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Abstract - In recent years there has been much in-

terest in the probability hypothesis density (PHD)

filtering approach, an attractive alternative to track-

ing unknown numbers of targets and their states in

the presence of data association uncertainty, clutter,

noise, and miss-detection. In particular, it has been

discovered that the PHD filter has a closed form solu-

tion under linear Gaussian assumptions on the tar-

get dynamics and birth. This finding opens up a new

direction where the PHD filter can be practically im-

plemented in an effective and reliable fashion. How-

ever, the previous work is not general enough to han-

dle jump Markov systems (JMS), a popular approach

to modeling maneuvering targets. In this paper, a

closed form solution for the PHD filter with lin-

ear JMS is derived. Our simulations demonstrate

that the proposed PHD filtering algorithm provides

promising performance. In particular, the algorithm

is capable of tracking multiple maneuvering targets

that cross each other.

Keywords: Multi-target tracking, optimal filtering, ran-

dom sets, linear jump Markov models.

1 Introduction

Tracking a maneuvering target in clutter is a chal-
lenging problem and is the subject of numerous works
[1, 2, 3, 4]. While a non-maneuvering target motion
can be described by a fixed model, a combination of
motion models that characterise different maneuvers
may be needed to describe the motion of a maneuver-
ing target. This problem is further compounded by de-
tection uncertainty and clutter. Moreover, in a multi-
target environment, the number of targets changes due
to targets appearing, disappearing, and it is not known
which target generated which measurement. Tracking
multiple maneuvering targets involves jointly estimat-
ing the number of targets and their states at each time
step, and is extremely difficult due to noise, clutter and
uncertainties in target maneuvers, data association and
detection.

The multiple models approach has been proven to be
an effective tool for single maneuvering target tracking
[5, 2]. In this approach the dynamics of a maneuver-
ing target is modeled as a linear jump Markov system
(LJMS), i.e. the target can switch between a set of lin-
ear models in a Markovian fashion. The multiple mod-
els approach can be combined with joint probabilistic
data association (JPDA) [6, 7, 8, 9] or multiple hy-
pothesis tracking (MHT) [10, 11] to track multiple ma-
neuvering targets. However, the combinatorial nature
of these data association-based approaches dictates an
exponential increase in complexity [12, 1, 13, 14]. Al-
though heuristic techniques can be used to reduce the
computational load, the resulting algorithms are still
computationally intensive in general.

In this paper we propose an efficient method for
tracking multiple maneuvering targets in clutter using
Mahler’s Probability Hypothesis Density (PHD) filter
[15]. The PHD filter is attractive in that it circum-
vents the combinatorial computations that arise from
data association and accommodates detection uncer-
tainty, Poisson false alarms, target motions, births,
spawnings, and deaths. In [16], [17], the PHD filter
was applied to track multiple maneuvering targets us-
ing sequential Monte Carlo (SMC) implementations
[18, 19]. However, the main drawbacks of the SMC
approach are the large number of particles and the
unreliability of clustering for extracting multi-target
state estimates [19, 20, 21]. Recently, a closed form
solution to the PHD recursion has been found for lin-
ear Gaussian models that led to the development of
the Gaussian mixture PHD filter [20, 21]. Although
this approach is efficient and capable of handling non-
linear models, it is not general enough for addressing
targets with multiple model dynamics. In this work,
we derive a closed form solution to the PHD recursion
for LJMS. Based on this, a multi-target filter capable
of tracking targets that switch between multiple mod-
els is developed. Our result is a generalization of the
Gaussian mixture PHD filter of [20, 21] to a broader
class of practical multi-target models. Simulation re-
sults are presented to demonstrate the capability of the
proposed approach.



The paper is structured as follows: Section 2
presents some background on JMS for modeling a ma-
neuvering target and the PHD filter. In section 3 we
describe the JMS multi-target model for the PHD filter
and give the main result of this paper, a closed-form so-
lution to the PHD recursion for LJMS. In Section 4 we
demonstrate the capability of the proposed algorithm
through simulations. This is followed by concluding
remarks in Section 5.

