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S1 Terrestrial biospheric models (TBMs) 

Four TBMs participating in the North American Carbon Program Regional Interim Synthesis 

(NACP RIS) project (Huntzinger et al., 2012) are used in the analyses presented in this work. 

These TBMs were selected because their net ecosystem exchange (NEE) fluxes are available at 

3-hourly and 1°×1° resolution.  The four models are the CASA coupled with the Global Fire 

Emissions Database (CASA-GFED, Van Der Werf et al., 2006), Simple Biosphere (SiB3, Baker et 

al., 2008), Organizing Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE, Krinner et 

al., 2005) and Vegetation Global Atmosphere and Soil (VEGAS2, Zeng et al., 2005).  The runs 

used here represent “off the shelf” simulations, and are therefore not based on a standardized 

protocol.  Any differences in their performance can therefore be driven not only by structural 

differences, but also by differences in initial conditions, spin up, driver data etc. Table S1 

provides a brief summary of the key features of each model, with more detail available in 

Huntzinger et al. (2012).  

Table S1. Terrestrial Biospheric Models (TBMs) evaluated and their phenology, resolution, 

photosynthetic and soil carbon decomposition formulations 

Model Phenology 

Native 

temporal 

resolution 

Native 

spatial 

resolution 

Photosynthetic 

formulation 

# Plant 

functional 

types 

# Soil 

pools 

Fire 

disturbance 

CASA-

GFED 
Diagnostic Monthly 1° 

Light Use 

Efficiency 
3 5 

Prescribed 

ORCHIDEE Prognostic 30 min 0.5° 
Enzyme 

Kinetic 
12 8 

Not 

included 

SiB3 Diagnostic Hourly 1° 
Enzyme 

Kinetic 
14 0 

Not 

included 

VEGAS2 Prognostic Daily 1° 
Light Use 

Efficiency 
4 6 

Not 

included 
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S2 Covariance matrices (𝐑 and 𝐐) used in the synthetic and real data experiments 

The model-data mismatch covariance matrix 𝐑 describe the expected magnitude of discrepancies 

between the observed and modeled CO2 concentrations. These errors are assumed here to be 

uncorrelated in space and time, and 𝐑 is therefore a diagonal matrix with individual elements 

representing variances (𝜎𝑅
2) that vary across measurement towers and months. The prior flux 

covariance matrix 𝐐 characterizes the spatially- and temporally-correlated flux deviations from 

the model of the trend, and is modeled using a covariance function that varies as a function of the 

separation distance between flux times and location, as in Gourdji et al. (2012): 

𝐐 = 𝜎𝑄
2 [𝑒𝑥𝑝 (−

𝒉𝑡
𝑙𝑡
)]

⏟        
𝑡𝑒𝑚𝑜𝑟𝑎𝑙

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

⨂[𝑒𝑥𝑝 (−
𝒉𝑠
𝑙𝑠
)]

⏟        
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 
(S1)  

where 𝜎𝑄
2 is the asymptotic variance of flux deviation in space and time, 𝒉𝑡 and 𝒉𝑠 represent the 

separation lags between estimation locations in space and time, respectively, and 𝑙𝑠 and 𝑙𝑡 are the 

spatial and temporal correlation length parameters.  The variance and correlation parameters vary 

across months.  Temporal correlations are only assumed across days for the same times of the 

day, and not within days, so as not to risk smoothing out the diurnal variability.   

S2.1 Covariance matrices (𝐑 and 𝐐) used in the real data experiments  

The covariance parameters for 𝐑  and 𝐐  for the RD-one-𝛏𝛆  and RD-all-𝛏𝛆  experiments (see 

Section 4 and Figure 2 in the main text) are estimated using Restricted Maximum Likelihood 

approach (e.g., Gourdji et al., 2010; Gourdji et al., 2012; Michalak et al., 2004), which 

minimizes the negative log-likelihood of the available atmospheric measurements with respect to 

the covariance parameters in 𝐑  and 𝐐 . The corresponding objective function for a given 

candidate model 𝐗𝑐 is (Kitanidis, 1995): 
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L = ln|𝚺| + ln|(𝐇𝐗𝑐)
T𝚺−1𝐇𝐗𝑐| 

+[𝐳T(𝚺−𝟏 − 𝚺−𝟏𝐇𝐗𝑐((𝐇𝐗𝑐)
T𝚺−1𝐇𝐗𝑐)

−1(𝐇𝐗𝑐)
T𝚺−𝟏)𝐳] 

(S1)  

where all variables are as defined in Section 3 of the main document. 

