.t. synchronising behaviour.

∀(t̄, a) ∈ V ′, i ∈ 1..|R|. t̄i ∈ ALi
∪ {•} (AC2)

For each action a synchronising with an action subjected to a rule there must
be a rule also transforming a-transitions. This ensures that all the behaviour
related to the synchronisation is captured in the rule system. Hence, the analy-
sis considers a complete picture. For AC1 and AC2 the symmetric conditions
involving the R and V ′ ∪ V̂ apply as well.

The third condition prevents that the new synchronisation laws in V̂ are
defined over actions already present in the processes of an input network. Oth-
erwise, a model could be altered without actually defining any transformation
rules:

∀(t̄, a) ∈ V̂, i ∈ 1..|R|. t̄i ∈ (ARi
\ ALi

) ∪ {•} (AC3)

When transforming an LTS network M by means of a rule system Σ, first,
we check whether Σ is applicable on M and satisfies AC1. Then, for every Πi

(i ∈ 1..n) and every r ∈ R, the largest set of matches is calculated. For each
match, the corresponding transformation rule is applied. We call the resulting
network TΣ(M). In contrast, when verifying a rule system, we first check that
it is confluent and satisfies both AC2 and AC3. Checking confluence, AC1, AC2
and AC3 can be done efficiently [17–20].

4.2 Analysing Transformations of an LTS Network

In a rule system, transformation rules can be dependent on each other regarding
the behaviour they affect. In particular, the rules may refer to actions that require
synchronisation according to some law, either in the network being transformed,
or the network resulting from the transformation. Since in general, it is not
known a-priori whether or not those synchronisations can actually happen (see
Fig. 3, the a-transitions versus the b- and d-transitions), full analysis of such
rules must consider both successful and unsuccessful synchronisation.

To this end, dependent rules must be analysed in all possible combinations.
Potential synchronisation between the behaviour in transformation rules is char-
acterised by the direct dependency relation D = {(i, j) | ∃(t̄, a) ∈ V ′ ∪ V̂. {i, j}
⊆ Ac(t̄)}. Rule ri is related via D to rj iff both rules participate in a synchro-
nisation law. The relation considering directly and indirectly dependent rules,
called the dependency relation, is defined by the transitive closure of D, i.e. D+.
The D+ relation can be used to construct a partition D of the transformation
rules into classes of dependent rules. Each class can be analysed independently.
We call these classes dependency sets.

For the analysis of combinations of LTS patterns, we define in Definition 9
LTS networks L̄κ and R̄κ of κ-extended patterns, or pattern networks in short,
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consisting of a combination of the κ-extended left and right LTS patterns of a
rule system Σ, respectively.

Definition 9 ((κ-Extended) Pattern network). Given a rule system Σ =
(R,V ′, V̂), its left and right pattern networks are L̄κ and R̄κ, respectively,
where

L̄κ = (〈Lκ
1 , . . . ,Lκ

|R|〉,V ′ ∪ Vκ),
R̄κ = (〈Rκ

1 , . . . ,Rκ
|R|〉,V ′ ∪ V̂ ∪ Vκ), and

Vκ = {(t̄, κs) | ∃i ∈ 1..n. κs ∈ ALκ
i

∧ t̄i = κs ∧ ∀j ∈ 1..n \ i. t̄j = •}

In order to focus the analysis on combinations of dependent rules, we define
how to filter an LTS network w.r.t. a given set I of indices. With the filtering
operation, we can create filtered κ-extended pattern networks Lκ

I , Rκ
I for any set

I of indices of dependent rules.

Definition 10 (Filtered LTS network). Given an LTS network M = (Π,V)
of size n and a set of indices I ⊆ 1..n, the filtered LTS network is defined by
MI = (Φ,VΦ), with

∀i ∈ 1..n. Φi =

{
Πi if i ∈ I

({∗}, ∅, ∅, {∗}) otherwise

VΦ = {(t̄, a) ∈ V | ∀i ∈ 1..n. t̄i ∈ AΦi
∪ {•}}

where ∗ is a dummy state.

Next, we discuss the analysis of networks with focus on two areas in which
the analysis technique as presented in [17,19] was not correct. Firstly, the work
did not consider the synchronisation of κ-transitions. Secondly, the consistency
of synchronising behaviour across pattern networks was not considered.