2 Background

We begin with a review of JMS and introduce the class
of LJMS for modeling maneuvering targets in Section
2.1. Using the RFS representations for multi-target
states and sensor measurements, our problem is posed
as a Bayesian filtering problem. The PHD filter is de-
scribed in Section 2.2.

2.1 Jump Markov System (JMS)

A jump Markov system (JMS) refers to a system that
can be described by a set of parameterised (state space)
models whose underlying parameters evolve with time
according to a finite state Markov chain. Let M de-
note the (discrete) set of all model labels. Let ξk ∈ Rn

denote the kinematic state (e.g., the target coordinate
and velocity of a maneuvering target), zk ∈ Rnz de-
note the observation, and rk ∈ M denote the model
in effect, at time k. In a JMS, the probability of a
transition from model rk−1 at time k− 1 to rk at time
k is given by

tk|k−1(rk|rk−1). (1)

Moreover, given a model rk, the state transition den-
sity and the likelihood are given by

f̃k|k−1(ξk|ξk−1, rk), (2)
gk(zk|ξk, rk). (3)

A linear JMS (LJMS) is a JMS with linear models,
i.e. conditioned on a model with index rk the state dy-
namics and observations are given by linear Gaussians
of the form

f̃k|k−1(ξk|ξk−1, rk) = N (ξk;Fk−1(rk)ξk−1, Qk(rk)) (4)
gk(zk|ξk, rk) = N (zk; Hk(rk)ξk, Rk(rk)). (5)

where N (·; m,Q) denotes a Gaussian density with
mean m and covariance Q, Fk−1(rk), and Hk(rk) de-
note the transition and observation matrices of model
rk, Qk(rk) and Rk(rk) denote covariance matrices of
the process noise and measurement noise. Such a sys-
tem finds a range of applications in signal processing
and provides a natural means to model a maneuvering
target whose behavior cannot be characterised at all
times by a single model [5, 3, 4].

The problem of tracking a single maneuvering target
is to estimate the kinematic state ξk at time k, from a
sequence of observations z1:k up to time k. Interested
readers are referred to [3, 4] for a comprehensive survey
of techniques for tracking maneuvering targets. The

JMS (or multiple models) approach has been shown
to be highly effective for maneuvering target tracking
[5, 2].

2.2 The PHD Filter

In a multi-target scenario, each target maneuvers and
generates observation according to (1)-(3). In addition,
new targets can appear and existing targets can disap-
pear in a random fashion. At the sensor, some target
generated measurements may be undetected occasion-
ally. Moreover these detected measurements are indis-
tinguishable from the spurious measurements that the
sensor receives. Multi-target tracking involves jointly
estimating the time-varying number of states and the
values of the states, given all observations up to the
current time. This is a fundamentally difficult prob-
lem because in addition to the target maneuvers, the
number of targets and the number of measurements
both vary randomly in time and it is not known which
target generated which measurement.

By concatenating the kinematic vector and the
model label to form the augmented state vector xk =
[ξT

k , rk]T ∈ X ⊆ Rn × M, we can formulate the
multi-target tracking problem in the augmented state.
Let xk,1, . . . , xk,N(k) be the augmented states and
zk,1, . . . , zk,M(k) be the measurements at time k, where
N(k) and M(k) are the number of targets and mea-
surements, respectively. Then the multi-target state
Xk and multi-target observation Zk, at time k, are

Xk = {xk,1, . . . , xk,N(k)} ⊂ X , (6)
Zk = {zk,1, . . . , zk,M(k)} ⊂ Rnz . (7)

Mahler’s finite set statistics (FISST) approach pro-
vides an elegant Bayesian formulation of the multi-
target tracking problem by using random finite sets
to model the multi-target states and multi-target ob-
servations [15]. However, the Bayes multi-target filter
is computationally intractable and intelligent approx-
imations are necessary. The PHD filter [15] is a first
order approximation to the multi-target Bayes filter,
which propagates the first moment of the RFS repre-
senting the multi-target state.

