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Abstract. Climate change and the widespread alteration of

natural habitats are major drivers of vegetation change in dry-

lands. In the Chihuahuan Desert, large areas of grasslands

dominated by perennial grass species have transitioned over

the last 150 years to shrublands dominated by woody species,

accompanied by accelerated water and wind erosion. Multi-

ple mechanisms drive the shrub-encroachment process, in-

cluding precipitation variations, land-use change, and soil

erosion–vegetation feedbacks. In this study, using a simple

ecohydrological modelling framework, we show that herba-

ceous (grasses and forbs) and shrub vegetation in drylands

have different responses to antecedent precipitation due to

functional differences in plant-growth and water-use pat-

terns. Therefore, shrub encroachment may be reflected in the

analysis of landscape-scale vegetation–rainfall relationships.

We analyse the structure and dynamics of vegetation at an

18 km2 grassland–shrubland ecotone in the northern edge of

the Chihuahuan Desert (McKenzie Flats, Sevilleta National

Wildlife Refuge, NM, USA) by investigating the relation-

ship between decade-scale (2000–2013) records of remotely

sensed vegetation greenness (MODIS NDVI) and antecedent

rainfall. NDVI–rainfall relationships show a high sensitivity

to spatial variations on dominant vegetation types across the

grassland–shrubland ecotone, and provide biophysical crite-

ria to (a) classify landscape types as a function of the spa-

tial distribution of dominant vegetation and to (b) decom-

pose the NDVI signal into partial components of annual net

primary production (ANPP) for herbaceous vegetation and

shrubs. Analysis of remotely sensed ANPP dynamics across

the study site indicates that plant growth for herbaceous veg-

etation is particularly synchronized with monsoonal sum-

mer rainfall. For shrubs, ANPP is better explained by win-

ter plus summer precipitation, overlapping the monsoonal

period (June–September) of rain concentration. Our results

suggest that shrub encroachment was not particularly active

in this Chihuahuan ecotone for the period 2000–2013. How-

ever, future changes in the amount and temporal pattern of

precipitation (i.e. reductions in monsoonal summer rainfall

and/or increases in winter precipitation) may enhance the

shrub-encroachment process, particularly in the face of ex-

pected upcoming increases in aridity for desert grasslands of

the southwestern USA.

1 Introduction

Land degradation is pervasive across many dryland regions,

which cover over 40 % of the Earth’s surface and account

for about 30 % of global terrestrial net primary productiv-

ity, globally supporting about 2.5 billion inhabitants (Mil-

lennium Ecosystem Assessment, 2005). Over recent decades

these dryland regions have experienced growing human and

climatic pressures. The most dramatic landscape alterations

resulting from these pressures are those associated with de-

sertification, which are perceived as catastrophic and largely

irreversible changes that can ultimately lead to relatively bar-

ren ecosystem states (Schlesinger et al., 1990; Okin et al.,

2009). A common form of vegetation change in drylands in-

volves the encroachment of desert shrub species into arid and

semi-arid grasslands, which has already affected more than
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250 million hectares worldwide throughout the US, South

America, southern Africa, and Australia (D’Odorico et al.,

2012; Turnbull et al., 2014).

A classic case of vegetation shift is the shrub-

encroachment process that has been taking place over the

last 150 years in the Chihuahuan Desert in southwestern

USA and northern Mexico, where large areas of grass-

lands dominated by C4 perennial grass species (black grama,

Bouteloua eriopoda, and blue grama, B. gracilis) have

been replaced by shrublands dominated by C3 desert shrub

species (mainly creosotebush, Larrea tridentata, and honey

mesquite, Prosopis glandulosa). These changes in vegetation

have been accompanied by accelerated water and wind ero-

sion (for example, Schlesinger et al., 1990; Wainwright et

al., 2000; Mueller et al., 2007; Turnbull et al., 2010a; Ravi

et al., 2010). A complex range of mechanisms have been

suggested to explain the occurrence of this vegetation tran-

sition, including external drivers that initiate the transition,

and endogenous soil erosion–vegetation feedbacks that fur-

ther drive vegetation change (Turnbull et al., 2012). These

internal feedbacks strongly alter the organization and distri-

bution of both vegetation and soil resources (i.e. substrate,

soil moisture, and nutrients), strengthening the vegetation-

change process (Okin et al., 2009; Turnbull et al., 2010b,

2012; Stewart et al., 2014).