Analysis of Pattern Networks and Synchronisation of κ-Transitions. Figure 4a
shows a rule system Σ, in which the two rules are dependent. The example
demonstrates that the verification technique may produce incorrect results, since
it does not consider synchronisations between κ-transitions. The corresponding
pattern networks for Σ are presented in Fig. 4b, if we ignore the last synchro-
nisation law in Vκ. The resulting bisimulation checks are given in Fig. 4c, if
we ignore the κ12-transitions. Unsuccessful synchronisation is considered in the
checks between Lκ

{1} and Rκ
{1}, and Lκ

{2} and Rκ
{2}. In those, synchronisations are

not possible (for instance between the z-transitions). The check between pattern
networks Lκ

{1,2} and Rκ
{1,2} considers successful synchronisation. In the original

verification technique [17,19] the κ12-loops in pattern networks Lκ
{1,2} and Rκ

{1,2}
were not introduced. Without those loops, the pattern networks are branching
bisimilar. However, as pattern networks may appear as an embedding in a larger
network, all possible in- and outgoing transitions must be considered. Hence,
synchronising transitions which enter and leave the pattern network must be
considered as well. The κ12-transitions in Fig. 4c are the result of synchronising
κ1 and κ2-transitions, and therefore represent these synchronising transitions.
Observe that in Rκ

{1,2} the possibility to perform κ12-transitions is lost once the
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Fig. 4. A rule system and its pattern networks and bisimulation checks

τ -transition at state 〈1̃, 2̃〉 has been taken, while in Lκ
{1,2} it is always possible to

perform the κ12-transition. Hence, the left and right networks are not branching
bisimilar. These bisimulation checks show that Σ does not guarantee preserva-
tion of the branching structure in all cases; e.g. take (Π,V ′) as input network,
with ∀i ∈ 1..n. Πi = Li.

Fixing the Technique. To overcome the above mentioned shortcoming, we need
to allow κ-transitions to synchronise. For this, additional κ-synchronisation laws
must be introduced in the pattern networks by redefining Vκ in Definition 9 as
follows:

Vκ={(t̄, κs̄) | ∃I ⊆ 1..n. s̄ ∈ ILI
∧ (∀i ∈ I. t̄i = κs̄i

) ∧ (∀i ∈ 1..n \ I. t̄i = •)}

For each vector glue-state s̄ ∈ ILI
(I ⊆ 1..n) there is now an enabled κ-

synchronisation law. These κ-laws ensure that each vector of glue-states is at
least related to itself.

Due to the κ-laws, groups of glue-states can be uniquely identified. This gives
rise to Lemma 1 that states: if a state vector s̄ ∈ SLI

, containing a group of glue-
states, is related to a state vector p̄ ∈ SRI

, then there must be a be a τ -path
from p̄ to a state ˆ̄p ∈ SRI

such that ˆ̄p and s̄ are related, and ˆ̄p contains the same
group of glue-states as s̄.
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Lemma 1. Consider a rule system Σ = (R,V ′, V̂) and sets of indices I ⊆ 1..n
and J ⊆ I. Let LI and RI be the corresponding pattern networks. Furthermore,
let BI be a branching bisimulation relation such that Lκ

I ↔b Rκ
I , then

∀s̄ ∈ SLI
, p̄ ∈ SRI

. s̄ BI p̄ ∧ (∀i ∈ J. s̄i ∈ ILi
) =⇒

∃ ˆ̄p ∈ SRI
. p̄

τ−→∗
RI

ˆ̄p ∧ s̄ BI ˆ̄p ∧ ∀i ∈ J. ˆ̄pi = s̄i

Proof. Follows from the fact that s̄ has a loop with a unique label, say κs̄J
,

identifying the group of glue-states. Hence, if s̄ BI p̄, then p̄ must be able to
perform a κs̄J

-transition directly (i.e. ∀i ∈ J. s̄i = p̄i) or be able to reach such a
transition via a τ -path. ��

