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Abstract

Scarce data is a major challenge to scaling robot learning to truly complex tasks, as
we need to generalize locally learned policies over different "contexts". Bayesian
optimization approaches to contextual policy search (CPS) offer data-efficient
policy learning that generalize over a context space. We propose to improve data-
efficiency by factoring typically considered contexts into two components: target-
type contexts that correspond to a desired outcome of the learned behavior, e.g.
target position for throwing a ball; and environment type contexts that correspond
to some state of the environment, e.g. initial ball position or wind speed. Our
key observation is that experience can be directly generalized over target-type
contexts. Based on that we introduce Factored Contextual Policy Search with
Bayesian Optimization for both passive and active learning settings. Preliminary
results show faster policy generalization on a simulated toy problem.

1 Introduction

Robots and other artificial agents act in complex environments where reinforcement learning (RL)
is commonly used to learn desired behaviors by interacting with the environment. RL, however,
is limited by two main factors: learned policies are difficult to generalize over different problem
settings; and they require large amount of data that is often expensive to obtain, due to various
costs of interaction with the environment. In order to perform truly complex tasks we need learning
algorithms that generalize well over a context space with little data.

Factorization is generally used in computer science to decompose problem structures into components
that are easier to address. We introduce a factorization of contexts that reduces data requirements for
a class of learning tasks, where the context space exhibits specific properties.

We focus on the contextual policy search (CPS) problem, a formulation of RL, where the concept
of context was introduced to generalize over task settings. More specifically, we use a Bayesian
optimization approach to CPS based on previous work of Metzen et al. [10, 8]. A key assumption of
CPS approaches is that the optimal policy parameters are similar for similar contexts. We observe
however, that it is possible to directly generalize experience with some policy parameters over specific
context types, which ultimately reduces data requirements.

In the CPS problem the agent is learning an upper level policy π(θ|s) that defines a distribution over
the parameter vectors θ of a lower-level policy for context s. Executing the lower level policy with
parameters θ in context s results in an observed trajectory τ(s, θ) and reward R(s, τ(s, θ)).1

The context s = {se, st} may encode two types of task parameters,
1We assume that the reward function is fully known or that it can be evaluated for arbitrary st targets.
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• desired target of the behavior, st, that only affects how we evaluate a trajectory,
R(se, st, τ(se, θ)), e.g. for a ball throwing task the target coordinates of the ball

• properties of the environment se that influence the trajectory, τ(se, θ), e.g. initial position
of the ball, initial state of the robot arm or wind speed.

The key insight of this work is that a single trial provides useful information for all target-type
contexts.

Consider a robot learning to throw balls at different targets. First it is asked to aim at target st1. It
chooses θ1 according to the upper level policy, execute the throw and observes that the ball hits target
st2 6= st1. Even if the trial is poor and results in a low reward the agent gains valuable information:
in the future when it is asked to aim at st2 it knows that θ1 parameters will result in hitting st2 and
yield a high reward.2 Previous work on CPS relies on reward values and an assumed correlation
to generalize over contexts. The proposed factorization enables each trial to be evaluated for all
target-type contexts leading to faster generalization.

We introduce Factored Contextual Policy Search with Bayesian Optimization (FCPS-BO), a variant
of BO-CPS [10] with factored contexts. We also extend FCPS-BO to the active learning setting based
on ACES [8]. In active learning the agent may choose the context in each episode during training,
unlike the standard (passive) formulation of CPS, where the context is given.

2 Related work

There are a number of CPS approaches that generalize over a discrete or continuous context space.
One group of work interpolates policy parameters over contexts given a number of local policies
[1, 9]. This approach is limited to problems where local policies are available or easy to learn but
inefficient if learning local policies are challenging themselves.

