
Embedded Processor Security

Brian J. d’Auriol, Nguyen Thi Thanh Tuyen, Vo Quoc Hung, Duc Thang,
Hassan Jameel, Le Xuan Hung, S.M.K.R. Raazi, Dao Phuong Thuy,
Ngo Trong Canh, Adil Mehmood Khan, Sunghyun Kim, Shu Lei,
Sakib Pathan, Tran Van Phuong, Sungyoung Lee, Young-Koo Lee

Department of Computer Engineering, Kyung Hee University,Korea
Email: dauriol@acm.org

Abstract A preliminary model is introduced in this paper
whereby data and its associated security properties are
treated as a single atomic unit of information in a hardware-
only context. Security-tagged data allows each datum to be
properly manipulated with a predictable assurance. This
paper addresses the data modeling, process modeling and
network modeling of the associated security-tagged data.
This work is a part of a larger issue that instruction
set architectures (ISAs) do not consider the information
assurance implications in its operational environment.

Keywords: Information assurance, Confidentiality, Integrity,
Processor architecture

I. INTRODUCTION

Information assurance typically involves the pro-
tection of information. Three common aspects are
confidentiality, integrity and availability (often re-
ferred to as the CIA triad or just CIA). Confiden-
tiality deals with the appropriateness of how the
information is accessed. Integrity deals with the
semantic correctness of the information. Availability
ensures that the information is accessible at the time
it is needed. Many computer security protocols are
typically applied in a layering fashion to ensure
protection of these aspects of the information.

Security in computer architecture has tended to
either be management protective as in the case of
privileged (kernel) modes of operation or globally
protective as in the case of FIPS 140 [1] compliant
architectures. The former is a software-hardware
solution whereby an operating system manages the
protection by utilizing specialized architecture fea-
tures. The latter represents a hardware-only ap-
proach to security in architectures. Hardware-only
approaches tend to be more recent and are moti-
vated by both a concern to better protect encryp-

tion/decryption communication processes and by a
feeling that the software in the dual-nature solution
is subject to compromise and hence protection fail-
ures.

The main idea behind the work in this paper is
that data and its associated security properties are
treated as a single atomic unit of information in a
hardware-only context. Security-tagged data allows
each datum to be properly manipulated with a pre-
dictable assurance in the context of confidentiality,
integrity and availability. However, typical architec-
tures are not designed to accommodate the process-
ing of atomic security tagged data nor its memory
addressing, data transfer or interprocessor commu-
nications. Although tagged data may be logically
associated and processed under software control,
experience from the hardware-software approaches
indicates that doing so is susceptible to potential
compromise and protection failures. Applications of
security data tagging include screening-out sensi-
tive information from display or removable devices
(thereby perhaps preventing similar occurrences of
the recent data breach at the U.S. Department of
Veterans Affairs [2]), and better control of security
over data manipulated by an architecture.

This paper presents preliminary research results
aimed at identifying important issues, modeling
various aspects of hardware-integrated CIA and
assessing the overhead of such integration. In [3],
a preliminary model is introduced and assessed by
two case studies, one applied in a simple MIPS
processor design and the other applied in an op-
tical interconnected multiple processor architecture
model. This earlier work concentrated more on
the feasibility of the idea; only confidentiality and
integrity were considered. This earlier work is ex-

tended in this paper.
The remainder of this paper is organized as

follows. The next section, Section II, reviews related
work. Section III introduces a preliminary model
of security property data tagging and discusses
implementation and performance implications of
the model. Some comments about the architecture
are given in Section IV. Conclusions are given in
Section V.

II. REVIEW

Protection of hardware resources has a long
history. Multi-tasking and the more recent multi
threading operating systems provide management of
resources by using privileged, kernel or supervisory
modes, for example, BSD [4]. Operating systems
may also provide protection over shared memory
especially where shared memory is used to sup-
port interprocessor communication (IPC) between
processes [4]. Such management is made possible
by hardware supported features such as kernel ac-
cessible memory and kernel-only registers of the
MIPS 32 and 34K core [5]. Multiple operating
system interfaces can also be supported in a se-
cured way, for example, the privileged architecture
library code of the Alpha AXP 21064 [6]. This
dual hardware-software approach provides security
over process and thread contexts, usually, so that
user applications are isolated from each other or
can not otherwise interfere with the integrity of the
system. However, the well known (and often ex-
ploited) limitation of this approach is the security of
the operating system software itself. Compromised
software leads to the break-down of system security.