Consistency of Synchronising Behaviour. Formal verification of the analysis
technique in Coq furthermore showed that in one other case, the technique
also incorrectly concludes that a rule system is correct for all possible input.
This happens when a rule system is not behaviourally consistent across pattern
networks. Consider a rule system Σ with two transformation rules such that
Lκ

{1,2} ↔b Rκ
{1,2}, Lκ

{1} ↔b Rκ
{1}, and Lκ

{2} ↔b Lκ
{2}. Furthermore, consider vec-

tor states 〈tL, g〉 ∈ SLκ
{1,2} and 〈tR, g〉 ∈ SRκ

{1,2} such that 〈tL, g〉 ↔b 〈tR, g〉,
where g is a glue-state. When we also have tL ↔b tR we say that this relation
cascades from the relation between 〈tL, g〉 and 〈tR, g〉. If such a cascading effect
holds for all states across different combinations of pattern networks, then the
rule system is said to be cascading, i.e. it is behaviourally consistent across the
pattern networks. A formal definition is given in Definition 11.

Definition 11 (Cascading rule system). A rule system Σ = (R, V̂) with
synchronisation vectors of size n is called cascading, iff for all sets of indices
I, J ⊆ 1..n with I ∩ J = ∅:

∀s̄ ∈ SLI
, p̄ ∈ SRI

, q̄ ∈ ILJ
. s̄ ↔b p̄ ⇐⇒ s̄ ‖ q̄ ↔b p̄ ‖ q̄

where x̄ ‖ ȳ is the merging of states x̄ and ȳ via vector addition with dummy state
∗ as the zero element. Intuitively, this operation constructs a state for the system
LTS considering LTS patterns indexed by I ∪ J , i.e. the parallel composition of
x̄ and ȳ.

It may be the case that Σ is not cascading, i.e. we have 〈tL, g〉 ↔b 〈tR, g〉,
but not tL ↔b/ tR. In such a case it is always possible to construct an input
LTS network M such that M ↔b/ TΣ(M). To construct M take a copy of
L{1,2} and add a transition g

d−→2 s, where s is a state that is not matched
by L1 and the d-transition signifies departure from the pattern network. We
have 〈tL, g〉 d−→M 〈tL, s〉 and 〈tR, g〉 d−→TΣ(M) 〈tR, s〉. To represent continuing
behaviour in Π1 (copy of L1) we add a selfloop tL

a−→1 tL where a is a unique
action. Since state s is not matched and tL ↔b/ tR, it follows that 〈tL, s〉 can
perform the a-loop while 〈tR, s〉 cannot. Hence, we have M ↔b/ TΣ(M).

Figure 5a presents a transformation of an LTS network M using a non-
cascading rule system Σ. The corresponding bisimulation checks are shown in
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Fig. 5. A transformation using a non-cascading rule system does not preserve
the branching structure of LTS network M
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Fig. 6. The revised check recognises that the non-cascading rule system does
not preserve the branching structure of input networks: 〈 1̃, κ〉 ↔b/ 〈 4̃, κ〉

Fig. 5b. The rule system is not cascading since state 〈1̃〉 is not related to state
〈4̃〉, while 〈1̃, 2̃〉 ↔b 〈4̃, 2̃〉. The matches of the latter states (i.e. 〈1, 2〉 and 〈4, 2〉)
can perform a d-transition to states 〈1, 3〉 and 〈4, 3〉, respectively. However, state
〈1, 3〉 can perform an a-loop while state 〈4, 3〉 cannot. In other words, states 〈1̃, 2̃〉
and 〈4̃, 2̃〉 are branching bisimilar, but their matched states 〈1, 2〉 and 〈4, 2〉 are
clearly not. Hence, the bisimulation checks fail to establish that Σ does not
guarantee M ↔b TΣ(M) for arbitrary M.
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Fixing the Technique. To overcome this shortcoming, we propose, instead of
κ-loops, to introduce a κ-state in the κ-extension of an LTS pattern with κ-
transitions from and to all glue-states. The κ-state represents all states that
have transitions to and from (but are themselves not present in) matches of
LTS patterns. This captures the possibility of leaving a match of a pattern
network and ending up in a sub-state which is not related through the cascading
effect. The κ-state extended version of Fig. 5b is presented in Fig. 6. The (vector)
states containing κ-states are coloured grey. In the new situation, the lack of the
cascading effect in Σ becomes visible through checking branching bisimilarity.
We implemented this approach in Refiner, and observed no extra runtime
overhead.