Before proceeding to describe the PHD filter, let us
recapitulate the notion of a RFS. A random finite set
RFS X on a state space X is a finite set-valued ran-
dom variable whose probability law can be specified by
a discrete distribution and a family of joint distribu-
tions [22]. The discrete distribution characterises the
cardinality of X while each of the joint distributions
characterises the elements of X for a given cardinality.
The first moment (also called the PHD or intensity
function) of X, is a non-negative function v on X with
the property that for any closed subset S ⊆ X

E [|X ∩ S|] =
∫

S
v(x)dx

where |X| denotes the number of elements of X. In
other words, for a given point x, the intensity v(x)
is the instantaneous expected number of targets per
unit volume at x. The local maxima of v correspond



to points in X with the highest local concentration of
expected number of elements, which can be used to
generate multi-target state estimates. An RFS X is
Poisson if the cardinality of X is Poisson with mean
N =

∫
v(x)dx and given a cardinality the elements of

X are i.i.d according to v/N . Thus, a Poisson RFS is
completely charactertised by its intensity.

The PHD filter is based on the following assump-
tions:

A. 1 Each target evolves and generates measurements
independently of one another.

A. 2 The clutter RFS is Poisson and independent of
the measurements.

A. 3 The predicted multi-target RFS is Poisson.

Assumptions A.1 and A.2 are quite common in most
multi-target tracking applications [1, 13]. Assumption
A.3 is a simplification needed to derive the PHD up-
date.

Let vk|k−1 and vk denote the predicted intensity and
posterior intensity at time k, respectively. The PHD
recursion consists of a prediction step and an update
step. The PHD prediction is given by

vk|k−1(x) =
∫ [

pS,k(x′)fk|k−1(x|x′) +

βk|k−1(x|x′)
]
vk−1(x′)dx′ + γk(x),

(8)

where fk|k−1(x|x′) is the density of a transition from x′

at time k− 1 to x at time k, pS,k(x′) is the probability
that a target continues to exist at time k given that
its previous state is x′, βk|k−1(·|x′) is the intensity of
the RFS of target spawned at time k, by a target with
previous state x′, and γk(·) is the intensity of the birth
RFS. It is understood that an integral with respect
to a discrete variable means a sum. Let Zk denote
the multi-target measurement received at time k. The
PHD update is given by

vk(x) =
[
1− pD,k(x)

]
vk|k−1(x) +

∑

z∈Zk

pD,k(x)gk(z|x)vk|k−1(x)
κk(z) +

∫
pD,k(x)gk(z|x)vk|k−1(x)dx

,
(9)

where gk(z|x) is the likelihood of a measurement z
given a state x at time k, pD,k(x) is the probability
of detecting a target with state x at time k, and κk(·)
is the intensity of the (Poisson) clutter RFS.

Notice that the PHD filter avoids any data asso-
ciation computations and operates exclusively on the
single target state space X . The PHD recursion is still
generally intractable due to the ‘curse of dimensional-
ity’ in numerical integration.

A generic sequential Monte Carlo (SMC) implemen-
tation was proposed in [18, 19], and relevant conver-
gence results were established in [19, 23, 24]. This
so-called particle-PHD filter has been used to track
multiple maneuvering targets in [16]. In [17], the au-
thors argued that the particle-PHD filter does not pro-
vide a mechanism for handing changes in the target

motion model, and went on to implement a multiple
model particle-PHD filter. It turns out that the mul-
tiple model particle-PHD filter is a special case of the
particle-PHD filter where the state vector is a hybrid
of continuous and discrete components. The recently
proposed Gaussian mixture PHD filter [20, 21] is much
more efficient than the particle-PHD filter. However, it
is not general enough to handle LJMS models. In the
following section, we derive a closed form solution to
the PHD recursion for LJMS and develop an efficient
and reliable multi-target filter for tracking maneuver-
ing targets.

3 The PHD Filter for LJMS

In this section we show that the closed-form PHD so-
lution proposed in [20, 21] can be extended to the class
of LJMS. We describe the JMS multi-target model
and specify the assumptions on the multi-target sub-
models needed to derive the closed-form PHD solution
in Section 3.1 and then go on to show the closed-form
solution to the PHD recursion (8)-(9) in Section 3.2.