Another approach is that of physical hardware se-
curity combined with internal hardware security. A
FIPS 140 compliant hardware module [1] provides
up to four layers of protection. Specified security
features include a finite state model describing cor-
rect operations, secure key management and, for
Level 4, a detection and response “envelope of
protection”. The IBM 4758 processors are certified
under Levels 3 and 4 of the FIPS 140-1 (the previ-
ous version of the standard, 1994) [7], [8]. Some of
the features implemented in the IBM 4758 are the
zeroization of some of the RAM memory, proces-
sor subsystem reset, termination of RAM-memory
refresh, and a state controller which, amongst other

actions, control memory allocation. Detected pene-
trations result in sensitive data destruction.

There are some hardware-only approaches. Lim-
ited information access occurs as a by-product of
memory management private data caching in some
multiple processor systems [9]. The MIPS 34K core
provides a variation of the cache prefetch that can
zero out a cache line in certain circumstances [5].
The Cell Broadband Engine (Cell BE) [10] is a re-
cent processor designed with hardware-only support
for security, including a “secure processing vault”
and instruction stream runtime verification.

The hardware-only approach addresses the lim-
itation of the dual software-hardware approaches.
However, the hardware-only approaches surveyed
here consider more globally protective mechanisms.
In particular, these approaches do not consider data
tagged with security attributes specifying allowable
operations. Such a model is presented next.

III. M ODELING

Based on our preliminary investigations, we di-
vide the issues into the three categories: data mod-
eling, process modeling and network modeling.

A. Data Modeling

Data modeling involves relational modeling of
data and security tags. Several possible relationships
may be considered. Depending on the situation,
both data and security tags may be keyed by their
respective memory addresses; or, alternatively, new
keys (e.g. hashes of the memory addresses) could be
determined (if needed). Insertion, deletion and mod-
ification to the data and security tags are necessary
operations.

There are two main issues in data modeling.
First, the association of security tags with the data.
Second, the storage of the data and its security
tags. In this paper, we concentrate on the first
issue to provide greater understanding about the
requirements of the memory architecture needed to
adequately support the second. We consider two
data models as shown in Figures 1 and 2 and
refer to these as Data Model 1 and Data Model 2
respectively.

In Data Model 1, the security attributes are com-
bined with the data items. This provides a physical
association of the attributes with the datum.

Fig. 1. Data Model 1.

Fig. 2. Data model 2.

In Data Model 2, only the required security tags
need be explicitly stored and a datum is associated
with a particular tag via thehas relation; the
cross-referencing is based on memory addresses
which form the respective information keys. The
advantages of this approach include minimal storage
requirements of the security tags by reusing tag
information for multiple data items. However, the
disadvantages include the physical separation of
security tags from the data items; in turn, we expect
that this would lead to additional issues in a hard-
ware implementation. Moreover, this approach may
be extended by including a list of datum memory
addresses to which the security attribute belongs to
thereby allowing efficient data item selection based
on specific attribute queries, but at the cost of ad-
ditional memory storage and structure maintenance
processing times.

B. Process Modeling

Process modeling establishes the necessary re-
quirements needed to consider the implementation
of the security attributes. The intention is to identify
policy-based requirements within the implementa-
tion framework; policies may be conservative (i.e.,
maximum confidentiality, minimum integrity), aver-
aged (i.e., average confidentiality, average integrity)
or others.

Fig. 3. Process model.

As a high-level CSP description̄P = (d →
((p1 → C)||(p2 → I)) where P̄ is the process of
security tag combination,p1 is the specific process
applied to the confidentiality tagC, p2 the process
applied to the Integrity tagI. Figure 3 details this
process in whichD denotes the set of possible oper-
ations including maximum, minimum and average.
The Summation operation denotes data synthesis,A
and B denote the data items together with security
attributes,Ta andTb denote the combined security
attributes associated with the data itemsa and b
respectively.