The onset of the grassland–shrubland transition in the Chi-

huahuan Desert is thought to have started with the intro-

duction of large numbers of domestic grazers, which may

have favoured the establishment of pioneer shrubs via the

creation of gaps (Buffington and Herbel, 1965; van Auken,

2000; Webb et al., 2003) and via a reduction in the frequency

and intensity of natural wildfires (D’Odorico et al., 2012).

Changing rainfall amount and frequency has also been in-

voked as one of the major external drivers of shrub encroach-

ment, which may contribute to vegetation change by shift-

ing competitive plant physiological advantages of grass and

desert shrub species (Gao and Reynolds, 2003; Snyder and

Tartowsky, 2006; Throop et al., 2012). However, there re-

mains a lack of consensus regarding changes in rainfall in

the southwestern USA over recent decades. While Petrie et

al. (2014) found no significant changes in precipitation at

the Sevilleta Long Term Ecological Research Site in cen-

tral New Mexico, other studies have reported significant in-

creases in both annual and winter precipitation at the Jornada

Experimental Range in southern New Mexico but concurrent

decreases in the size of discrete precipitation events (Wain-

wright, 2006; Turnbull et al., 2013).

A comprehensive understanding of how desert grasslands

are responding to the present variability on both climate

and land use is critical for environmental management, es-

pecially in consideration of uncertainty regarding future cli-

mate change across many dryland regions. Remote sensing

of vegetation provides a valuable source of information for

landscape monitoring and forecasting of vegetation change in

drylands (Okin and Roberts, 2004; Pennington and Collins,

2007; Moreno-de las Heras et al., 2012). Satellite-derived

chlorophyll-sensitive vegetation indices, such as the nor-

malized difference vegetation index (NDVI), provide impor-

tant information on vegetation structure (e.g. surface cover,

aboveground green biomass, vegetation type) and dynamics

over broad spatial domains (Anderson et al., 1993; Peters et

al., 1997; Weiss et al., 2004; Pettorelli et al., 2005; Choler et

al., 2010; Forzieri et al., 2011).

In drylands, where vegetation dynamics are particularly

well coupled with rainfall patterns, the relationship between

time series of NDVI and precipitation provides specific in-

formation on the use of water for the production and mainte-

nance of plant biomass (Pennington and Collins, 2007; No-

taro et al., 2010; Veron and Paruelo, 2010). Investigations of

the relationships between NDVI and rainfall suggest that arid

and semi-arid vegetation responds to antecedent (or preced-

ing cumulative) precipitation rather than to immediate rain-

fall, since plant growth is affected by the history of available

soil moisture (Al-Bakri and Suleiman, 2004; Schwinning and

Sala, 2004; Evans and Geerken, 2004; Moreno-de las Heras

et al., 2012). The length (or number of days) of antecedent

rainfall that best explains the NDVI (or green biomass) dy-

namics of dryland vegetation (hereafter optimal length of

rainfall accumulation, Olr) appears to be site-specific and

strongly dependent on vegetation type (Evans and Geerken,

2004; Prasad et al., 2007; Garcia et al., 2010). Herbaceous

vegetation (i.e. grass and forb life forms) and shrubs usu-

ally show important differences in the patterns of vegetation

growth and water use, which mediate the responses of plant

biomass to rainfall in drylands (Ogle and Reynolds, 2004;

Gilad et al., 2007; Pennington and Collins, 2007; Forzieri et

al., 2011; Stewart et al., 2014). Thus, the study of the rela-

tionship between the NDVI and rainfall may offer important

clues for detecting broad-scale landscape changes involving

grassland–shrubland transitions in arid and semi-arid land-

scapes.

The aim of this study is to analyse vegetation structure

and dynamics at a Chihuahuan grassland–shrubland ecotone

(McKenzie Flats, Sevilleta National Wildlife Refuge, New

Mexico, USA). To fulfill this aim we explore the relation-

ship between decade-scale (2000–2013) records of remotely

sensed vegetation greenness (MODIS NDVI) and rainfall.