3.1 LJMS multi-target model

For a JMS (not necessarily linear) we have the follow-
ing stochastic state space model

fk|k−1(ξ, r|ξ′, r′) = f̃k|k−1(ξ|ξ′, r)tk|k−1(r|r′), (10)
gk(z|x) = gk(z|ξ, r). (11)

where ξ′ and r′ denote the kinematic state and model
label respectively at time k − 1. Moreover, the birth
and spawn processes are modeled by Poisson RFSs, the
intensities of which are given by

γk(ξ, r)= πk(r|ξ)γ̃k(ξ), (12)
βk|k−1(ξ, r|ξ′, r′)= πk|k−1(r|ξ, ξ′, r′)β̃k|k−1(ξ|ξ′, r′), (13)

where γ̃k is the intensity of the kinematic state births
at time k, πk(·|ξ) is the probability distribution of the
models for a given birth with kinematic state ξ at time
k, β̃k|k−1(·|ξ′, r′) is the intensity of the kinematic states
spawned at time k from [ξ′T , r′]T and πk|k−1(·|ξ, ξ′, r′)
is the probability distribution of the models for a given
kinematic state ξ, spawned at time k from [ξ′T , r′]T . It
can be shown from Campbell’s theorem that (12) and
(13) are indeed intensities of RFSs in the hybrid space
Rn ×M.

In line with the LJMS assumption of state inde-
pendent model transition probability tk|k−1, the LJMS
multi-target model assumes that,

γk(ξ, r) = πk(r)γ̃k(ξ), (14)

βk|k−1(ξ, r|ξ′, r′) = πk|k−1(r|r′)β̃k|k−1(ξ|ξ′, r′), (15)

In our closed-form PHD recursion to be presented,
we assume linear JMS.

A. 4 Conditioned on the model label, the target dy-
namic are linear and Gaussian:

fk|k−1(x|x′) =N (ξ; Fk−1(r)ξ′, Qk(r))tk|k−1(r|r′),(16)
gk(z|x) =N (z;Hk(r)ξ,Rk(r)). (17)



In addition some assumptions on the target birth,
death and detection are made:

A. 5 The probabilities of target survival and target de-
tection are independent of the kinematic state:

pS,k(ξ′, r′) = pS,k(r′), (18)
pD,k(ξ, r) = pD,k(r). (19)

A. 6 The intensities of birth and spawn RFS can be
expressed as Gaussian mixtures of the form:

γk(ξ, r)= πk(r)
Jγ,k(r)∑

i=1

w
(i)
γ,k(r)N (

ξ; m(i)
γ,k(r), P (i)

γ,k(r)
)
, (20)

βk|k−1(ξ,r|ξ′, r′)= πk|k−1(r|r′)
Jβ,k|k−1(r,r

′)∑

j=1

w
(j)
β,k|k−1(r,r

′)¦

N (
ξ; F (j)

β,k−1(r, r
′)ξ′+ d

(j)
β,k−1(r, r

′),Q(j)
β,k−1(r, r

′)
)
,

(21)

where Jγ,k(r), w(i)
γ,k(r), m(i)

γ,k(r), and Q
(i)
γ,k(r), ∀ i =

1, 2, . . . , Jγ,k(r) are given model parameters that
characterise the birth intensity γ̃k(ξ|r). Similarly,
Jβ,k|k−1(r, r′), w

(j)
β,k|k−1(r, r

′), F (j)
β,k−1(r, r

′), d(j)
β,k−1(r, r

′),

and Q
(j)
β,k−1(r, r

′), ∀ j = 1, 2, . . . , Jβ,k|k−1(r, r′) char-
acterise the spawning intensity β̃k|k−1(ξ|r, ξ′, r′).

Assumptions A.4 and A.5 follow from standard as-
sumptions of target tracking algorithms for computa-
tional tractability (see for example [1, 13, 12]). Some
remarks regarding assumption A.6 can be found in
[20, 21].