The Analysis. Checking a rule system Σ = (R,V ′, V̂) now proceeds as follows:

1. Check whether in Σ, no τ -transitions can be synchronised, renamed, or cut,
and whether Σ satisfies AC2 and AC3. If not, report this and stop.

2. Extend the patterns of each rule in R with a κ-state and κ-transitions between
the κ-state and the glue-states.

3. Construct the set of dependency sets D.
4. For each class (dependency set) P ∈ D, and each non-empty subset P ′ ⊆ P :

(a) Combine the patterns of rules in P ′ into networks Lκ
P ′ , Rκ

P ′ , respectively.
(b) Determine whether Lκ

P ′ ↔b Rκ
P ′ holds.

If 4b only gives positive results, then Σ is branching-structure preserving for
all inputs it is applicable on. At step 4, all non-empty subsets of dependency sets
are considered. Proper subsets represent unsuccessful synchronisation situations.
Proposition 2 formally describes the technique. The full proof in the form of Coq
code can be found at [10]. Here we present a proof sketch.

To show the correctness of Proposition 2, we have to define a branching bisim-
ulation relation relating the original and transformed LTS networks. To simplify
the proof, we assume that Σ has n rules, and that a rule r with index i, denoted
as ri, matches on Πi in the LTS network that Σ is applied on. For confluent
rule systems, the result can be lifted to the general case where rules can match
arbitrary process LTSs. Moreover, we want to relate the matched elements of
vector states via their corresponding pattern networks. For this we define a set
of indices of elements in vector state s̄ matched on by the corresponding trans-
formation rule, i.e. M(s̄) = {i | s̄i ∈ mi(SLi

) ∪ m̂i(SRi
)}. With this set the

elements of a vector state with transformed behaviour can be selected.
Furthermore, we introduce a mapping of state vectors. Similar to matches

for a single rule, the mapping of a state vector of a pattern network defines how
it is mapped to a state vector of an LTS network. By referring to matches of
the individual vector elements, a state vector is mapped on to another state
vector. Consider an LTS network M = (Π,V) of size n and a pattern network
MI = (ΠI ,VI) with I ⊆ 1..n. We say a vector state q̄ ∈ SMI

is mapped to a
state s̄ ∈ SM, denoted by q̄ �I s̄, iff ∀i ∈ I. m(q̄i) = s̄i. Mapping q̄ �I s̄ amounts
to a simulation relation between the state vectors: the group of states s̄i indexed
by i ∈ I can simulate the behaviour of state vector q̄.
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Proposition 2. Let M = (Π,V) be an LTS network of size n and let Σ =
(R,V ′, V̂) be a cascading rule system satisfying AC2 and AC3. Let r̄ be a vector of
size n such that for all i ∈ 1..n, r̄i ∈ R with corresponding matches mi : Li → Πi

and m̂i : Ri → T (Πi). Then,

(∀P ∈ D, I ⊆ P. Lκ
I ↔b Rκ

I ) =⇒ M ↔b TΣ(M)

Proof Sketch. By definition, we have M ↔b TΣ(M) iff there exists a branching
bisimulation relation C with IM ↔b ITΣ(M). Branching bisimilarity is a con-
gruence for the construction of system LTSs from LTS networks, i.e. two pairs of
pattern networks LI and RI , LJ and RJ , with LI ↔b RI and LJ ↔b RJ , can be
combined to form pattern networks LI∪J and RI∪J such that LI∪J ↔b RI∪J .
Therefore, we have ∀I ⊆ 1..n. Lκ

I ↔b Rκ
I and we can avoid reasoning about the

dependency sets in D. As a consequence, for any I ⊆ 1..n there exists a branching
bisimulation relation BI with ILκ

I
↔b IRκ

I
. We define C as follows:

C = {(s̄, p̄) | ∀i ∈ 1..n. (i /∈ M(s̄) ∪ M(p̄) =⇒ s̄i ∈ Si ∧ s̄i = p̄i)
∧ (i ∈ M(s̄) ∪ M(p̄) =⇒ ∃s̄m ∈ SLM(s̄)∪M(p̄) , p̄m ∈ SRM(s̄)∪M(p̄) .