Our analysis is based on a new approach that examines char-

acteristic NDVI–rainfall relationships for dominant vegeta-

tion types (i.e. herbaceous vegetation and woody shrubs) to

investigate the organization and dynamics of vegetation as a

way of evaluating how the shrub-encroachment process oc-

curs.

This paper is organized into two parts. First, we present the

conceptual underpinning and theoretical basis of our study

by using a simple, process-based ecohydrological model to

illustrate the biophysical control of the relationship between

plant biomass dynamics and antecedent rainfall for dryland

herbaceous and shrub vegetation. Secondly, we empirically

determine reference optimal lengths of rainfall accumula-
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tion (in days) for herbaceous and shrub vegetation (Olrhv

and Olrs) in a 18 km2 Chihuahuan ecotone, and use these

vegetation-type specific NDVI–rainfall metrics to (i) anal-

yse the spatial organization and dynamics of net primary

production (NPP) for herbaceous vegetation and shrubs, and

to (ii) explore the impact of inter-annual variations in sea-

sonal rainfall on the dynamics of vegetation production at

the grassland–shrubland ecotone.

2 Theoretical basis: herbaceous and shrub plant

biomass–rainfall relationships in drylands

Dryland herbaceous vegetation (i.e. grass and forb life forms)

and shrubs usually exhibit important differences in the pat-

terns of vegetation growth and water use. Herbaceous vege-

tation typically shows quick and intense growth pulses syn-

chronized with major rainfall events, while the dynamics of

plant biomass for shrubs are generally less variable in time

(Sparrow et al., 1997; Lu et al., 2003; Garcia et al., 2010).

These dissimilar growth responses are controlled biophysi-

cally by the different plant-growth and mortality rates asso-

ciated with herbaceous vegetation and shrubs. While grasses

and forbs are associated with high rates of plant growth and

mortality, shrubs are associated with comparatively lower

plant-growth and mortality rates (Ogle and Reynolds, 2004;

Gilad et al., 2007).

We use a simplified version of the dynamic ecohydro-

logical model developed by Rietkerk et al. (2002) to il-

lustrate conceptually how the vegetation-specific rates of

plant growth and mortality control the relationship between

the dynamics of aboveground biomass and antecedent rain-

fall for herbaceous vegetation and shrubs in drylands. The

model consists of two interrelated differential equations: one

describing the dynamics of vegetation (aboveground green

biomass, B, g m−2) and the other describing soil-moisture

dynamics (soil-water availability, W , mm).

Changes in plant biomass are controlled by plant growth

and mortality:

dB

dt
= gmax

W −W0

W + kw

B −mB, (1)

where plant growth is a saturation function of soil-moisture

availability, and is determined by the maximum specific

plant-growth rate (gmax, day−1), the permanent wilting point

or minimum availability of soil moisture for vegetation

growth (W0, mm), and a half saturation constant (kw, mm).

Plant senescence (biomass loss) is controlled by a plant-

specific mortality coefficient (m, day−1).

Soil-water dynamics are controlled by rainfall infiltration,

plant transpiration, and soil-moisture loss due to both deep

drainage and direct evaporation:

dW

dt
= P

B + ki · i0

B + ki
− cgmax

W −W0

W + kw

B − rwW, (2)

where water infiltration is modelled as a saturation func-

tion of plant biomass, characterized by the minimum propor-

tion of rainfall infiltration in the absence of vegetation (i0,

dimensionless), a half saturation constant (ki , g m−2), and

daily precipitation (P , mm day−1). Plant transpiration is con-

trolled by plant growth, and is modulated by a plant-water-

consumption coefficient (c, L g−1). Finally, water losses to

both deep drainage and direct evaporation are modelled as

a linear function of soil-water availability, with a rate rw
(day−1). A Maple 9.5 (Maplesoft, Waterloo, Canada) code

for this model is available for download as a supplement to

this article (Code 1).