The second group of work jointly learns local policies and generalizes over the context space. Reward-
Weighted Regression (RWR) [11] - and its kernelized variant Cost-Regularized Regression (CrKR)
[5] - use a linear function to represent the upper-level policy and perform updates by weighted linear
regression. Contextual Relative Entropy Policy Search (C-REPS) [6] represents the upper-level policy
as a probability distribution over the lower-level policy parameters conditioned on the context, while
updates are performed using information theoretic insights. CrKR and C-REPS were applied to a
variety of real-world RL tasks: playing table tennis [5], throwing darts [5] and playing hockey [6].
Although these tasks all involve target-type contexts they are not leveraged to evaluate previous
experience in new query contexts.

Recently Metzen et al. introduced BO-CPS [10] and ACES [8] that use a Bayesian optimization
approach for CPS in passive and active learning settings, respectively. They directly learn a Gaussian
Process (GP) model of the expected reward given a parameter vector θ and context s. These methods
offer high data-efficiency and handle noisy observations but are limited to low dimensional parameter
spaces and are yet to be evaluated on real world learning tasks. Our method extends these approaches
with the concept of factored contexts.

To the best of our knowledge there is no work that explicitly factors the context space. Similar
ideas are implicitly used by Kober et al. who apply CrKR to learn a contextual policy for discrete
targets while performing a higher-level task [4]. They map experience gained in one context to
another; however, they do so for the purpose of estimating discrete outcome probabilities and not for
improving the policy.

Kupcsik et al. introduced GP-REPS [7], a model-based policy search approach that iteratively learns
a transition model of the system using a GP. The GP prediction is then used to generate trajectories
offline for updating the policy. The authors discuss the option of generating additional samples
for artificial contexts - which is a similar idea to our mapping method, -but they do not define an
explicit factorization and generate multiple samples for each observed trajectory rather than explicitly
mapping to the query context.

2Note that the argument above does not hold for environment-type contexts, such as wind speed: an imperfect
throw at wind speed w1 does not tell anything about the optimal parameters for any other wind speed w2 apart
from the assumed correlation.
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3 Factored Contextual Policy Search with Bayesian Optimization

The Bayesian optimization approach to CPS trains a GP to directly map from policy parameters and
contexts to the expected reward, E[R(s, θ)], given all previous experience, D = {si, θi, Ri}. The
GP posterior is an estimate of the reward µ[R∗(s, θ)] with uncertainty σ[R∗(s, θ)].

In each episode the agent is given a query context sq and needs to choose an appropriate parameter
vector θ∗. We use the acquisition function,

GP-UCB(sq, θ) = µ[R∗(sq, θ)] + κσ[R∗(sq, θ)], (1)

where κ controls the exploration-exploitation trade-off. The policy parameters are selected by simply
optimizing the acquisition function given the query context,

θ∗ = argmax
θ

GP-UCB(sq, θ). (2)

In order to leverage factored contexts we maintain a dataset D = {sei , θi, τi} with trajectories τi
observed when executing the policy with θi parameters in a context sei . Note that we store full
trajectories instead of rewards.3 At the query stage, given sq = {stq, seq}, we evaluate all previous
experience in light of the current target-type query context stq . We compute the reward for all previous
trajectories,

Rqi = Rt(stq, s
r
i , τi), (3)

where sri and τi are recorded data points and stq is the target context for the query point. We form
the dataset Dq = {sei , θi, R

q
i } that is specific to the query context. The optimal θ∗ parameters for

context sq are then found by optimizing the GP prediction given data Dq . By evaluating all previous
experience for the current query, we directly generalize over target-type contexts instead of solely
relying on assumed correlation as is the case for environment-type contexts.

4 Active learning setting

In the active learning setting the agent chooses both parameters θ and context s for the next trial.
Optimizing GP-UCB for θ and s would not lead to a good result as the achievable rewards for
different contexts may be different. Instead we follow ACES [8] and use an Entropy Search based
acquisition function4 which aims to choose the most informative query points for global optimization
[3].

In addition to a GP mapping from contexts and parameters to expected rewards, ACES maintains an
explicit probability distribution popt(θ|s), the probability of θ being the global optimal in context
s. The value of popt is approximated on a set of heuristically chosen representer points using
Monte Carlo integration. ACES predicts popt[sqθq](θ|s), the distribution after a hypothetical query
at {sq, θq}. To do that we need to predict the GP posterior after a query. The new posterior is
approximated by first sampling from the current GP posterior at the query point and then adding the
sample to the GP training data.