s̄m BM(s̄)∪M(p̄) p̄m ∧ s̄m �M(s̄)∪M(p̄) s̄ ∧ p̄m �M(s̄)∪M(p̄) p̄)}

The first case in the relation, i /∈ M(s̄) ∪ M(p̄), relates the sub-states of
a state vector that are not matched by transformation rules. The second case,
i ∈ M(s̄) ∪ M(p̄), relates the matched sub-states of a state vector. Because of
the way that C is constructed we have that if s C p, then M(s̄) = M(p̄). For
brevity, we will write M(s̄) instead of M(s̄) ∪ M(p̄).

To prove the proposition we have to show that C is a bisimulation relation.
This requires proving that C relates the initial states of M and TΣ(M) and that
C satisfies Definition 5 as presented below.

• C relates the initial states of M and TΣ(M), i.e. IM C ITΣ(M). We have
IM = ITΣ(M). Initial states are not removed by the transformation. Further-
more, if states are matched on initial states, then the matching states are
glue-states according to Definition 3. For i ∈ M(s̄) glue-states are related to
themselves. Furthermore, for i /∈ M(s̄) the sub-state is not touched by the trans-
formation. Hence, C relates the initial states.

• If s̄ C p̄ and s̄
a−→M s̄′ then either a = τ ∧ s̄′ C p̄, or p̄ ⇒TΣ(M) ˆ̄p a−→TΣ(M)

p̄′∧s̄ C ˆ̄p∧s̄′ C p̄′. Consider synchronisation law (t̄, a) ∈ V enabling the transition
s̄

a−→M s̄′. We distinguish two cases:

1. There exists i ∈ Ac(t̄) such that transition s̄
t̄i−→Πi

s̄′ is matched. By analysis
conditions (AC1) and (AC2), for all i ∈ Ac(t̄) there must be a transition

matching s̄
t̄i−→Πi

s̄′. Hence, we have Ac(t̄) ⊆ M(s̄) and a transition matching
s̄

a−→M s̄′. Since the transition is matched there exists s̄m, s̄′
m ∈ SLM (s̄) and

p̄m ∈ SRM (s̄) with s̄m �M(s̄) s̄, p̄m �M(s̄) p̄, s̄m BM(s̄) p̄m and s̄
a−→LM(s̄) s̄′

(by Definition of C). Since s̄m BM(s̄) p̄m, by Definition 5, we have:
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– a = τ with s̄′
m BM(s̄) p̄m. We have to show s̄′ C p̄, which follows from def.

of C and Definition 8 (system LTS).
– p̄m

τ−→ ∗
RM (s̄)

ˆ̄pm
a−→RM (s̄) p̄′ with s̄m BM(s̄) ˆ̄pm and s̄′

m BM(s̄) p̄′
m. We

construct states ˆ̄p and p̄′ such that p̄
τ−→∗

TΣ(M)
ˆ̄p a−→TΣ(M) p̄′ and s̄ C ˆ̄p.

Finally, s̄′ C p̄′ follows from def. of C and Definition 8 (system LTS).
2. There is no transition matching s̄

a−→M s̄′. We distinguish two cases:
(a) One or more active sub-states of s̄ are matched on, i.e. Ac(t̄)∩M(s̄) �= ∅.

Since the transition is not matched the active sub-states of s̄ must be
matches of glue-states. By Lemma 1, we have states ˆ̄p and p̄′ such that
p̄

τ−→∗
TΣ(M)

ˆ̄p a−→TΣ(M) p̄′ and s̄ C ˆ̄p. Left to show is s̄′ C p̄′. Let i ∈ 1..n:
– i /∈ M(s̄). By construction of p̄′ it follows that s̄′

i = p̄′
i.