Two sets of plant-growth and mortality coefficients were

applied to this model to simulate vegetation dynamics for

a herbaceous species (gmax = 0.32 day−1, m= 0.05 day−1)

and a shrub (gmax = 0.12 day−1, m= 0.03 day−1), fol-

lowing criteria established in previous studies (Ogle and

Reynolds, 2004; Gilad et al., 2007). Plant-biomass dynam-

ics for these two vegetation types (Fig. 1a) were modelled

using a northern Chihuahuan Desert 15-year daily precip-

itation series obtained at the Sevilleta National Wildlife

Refuge (Sevilleta LTER, http://sev.lternet.edu/data/sev-1;

mean annual rainfall 238 mm) and a set of parameters

obtained from literature suited to dryland environments:

W0 = 0.05 mm, kw = 0.45 mm, ki = 180 g m−2, i0 = 0.20,

c = 0.1 L g−1, rw = 0.1 day−1 (Rietkerk et al., 2002; Gilad

et al., 2007; Saco and Moreno-de las Heras, 2013).

Using this model, we explored the strength of the plant

biomass–precipitation relationship as a function of the length

of rainfall accumulation (Fig. 1b). We have applied Pear-

son’s R correlation between the simulated plant biomass for

both the herbaceous and the shrub species and antecedent

rainfall series using various lengths of rainfall accumula-

tion, i.e. for any time ti in the plant biomass series, the

rainfall in the preceding day (ti−1), the cumulative rainfall

in the two preceding days (ti−1:i−2), in the three preceding

days (ti−1:i−3), and so on. Modelling results show that the

plant biomass–rainfall correlation is maximized at 52 days

of cumulative rainfall for the simulated herbaceous species

(Olrhv = 52 days) and is maximized at 104 days of cumu-

lative rainfall for modelled shrub species (Olrs = 104 days;

Fig. 1b). This result indicates that the simulated herbaceous

species responds to short-term (∼2 months) antecedent rain-

fall for the production of plant biomass, while the simu-

lated shrub species responds to a longer period of antecedent

precipitation to support plant dynamics. Here, ARainhv and

ARains are defined as the antecedent rainfall series that op-

timize those vegetation-type specific relationships (i.e. time

series of precedent rainfall with accumulation lengths Olrhv

for herbaceous vegetation and Olrs for shrubs, Fig. 1a). Fur-

ther analysis using a range of plausible values for the plant-

mortality and maximum plant-growth coefficients (Fig. 1c)

indicates that Olr increases largely by reducing the charac-

teristic plant-mortality and growth rates of vegetation, and

therefore suggests a strong influence on vegetation type. Sen-
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sitivity analysis of Olr to other model parameters (Supple-

ment Fig. S1 in the online supporting information of this

study) indicates that W0, kw, ki , and c have negligible ef-

fects on simulated Olr values. Reductions on bare soil infil-

tration (i0) and increases on water loss by direct evaporation

and/or deep drainage (rw) can impact Olrhv and Olrs values,

ultimately amplifying the differences we obtained between

vegetation types. Other factors not explicitly considered in

our model, such as differences in root structure, may also re-

inforce herbaceous and shrub differences in timescale plant

responses to antecedent precipitation (Reynolds et al., 2004;

Collins et al., 2014).

The simple model presented in this study provides a good

starting point for addressing general differences in plant re-

sponses to antecedent precipitation for different vegetation

types in drylands. Overall, our modelling results illustrate

conceptually the distinct dependence of the relationship be-

tween plant biomass and antecedent precipitation on vegeta-

tion type, particularly when comparing the dynamics of dry-

land herbaceous and shrub vegetation.

In the following part of this study, we empirically deter-

mine and use metrics of reference vegetation-type specific

relationships between aboveground green biomass and an-

tecedent rainfall (i.e. optimal Olrhv and Olrs lengths, and cor-

responding ARainhv and ARains series) to explore the spa-

tial organization and NPP dynamics of herbaceous and shrub

vegetation at a semi-arid grassland–shrubland ecotone.

3 Materials and methods

3.1 Study area

This study is conducted in the Sevilleta National Wildlife

Refuge (SNWR), central New Mexico, USA, the location of

the Sevilleta Long Term Ecological Research (LTER) site.

The SNWR is located in the northern edge of the Chihuahuan

Desert, and is a transition zone between four major biomes:

the Chihuahuan Desert, the Great Plains grasslands, the Col-

orado Plateau steppe, and the Mogollon coniferous wood-

land (Fig. 2a). Livestock grazing has been excluded from the

SNWR since 1973, following 40 years of rangeland use. Due

to the biome-transition nature of the SNWR, minor variations

in environmental conditions and/or human use can result in

large changes in vegetation composition and distribution at

the refuge (Turnbull et al., 2010b). Analysis of aerial pho-

tographs and soil-carbon isotopes indicates that the extent of

desert shrublands has considerably increased over the grass-

lands in regions of the SNWR over the last 80 years (Gosz,

1992; Turnbull et al., 2008).