3.2 Closed-form PHD Recursion

Proposition 1 Suppose that Assumptions A.4-A.6
holds, and that the posterior intensity vk−1(ξ′, r′) at
time k − 1 is a Gaussian mixture for each r′, i.e.

vk−1(ξ′, r′) =
Jk−1(r

′)∑

i=1

w
(i)
k−1(r

′)N (ξ′;m(i)
k−1(r

′), P (i)
k−1(r

′)).
(22)

Then the predicted intensity vk|k−1(ξ, r) is also a Gaus-
sian mixture for each r given by

vk|k−1(ξ,r)=
∑

r′

Jk−1(r
′)∑

i=1

w
(i)
k−1(r

′)
[
pS,k(r′)tk|k−1(r|r′) ¦

N (
ξ;m(i)

k|k−1(r,r
′), P (i)

k|k−1(r,r
′)

)
+
Jβ,k|k−1(r,r′)∑

j=1

w
(j)
β,k|k−1(r,r

′)¦

πk|k−1(r|r′)N
(
ξ;m(i,j)

k|k−1(r,r
′), P (i,j)

k|k−1(r,r
′)

)]
+ γk(ξ, r)

(23)

where γk(ξ, r) is given in (20),

m
(i)
k|k−1(r,r

′) = Fk−1(r)m
(i)
k−1(r

′), (24)

P
(i)

k|k−1(r,r
′) = Qk−1(r)+ Fk−1(r)P

(i)
k−1(r

′)FT
k−1(r), (25)

and

m
(i,j)
k|k−1(r, r

′)= F
(j)

β,k−1(r, r
′)m(i)

k−1(r
′)+ d

(j)
β,k−1(r,r

′), (26)

P
(i,j)
k|k−1(r, r

′) = Q
(j)
β,k−1(r, r

′) +

F
(j)

β,k−1(r, r
′)P (i)

k−1(r
′)
(
F

(j)
β,k−1(r, r

′)
)T

.
(27)

Proposition 2 Suppose that Assumptions A.4-A.6
holds, and that the predicted intensity vk|k−1(ξ, r) is
a Gaussian mixture for each r, i.e.

vk|k−1(ξ, r) =
Jk|k−1(r)∑

i=1

w
(i)
k|k−1(r)N (ξ; m(i)

k|k−1(r), P
(i)
k|k−1(r)).

(28)

Then the posterior intensity vk(ξ, r) is also a Gaussian
mixture for each r given by

vk(ξ, r)=
[
1−pD,k(r)

]
vk|k−1(ξ, r)+

∑

z∈Zk

vD,k(x, z) (29)

where

vD,k(x, z)=
Jk|k−1(r)∑

j=1

w
(j)
k (z)N (

ξ;m(j)
k|k(r, z), P (j)

k|k(r)
)
, (30)

with

w
(j)
k (z) =

pD,k(r)w(j)
k|k−1(r)q

(j)
k (z, r)

κk(z)+
∑

r′pD,k(r′)
∑Jk|k−1(r′)

i=1 ψ
(i)
k (z)

,

ψ
(i)
k (z) = w

(i)
k|k−1(r

′)q(i)
k (z, r′),

(31)

and

q
(j)
k (z, r) = N (z; Hk(r)m(j)

k|k−1(r), Rk(r) +

Hk(r)P (j)
k|k−1(r)H

T
k (r)),

(32)

m
(i)
k|k(z, r) = m

(i)
k|k−1(r) +

K
(i)
k (r)(z −Hk(r)m(i)

k|k−1(r)),
(33)

P
(i)
k|k(r) = [ I −K

(i)
k (r)Hk(r) ]P (i)

k|k−1(r), (34)

K
(i)
k (r) = P

(i)
k|k−1(r)H

T
k (r) ¦

(Hk(r)P (i)
k|k−1(r)H

T
k (r) + Rk(r))−1.

(35)

Propositions 1 and 2 are established by applying
standard results for Gaussian functions (e.g., Lemma
1 and Lemma 2 in [20, 21]). Substituting (16), (18),
(20), (21) and (22) into PHD prediction (8) and ap-
plying Lemma 1 [20, 21], we obtain (23). Substituting
(17), (19) and (28) into PHD update (9) and applying
Lemma 1 and Lemma 2 [20, 21], (29) is obtained.