Because the 𝐑  and 𝐐  parameters depend on the candidate model of the trend 𝐗𝑐 , and the 

selection of the model of the trend is affected by R and Q (Eq. 6-7), the model selection and 

parameter optimization proceed iteratively. The final optimized 𝐑 and 𝐐 for each experiment are 

henceforth denoted as 𝐑𝑅𝑀𝐿 and 𝐐𝑅𝑀𝐿. Note that for the RD-one-𝛏𝛆 experiments, different 𝐑𝑅𝑀𝐿 

and 𝐐𝑅𝑀𝐿 are obtained based the 𝐗𝑐 that includes biome-month combinations for each individual 

TBM, and these are themselves different from the single 𝐑𝑅𝑀𝐿 and 𝐐𝑅𝑀𝐿 obtained for the RD-

all-𝛏𝛆 experiment based on the 𝐗𝑐 that include biome-month combinations from all four TBMs. 

S2.2 Covariance matrices (𝐑 and 𝐐) used in the synthetic data experiments 

For the SD-one-ØØ experiments that do not consider model-data mismatch, all variances in 𝐑 are 

set to a nominal value of σ𝑅
2 = 0.01 ppm2 for all towers and all months.  The remaining 

synthetic data experiments (SD-one-Ø𝛆, SD-one-𝛏𝛆 and SD-all-𝛏𝛆) all include realistic model-

data mismatch errors, and the variances in 𝐑 are set to be equal to those used in the analogous 

real data experiments (Section S2.1).  

For synthetic data experiments with no additional spatiotemporal variability added to the 

underlying flux field (SD-one-ØØ and SD-one-Ø𝛆), the variance of flux deviations from a trend 

including all TBM biome-month combinations is technically zero, whereas the 

variance/covariance of flux deviations from a trend that includes none of the TBM biome-month 

combinations would be equal to that of the full underlying flux field.  This second setup 
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represents a more conservative assumption, i.e., does not prescribe a priori that the variability in 

the candidate TBM represents the true underlying variability.  Consistent with this setup, the 

parameters of the matrix Q are set to those representing the full variability of the underlying 

fluxes, where these parameters are obtained by minimizing the negative log likelihood of the 

fluxes (Gourdji et al., 2010; Gourdji et al., 2008; Mueller et al., 2008):  

LQ = ln|𝐐| + ln|𝐗
T𝐐−1𝐗| +

1

2
[𝒔T(𝐐−1 − 𝐐−1𝐗(𝐗T𝐐−1𝐗)−1𝐗T𝐐−1)𝒔] (S2)  

Here, 𝐗 is a simply column of ones, such that the covariance parameters represent the correlation 

structure of the full flux field. 𝐐 estimated using this method is referred to as 𝐐𝑘𝑟𝑖𝑔 , and is 

different for each TBM.  

For synthetic data experiments with the presence of spatially-correlated flux residuals (SD-one-

𝛏𝛆 and SD-all-𝛏𝛆), the 𝐐 applied is 𝐐𝑅𝑀𝐿 derived from the RD-all-𝛏𝛆 experiment.  

S3 Flux residuals ( 𝛏 ) and model-data mismatch errors ( 𝛆 ) in the synthetic data 
experiments 

In all synthetic data experiments, measurements are generated as 𝐳 = 𝐇(𝐬TBM + 𝛏) + 𝛆, in which 

𝐬TBM is simulated NEE from a TBM, 𝛏 represents any spatiotemporally-correlated flux residuals 

beyond the variability represented by the TBM, and 𝛆 represents the model-data mismatch errors.  

For the SD-one-ØØ experiments, ε is a zero vector. In the SD-one-Ø𝛆, SD-one-𝛏𝛆, and SD-all-𝛏𝛆 

experiments, 𝛆 is a randomly-generated vector of independent normally-distributed values with 

variances corresponding to the diagonal elements (𝜎𝑅
2 ) of 𝐑𝑅𝑀𝐿  for the analogous real data 

experiment and a mean of 0.  

When no additional spatiotemporally correlated flux residuals are included (SD-one-ØØ and SD-

one-Ø𝛆), 𝛏 is a zero vector. In all SD cases that include realistic flux deviations (SD-one-𝛏𝛆, and 
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SD-all-𝛏𝛆), 𝛏 is a randomly-generated vector of normally-distributed values with a covariance 

structure equal to 𝐐𝑅𝑀𝐿 from the RD-all-𝛏𝛆 experiment.  
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