– i ∈ M(s̄). Only sub-states index by Ac(t̄) change. Sub-states index
by Ac(t̄) may have a transition from a matched sub-state to another
matched sub-state, or such a matched sub-state may transition to a
sub-state that is not matched (or vice versa). We construct states
s̄′ ∈ SLM(s̄′) and p̄′ ∈ SRM(s̄′) by considering the two disjoint sets
M(s̄′) \ Ac(t̄) and M(s̄′) ∩ Ac(t̄). For the first set we can construct
two states s̄mJ and p̄mJ that, because of Definition 11 (cascading rule
system), are related by BM(s̄′)\Ac(t̄). From sub-states of s̄m indexed by
the second set we can construct a state q̄ ∈ ILM(s̄′)∩Ac(t̄)

. Because glue-
state are related to themselves we have q̄ BM(s̄′)∩Ac(t̄) q̄. From s̄mJ ,
p̄mJ , and q̄ we can construct states s̄′

m and p̄′
m such that s̄′

m BM(s̄′) p̄m

(by Definition 11).
(b) No active sub-states of s̄ are matched on, i.e. Ac(t̄) ∩ M(s̄) = ∅. We

construct a state p̄′ ∈ STΣ(M) from p̄ and the active sub-states of s̄′ such
that p̄

a−→TΣ(M) p̄′. Left to show s̄′ C p̄′. Considering an i ∈ 1..n we have
to distinguish the following cases:
– i /∈ M(s̄). We have to show that s̄′

i = p̄′
i, this can be derived from,

s̄ C p̄, Definition 8 (system LTS), and construction of p̄′.
– i ∈ M(s̄). To relate s̄′ and p̄′ we need to find a relation BM(s̄′) relating

two states that map on s̄′ and p̄′ respectively. If only active sub-states
of s̄′ are matched we can use the property that initial states are related
to themselves in BM(s̄′). In the opposite case, there is a j ∈ 1..n\Ac(t̄)
and we can use s̄ C p̄ to construct the required relation.

• The symmetric case: if s̄ C p̄ and p̄
a−→M p̄′ then either a = τ ∧ s̄′ C p̄, or

s̄ ⇒M ˆ̄s a−→M s̄′ ∧ s̄ C ˆ̄p ∧ s̄′ C p̄′.
This case is symmetric to the previous case with the exception that p̄

a−→T (M)

p̄′ is enabled by some (t̄, a) ∈ V ∪ V̂. Therefore, when transition p̄
a−→T (M) p̄′ is

not matched on, we have to show that (t̄, a) ∈ V. Let p̄, p̄′ ∈ STΣ(M) such
that p̄

a−→T (M) p̄′ is enabled by some (t̄, a) ∈ V ∪ V̂. Furthermore, transition
p̄

a−→T (M) p̄′ is not matched on. Assume for a contradiction that (t̄, a) ∈ V̂. Since
(t̄, a) ∈ V̂ is introduced by the transformation , by (AC3), there must be an i such
that t̄i ∈ ARi

\ ALi
. It follows that there is a transition matching p̄

a−→T (M) p̄′

contradicting our earlier assumption. Hence, we must have (t̄, a) ∈ V. ��
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5 Conclusions

We discussed the correctness of an LTS transformation verification technique.
The aim of the technique is to verify whether a given LTS transformation system
Σ preserves a property ϕ, written in a fragment of the μ-calculus, for all possible
input models formalised as LTS networks. It does this by determining whether Σ
is guaranteed to transform an input network into one that is branching bisimilar,
ignoring the behaviour not relevant for ϕ.

It turned out that the technique was not correct for two reasons: (1) it ignored
potentially synchronising behaviour connected to the glue-states of rules, but not
part of the rule patterns, and (2) it did not check whether the rule system is
cascading. We proposed how to repair the technique and presented a proof-sketch
of its correctness. A complete proof has been carried out in Coq.

Future Work. Originally divergence-sensitive branching bisimulation was used
[19], which preserves τ -loops and therefore liveness properties. In future work, we
would like to prove that for this flavour of bisimulation the technique is also cor-
rect. Moreover, we would like to investigate what the practical limitations of the
pre-conditions of the technique are in industrial sized transformation systems.

Finally, in [17], the technique from [19] has been extended to explicitly
consider the communication interfaces between components, thereby removing
the completeness condition AC2 regarding synchronising behaviour being trans-
formed (see Sect. 4.1). We wish to prove that also this extension is correct.
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