Propositions 1 and 2 show closed-form expressions
for recursive computation of means, variances and
weights of vk|k−1 and vk. Assuming the initial prior
intensity v0 is a Gaussian mixture it can be inferred



by induction that the subsequent predicted and pos-
terior intensities are also Gaussian mixtures. Proposi-
tions 1 and 2 also indicate that the number of Gaussian
components of the predicted and posterior intensity in-
creases with time. This poses a problem in implemen-
tation, but it has been found [20, 21] that this issue can
be effectively handled by applying some simple pruning
procedure.

4 Simulation Results

In this section we test the performance of the proposed
PHD filter for LJMS in tracking an unknown and time-
varying number of maneuvering targets in clutter. In
particular, Example 2 investigates the robustness of
the proposed filter in a scenario where the paths of
two targets cross repeatedly in time. For illustration
purposes we consider only two-dimensional scenarios.

Example 1

Consider the case where targets can appear
in a surveillance region at different locations and
times. The targets are observed in a square re-
gion [−10000, 10000] × [−10000, 10000] m2 by a sen-
sor located at (0, 0) m. The kinematic state ξ =
[ px, ṗx, py, ṗy ]T of each target consists of position
(px, py) and velocity (ṗx, ṗy). The measurements, sam-
pled at a period of T = 60 s, comprise of position only
and follow the observation model with observation ma-
trix and measurement noise covariance matrix given by

Hk =
[

1 0 0 0
0 0 1 0

]
, Rk = σ2

ε I2 (36)

where In denotes a n×n identity matrix, and σε = 10 m
denotes the standard deviation of measurement noise.
Targets are detected with a probability pD,k(r) = 0.98
and have a probability of survival pS,k(r′) = 0.99.
Clutter is modeled as a Poisson RFS with intensity

κk(z) = λcV U(z) (37)

where U(·) denotes a uniform density over the surveil-
lance region, V = 4 × 108 m2 is the volume of the
surveillance region and λc = 1.25× 10−7 m−2 denotes
the average number of clutter returns per unit volume.

The motion models are described as follows. Model
r = 1 is the constant velocity (CV) model. The sin-
gle target state transition and process noise covari-
ance matrices that characterise the target dynamics
are given by

Fk−1(r = 1) =
[

A1 02

02 A1

]
, A1 =

[
1 T
0 1

]
(38)

Qk(r = 1)= σ2
1,v

[
Σ1 02

02 Σ1

]
, Σ1 =

[
T 4

4
T 3

2
T 3

2 T 2

]
(39)

where 0n denotes a n× n zero matrix, and σ1,v = 3×
10−3 ms−2 denotes the standard deviation of process
noise.

Model r = 2 is a constant turn (CT) model [2, 25]
with a counterclockwise turn at 9 degree per minute.
The single target state transition and process noise co-
variance matrices that characterize the target dynam-
ics are given by

Fk−1(r = 2) =
[

A2 −Ã2

Ã2 A2

]
(40)

with

A2 =
[

1 sin ωT
ω

0 cos ωT

]
, Ã2 =

[
0 1−cos ωT

ω
0 sin ωT

]

and

Qk(r = 2) = σ2
2,v

[
Σ2 −Σ̃2

Σ̃2 Σ2

]
(41)

with

Σ2 =
[

2(ωT−sin ωT )
ω3

1−cos ωT
ω2

1−cos ωT
ω2 T

]
,

Σ̃2 =
[

0 −ωT−sin ωT
ω2

ωT−sin ωT
ω2 0

]

where ω denotes the turn rate and σ2,v = 2 ×
10−2 ms−2 denotes standard deviation of the process
noise.