Our study area is an 18 km2 grassland–shrubland eco-

tone within the McKenzie Flats, an area of gently sloping

terrain on the eastern side of the SNWR (Fig. 2b). This

study area extends over two LTER core sites established

in 1999 (Fig. 2c): a desert shrubland (Creosotebush SEV

Figure 1. Simulated dryland biomass–rainfall relationships for

herbaceous and shrub vegetation: (a) modelled biomass dynamics

for a herbaceous (green) and a shrub (red) species, (b) strength

of the biomass–precipitation relationship (Pearson’s R correlation)

using different lengths of rainfall accumulation for the simulated

herbaceous and shrub species (values above the dotted grey line

are significant at P < 0.05), and (c) optimal rainfall accumulation

length (Olr) as a function of the plant-growth and mortality rates.

ARainhv and ARains lines in panel (a) represent the antecedent

rainfall series that best correlate with the simulated series of herba-

ceous and shrub biomass, respectively (i.e. time series of prece-

dent rainfall with rainfall accumulation lengths Olrhv for herba-

ceous vegetation and Olrs for shrubs). The green and red dots in

panel (c) indicate optimal rainfall accumulation lengths obtained

for the simulated herbaceous (Olrhv, 52 days) and shrub (Olrs, 104

days) species, respectively. The (grey) “vegetation extinction” area

in panel (c) reflects combined values of plant-growth and mortal-

ity rates that do not support long-term vegetation dynamics for the

simulated rainfall conditions.
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Figure 2. Study area: (a) location of the Sevilleta National Wildlife Refuge (SNWR) and distribution of major New Mexico biomes, (b)

regional location of the study area (McKenzie Flats, SNWR), and (c) detailed location of the study site (18 km2 area) and general view of

the reference SEV LTER Black Grama (right) and Creosotebush (left) core sites. Map (a) follows the Sevilleta LTER classification of New

Mexico biomes (Sevilleta LTER, http://sev.lternet.edu/content/new-mexico-biomes-created-sevlter). Source for background image in panels

b) and (c): 2009 National Aerial Imagery Program (USDA Farm Service Agency).

LTER core site) dominated by creosotebush, and a grass-

land (Black Grama SEV LTER core site) dominated by black

grama. The central and northeastern parts of the study area

are mixed black and blue grama (Bouteloua eriopoda and

B. gracilis, respectively) grasslands. The abundance of cre-

osotebush (Larrea tridentata) in the grasslands is generally

low, although smaller shrubs and succulents (e.g. Gutier-

rezia sarothrae, Ephedra torreyana, Yucca glauca, Opun-

tia phaeacantha) can be common. The abundance of peren-

nial grass species decreases to the southern and southwest-

ern parts of the study area, where creosotebush stands are

widely distributed with in general low (although variable in

time) amounts of annual forbs and grasses. Soils are Tur-

ney sandy loams (Soil Survey Staff, 2010) with about 60 %

sand and 20 % silt content (Muldavin et al., 2008; Turnbull

et al., 2010b). The climate is semi-arid, with mean annual

precipitation of ∼ 240 mm that is made up of 57 % falling

in the form of high-intensity convective thunderstorms dur-

ing the summer monsoon (June–September) and the remain-

der being received as low-intensity frontal rainfall and snow

(October–May). The mean annual daily temperature is 14 ◦C,

with a winter average of 6 ◦C and a summer average of 24 ◦C.

Daily air temperature rises over 10 ◦C in the beginning of

April, leading to the onset of the yearly cycles of vegetation

growth (Weiss et al., 2004). Vegetation growth in the study

area generally peaks between July and September, coinciding

with the summer monsoon (Muldavin et al., 2008).