C. Network Modeling

We now consider the communication issues in-
volved in the transmission of data items together
with their security attributes. If Data Model 1
is applied to the transmission process, then, each
datum has associated tags that need to also be
communicated. This increases the TCP payload size.
However, if Data Model 2 is applied, then data that
share the same tags can be collected together and
transmitted with a single copy of the tags. This will
increase the payload slightly. To address this, we
consider the inclusion of tags into the TCP header
but without impacting upon optional requirements,
that is, we wish to include the security tags along
with whatever other transmission requirements are
needed. The TCP header (defined by RFC 793)
includes six bits for future use. However, two of
these are used for Explicit Congestion Notifica-
tion (defined in RFC 2481) leaving four bits for
use. Since transmission is usually segmented, the
security tags can be distributed across multiple
segmented headers, for example, two headers can

be used to support tags of four bits each for
Confidentiality and Integrity. Including security tags
in the header does not impact the payload size,
furthermore, allows header processing algorithms
to assess the security prior to delivery of payload.
The segmentation distribution may also be applied
to fewer than the four available bits with a cost
of increasing the number of segments needed to
support the data transmission; furthermore, bit fields
from the urgent points, timestamp, etc. options can
be used for specific cases where these fields are not
used. A disadvantage beyond the utilization of the
expansion bits is that the header is not encrypted,
therefore, exposing the security attributes. This may
be addressed either by an encryption/decryption
protocol prior to packetization or by distributing the
security tags around the segments.

IV. A RCHITECTURE

This section briefly describes the potential archi-
tecture implied by the previous discussions.

The two data models impact the nature of the
memory layout. Data Model 1 implies that either:
the word size is extended to store the tags, the same
word size is used and the tags are stored in the
higher-order bits, or the same word size is used
and the tags are stored in a separate memory word;
the latter may either include a wider bus or specific
MMU constraints on the required sequence of fetch
datum, fetch tags. Data Model 2 implies that the
same as the third option above: the same word size
is used and the tags are stored in a separate memory
word. Again, a wider bus or MMU constraints can
govern the integrated fetch (and store) operations.
Additionally, since there are a small amount of tags,
these could be preloaded into a hardware table-
lookup module.

The process model defines a number of security
tag combiners. A comparator can be used to se-
lect the maximum/minimum tag value. Averaging
requires a more advanced circuit; one method is
to consider an optimized enhancement to an adder,
e.g. [11].

V. CONCLUSION

A preliminary model is introduced in this paper
whereby data and its associated security properties
are treated as a single atomic unit of information

in a hardware-only context. Security-tagged data
allows each datum to be properly manipulated with
a predictable assurance. This paper addresses the
data modeling, process modeling and network mod-
eling of the associated security-tagged data. This
work is a part of a larger issue that instruction set
architectures (ISAs) do not consider the information
assurance implications in its operational environ-
ment.

However, the preliminary work in this paper does
not provide realistic implementations. Nor, does it
consider applications that may benefit from this
approach. Therefore, the work in this paper lays the
foundation for both of these future-work investiga-
tions.

ACKNOWLEDGEMENTS

This research was supported by the MIC (Min-
istry of Information and Communication), Korea,
under the ITFSIP (IT Foreign Specialist Inviting
Program) supervised by the IITA (Institute of In-
formation Technology Advancement).

REFERENCES

[1] National Institute of Standards and Technology.Security
Requirements for Cryptographic Modules, May 2001.

[2] Jaikumar Vijayan. Massive data breach puts VA’s IT policies
under a microscope, May 2006.

[3] Brian J. d’Auriol. Architecture information assurance. In
Proceedings of The First Workshop on Embedded Systems Se-
curity, the 6th Annual ACM Conference on Embedded Software
(EMSOFT’06), Seoul, South Korea, Oct. 2006. published on
conference CD.

[4] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and
John S. Quarterman.The Design and Implementation of the 4.4
BSD Operating System. Addison-Wesley Longman, Inc., 1996.

[5] MIPS Technologies, Inc.Programming the MIPS32 34K Core
Family, September 2005. Revision 01.05.

[6] Richard L. Sites. Alpha AXP architecture.Communications of
the ACM, 36(2):33–44, February 1993.

[7] IBM. IBM 4758 Models 2 and 23 PCI Cryptographic Copro-
cessor, May 2004.

[8] IBM. IBM PCI Cryptographic Coprocessor, General Informa-
tion Manual, sixth edition, May 2002.

[9] David A. Patterson and John L. Hennessy.Computer Architec-
ture A Quantitative Approach. Morgan Kaufmann Publishers,
Inc, second edition, 1996.

[10] Kanna Shimizu. The cell broadband engine processor security
architecture, April 2006.

[11] Ruby Bei-Loh Lee and John Paul Beck. Parallel adding and
averaging circuit and method, 1999. US Patent 4707800 and
4768160.