Model r = 3 is also a constant turn (CT) model
but with a clockwise turn at 9 degree per minute. The
Markovian transition probability matrix is taken as

[tk|k−1(r|r′)] =




0.95 0.025 0.025
0.15 0.85 0
0.15 0 0.85


 (42)

The spontaneous birth RFS is Poisson with intensity

γk(ξ, r) = 0.1πk(r)
[N (ξ; m(1)

γ , Pγ) +

N (ξ; m(2)
γ , Pγ) +N (ξ; m(3)

γ , Pγ)
] (43)

with

m(1)
γ =

[ −7000, 3, 4000, 2
]T (44)

m(2)
γ =

[
6200, −1, 6000, −4

]T (45)

m(3)
γ =

[ −6000, 1.5, −6000, 4
]T (46)

Pγ = diag
( [

100, 25, 100, 25
] )

(47)

and πk(r) = 0.8 for r = 1 and πk(r) = 0.1 for r = 2
and r = 3.

The RFS of targets spawned from a target with a
previous state [ξ′T , r′]T is Poisson with intensity

βk|k−1(ξ, r|ξ′, r′)= 0.05πk|k−1(r|r′)N (ξ; ξ′, Qβ) (48)

Qβ = diag
( [

100, 250, 100, 250
] )

(49)

and

[πk|k−1(r|r′)] =




0.2 0.4 0.4
0.2 0.8 0
0.2 0 0.8


 (50)



Fig. 1 shows the true target trajectories in the x-y
plane. A 1-D view of these trajectories along each axis
with cluttered measurements plotted against time is
shown in Fig. 2. As indicated in Figs. 3 and 4 which
show the position and velocity estimates respectively of
the PHD filter against time, the filter provides accurate
tracking performance in clutter. Note that we apply
the same pruning procedures and parameters as in [20,
21] in our implementation.

The mean absolute error in the number of targets
and the average probability of track lost (see [21] for a
definition of these measures), estimated from 1 × 103

Monte Carlo runs, are shown in Fig. 5. The mean
absolute error function peaks at the times of target
births. The sharp peaks indicate that a new target
appeared, and that the filter immediately detects the
new targets. In the interval [67, 75] the increased
uncertainty due to the proximity of the targets as
Target 4 approaches Target 1 on the turn and then
crosses Target 5 causes the error to exceeds 0.2.
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Figure 1: Target trajectories. ‘◦’– locations of target
births; ‘¤’– locations of target deaths (‘×’– location of
sensor).
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Figure 2: Measurement data and true target positions.
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Figure 3: Position estimates of the Gaussian mixture
LJM-PHD filter.
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Figure 4: Velocity estimates of the Gaussian mixture
LJM-PHD filter.

Example 2

In this example we examine a situation where two
targets cross paths repeatedly. The simulation settings
are the same as those of the previous example, except
that the birth intensity is given by

γk(ξ, r) = 0.1πk(r)
[N (ξ;m(1)

γ , Pγ) +

N (ξ;m(2)
γ , Pγ) +N (ξ;m(3)

γ , Pγ)
]

with

m(1)
γ =

[
0, 1, 8000, −3

]T (51)

m(2)
γ =

[
5000, −3, 0, 0

]T (52)

m(3)
γ =

[ −4000, 2.5, −6000, 3
]T (53)

Pγ = diag
( [

100, 25, 100, 25
] )

(54)

Fig. 6 shows the true target trajectories. The posi-
tion and velocity estimates of the PHD filter are shown
in Figs. 7 and 8. Although as shown in Fig. 9 the ab-
solute error in the number of targets is slightly higher
in this situation, the PHD filter provides accurate po-
sition estimates at most times without losing track.
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Figure 5: Mean absolute error of N and average prob-
ability of track lost.
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Figure 6: Target trajectories. ‘◦’– locations of target
births; ‘¤’– locations of target deaths (‘×’– location of
sensor).

5 Conclusions

This paper presents a closed-form solution to the PHD
recursion for LJMS. We have shown that for an initial
prior intensity of Gaussian mixture form, the poste-
rior intensity propagates in time with a similar form.
Closed-form recursions for the weights, means and co-
variances of the Gaussian components modeling the
posterior intensity are derived. We show that by incor-
porating the motion model index in the PHD filtering
framework the filter can account for the maneuvers ex-
ecuted by each target. Simulation results demonstrate
that the PHD filter is a promising candidate for multi-
target tracking with an unknown number of maneuver-
ing targets.
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