3.2 Vegetation measurements (remotely sensed and

ground-based) and rainfall data

We use temporal series of NDVI as a proxy of aboveground

green biomass in our study area. NDVI is a remotely sensed

chlorophyll-sensitive vegetation index that correlates with

www.biogeosciences.net/12/2907/2015/ Biogeosciences, 12, 2907–2925, 2015
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green biomass in semi-arid environments (Anderson et al.,

1993; Huete et al., 2002; Veron and Paruelo, 2010). Differ-

ences in soil background brightness can generate important

uncertainties in relating NDVI levels to dryland vegetation,

especially when vegetation cover is low and soil type is het-

erogeneous in space (Okin et al., 2001). Despite these un-

certainties, multiple studies have demonstrated the useful-

ness of NDVI for examining primary production and veg-

etation structure in arid and semi-arid ecosystems (for ex-

ample, Weiss et al., 2004; Choler et al., 2010; Moreno-de

las Heras et al., 2012), and particularly in Chihuahuan land-

scapes with sparse vegetation (30–50 % cover) similar to

those included in this study (Peters and Eve, 1995; Peters et

al., 1997; Pennington and Collins, 2007; Notaro et al., 2010).

We compiled decade-scale (2000–2013) series of NDVI with

a 16-day compositing period from the MODIS Terra satellite

(MOD13Q1 product, collection 5, approx. 250 m resolution).

We used the NASA Reverb search tool (NASA EOSDIS,

http://reverb.echo.nasa.gov/) to download the corresponding

MODIS tiles. The data were re-projected to UTM WGS84

and further resampled to fit our 18 km2 study area (335 pix-

els; 231.5 m pixel resolution after re-projection to UTM co-

ordinates). We checked the reliability layer of the acquired

MODIS products and discarded those NDVI values that did

not have the highest quality flag value (less than 1 % of data).

Missing values were interpolated using a second-order poly-

nomial. To reduce inherent noise, the NDVI time series were

then filtered by applying a Savitzky–Golay smoothing algo-

rithm, as recommended by Choler et al. (2010).

To validate remote-sensing analysis of the spatial distri-

bution of vegetation types, the dominance of herbaceous

vegetation, shrubs, perennial grass, forbs, and creosotebush

plants was recorded at a set of 27 control points (Fig. 2c) us-

ing the point-intercept method (Godin-Alvarez et al., 2009).

Vegetation presence/absence of the aforementioned vegeta-

tion types was recorded every metre using a 2 cm diameter,

1.2 m tall, metal rod pointer along five 50 m long linear tran-

sects that were laid at each control point at random directions

(without overlapping). Dominance was determined as the rel-

ative abundance of a particular vegetation type in relation to

the total amount of vegetated points found per linear transect.

Reference information on aboveground net primary pro-

duction (NPP) was obtained from a pre-existing, decade-

scale (2000–2011) data set (Sevilleta LTER, http://sev.

lternet.edu/data/sev-182). This data set was recorded in a

set of 10 sampling webs distributed within the Black Grama

and Creosotebush SEV LTER core sites (five webs per core

site, Fig. 2c). Each sampling web consisted of four 25 m2

square sub-plots located in each cardinal direction around the

perimeter of a 200 m diameter circle, with four 1 m2 quadrats

spatially distributed in the internal corners of the 25 m2 sub-

plots. A detailed description of the methods that were applied

for the development of the SEV LTER field NPP data set can

be found in Muldavin et al. (2008). Briefly, species-specific

plant standing biomass was estimated three times per year (in

February–March, May–June, and September–October) using

allometric equations, and NPP was calculated seasonally for

spring (the difference in plant biomass form March–May),

summer (from June to September), and autumn/winter (from

October to February). For this study, we have used lumped

records of annual net primary production (ANPP) for herba-

ceous vegetation and shrubs that were spatially averaged at

the core site scale. ANPP for each yearly cycle of vegetation

growth has been calculated as the sum of the seasonal NPP

records (i.e. spring+ summer+ autumn/winter).

Daily rainfall information for this study was obtained from

an automated meteorological station located in the study site

(the Five Points weather station, SEV LTER, Fig. 2c; Sevil-

leta LTER, http://sev.lternet.edu/data/sev-1). The meteoro-

logical station is equipped with a rain gauge that records pre-

cipitation on a 1 min basis during periods of rain.

3.3 Reference NDVI–rainfall metrics for herbaceous

vegetation and shrubs

We explored reference NDVI–rainfall relationships for

herbaceous vegetation and shrubs in the Black Grama and

Creosotebush SEV LTER core sites (where vegetation is

dominantly herbaceous and shrub, respectively) using the

2000–2013 NDVI time series (averaged from five MODIS

pixels in each site, covering a total of 1200 m2 per site).