The most informative query point is chosen by maximizing the change in relative entropy of popt
integrated over the context space. More specifically we define a loss function for a query point at
context s,

Ls(sq, θq) = L(popt[sqθq](θ|s))− L(popt(θ|s)), (4)
where L(popt) is the negative relative entropy between popt and a uniform measure. The acquisition
function is then the sum of loss functions over different contexts,

ACES(sq, θq) =
∑N

i=1
Lsi(sq, θq), (5)

where {si}Ni=1 is a set of randomly chosen representer points. The next query point {sq, θq} is
selected by minimizing ACES(sq, θq). For further details we refer to [8] and [3].

3In a practical implementation, if τ is too large or not observed, we may only store a mapping of the trajectory
f(τ) sufficient for computing the reward for arbitrary target-type contexts. E.g. for a ball throwing task we may
only need to store the coordinates where the ball hit rather than the full trajectory.

4Entropy search could be used in the passive setting as well. We plan to do such experiments in the future.
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We integrate factored contexts as follows. In each iteration we map previous experience to all N
representer points in the context space, si, resulting in a set of GP models, GPi, i = 1..N . When the
loss function Ls(sq, θq) is evaluated for s = si we predict the change in popt using the corresponding
GPi. This way we directly generalize over the target-type context space, similarly to the passive
learning case. Note that the choice on the target-type query context stq is indifferent if we ignore
rewards during training, and thus we only need to select {seq, θq} by minimizing ACES(seq, θq).

5 Results

We run FCPS-BO on a simulated toy cannon problem (Figure 1a), where evaluating previous trials
for all targets is trivially beneficial. The task is inspired by [2] and is similar in nature to the ball
throwing task of [10, 8]. A cannon is placed in the center of a 3D coordinate system and has to shoot
at targets on the ground in the range of [−11, 11]× [−11, 11]m. The contextual policy maps from
2D targets to 3D launch parameters: horizontal orientation [0, 6.28], vertical angle [0.01, 1.37] and
velocity [0.1, 5]ms . The reward is a negative quadratic function of the distance between the target and
where the projectile hits, plus two terms penalizing larger launch speeds and vertical angles.

To increase the difficulty of the problem we randomly place hills in the environment. The learning
agent is unaware of the hills and the target coordinates carry no information on the target elevation.
Furthermore, we add Gaussian noise (σn = 1◦) to the desired launch angle during training.

Note that evaluating previous trials for the given context is trivially beneficial in our problem setting.
Shooting in a direction opposite to one target results in extremely low reward, but the same launch
parameters may achieve high reward when another target is in the shooting direction.

(a) Toy cannon problem (b) Learning performance

Figure 1: a) Example for an environment with a target and the optimal trajectory. b) Mean rewards
using FCPS-BO (blue), FCPS-BO in active setting (yellow), and the baseline BO-CPS (orange). The
shaded area corresponds to two standard deviations.

We run trials in 50 randomly generated environments and evaluate policies offline, with test targets
placed on an 8 × 8 grid (Figure 1b). Our factored approach, FCPS-BO, achieves near optimal
performance after less than 100 episodes, while the baseline BO-CPS requires over 300 episodes. We
also evaluate FCPS-BO in active learning setting; however, we observe no benefit over the passive
setting. This may be due to the aggressive approximations used in the active approach; or due to our
problem setting, where it is not more difficult to learn a good policy for one target than for another.
Further investigation is to be conducted in the future.

6 Conclusion

We introduced FCPS-BO, a Bayesian optimization approach to CPS that factors the context space
to generalize policies with little amount of data. We present an extension of FCPS-BO to the active
learning setting, and show the benefit of factorization on a toy problem. Addressing scalability to
higher dimensions and evaluation on more realistic problems remain future work. We also plan to
apply factorization to standard policy search methods, such as C-REPS and GP-REPS.
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