Pearson’s correlations between NDVI and antecedent pre-

cipitation series were calculated for the two sites using var-

ious lengths of rainfall accumulation (1–300 days). Optimal

lengths of rainfall accumulation for herbaceous vegetation

and shrubs (Olrhv and Olrs, respectively) were then deter-

mined as the length of rainfall accumulation (in days) of the

antecedent precipitation series that maximized the correla-

tions between NDVI and rainfall in the black grama- and the

creosotebush-dominated core sites, respectively. Growth of

non-dominant herbaceous vegetation in arid shrublands can

make the detection of shrub-specific NDVI–rainfall metrics

(i.e. Olrs) difficult due to the emergence of secondary Olrhv

values, particularly in wet years with strong herbaceous pro-

duction (Moreno-de las Heras et al., 2012). We applied de-

tailed analysis of the NDVI–rainfall relationships in the core

sites for each annual cycle of vegetation growth to facilitate

discrimination of the Olrhv and Olrs metrics. Our approach

assumes linearity between rainfall and both NDVI values and

green biomass, which has been broadly demonstrated to oc-

cur for dryland vegetation (Evans and Geerken, 2004; Choler

et al., 2010; Notaro et al., 2010; Veron and Paruelo, 2010;

Moreno-de las Heras et al., 2012) and particularly in our

grassland–shrubland desert ecotone (Pennington and Collins,

2007; Muldavin et al., 2008).

The optimal antecedent rainfall series determined in the

core sites for herbaceous vegetation (ARainhs , with Olrhv

length of rainfall accumulation) and shrubs (ARains, with

Olrs rainfall accumulation length) were further used in our

18 km2 ecotone to classify landscape types and to decompose
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local NDVI signals into greenness components for herba-

ceous and shrub vegetation.

3.4 Spatial distribution of vegetation types and

landscape classification

We applied analysis of the relationship between local se-

ries of NDVI and the reference ARainhv and ARains an-

tecedent rainfall series to determine the spatial distribution

of dominant vegetation and classify landscape types over our

18 km2 ecotone study area. This analysis builds on the as-

sumption that spatial variations in the NDVI–rainfall rela-

tionship reflect spatial differences in the dominance of vege-

tation types. We assume that areas dominated by herbaceous

vegetation (or shrubs) will show a strong NDVI–rainfall re-

lationship for the herbaceous-characteristic ARainhv (or the

shrub-characteristic ARains) antecedent rainfall series along

the study period.

The strength of the relationship between NDVI and

rainfall (quantified using Pearson’s R correlation between

NDVI and antecedent precipitation) was calculated for every

MODIS pixel in the study area using the reference ARainhv

and ARains antecedent rainfall series. Correlation values

were determined for each cycle of vegetation growth (April–

March) in 2000–2013. In order to reduce data dimension-

ality, we applied principal component analysis (PCA) using

the calculated correlation coefficients as variables for analy-

sis (28 variables resulting from the two vegetation-specific

antecedent rainfall series and the 14 growing cycles). We

studied further the relationship between the main PCA fac-

tors and ground-based dominance of vegetation types us-

ing the reference vegetation distribution data set (27 con-

trol points). Finally, we used the empirical relationships be-

tween vegetation dominance and the main PCA factors to

discriminate differentiated landscape types across the study

area: grass-dominated (GD), grass-transition (GT), shrub-

transition (ST), and shrub-dominated (SD) landscapes.

3.5 NDVI decomposition and transformation into

herbaceous and shrub ANPP components

Time series of NDVI at any specific location reflects addi-

tive contributions of background soil and the herbaceous and

woody shrub components of vegetation (Cbs,Chv, and Cs, re-

spectively) for that particular site (Lu et al., 2003):

NDVI(t)= Cbs(t)+Chv(t)+Cs(t). (3)

Montandon and Small (2008) carried out in situ measure-

ments of field spectra convolved by the MODIS bands to

determine the background soil contribution to NDVI in the

SNWR. They obtained a soil NDVI value of 0.12 for Tur-

ney sandy loam soils, which are broadly distributed across

the McKenzie Flats. Analysis of the local MODIS NDVI

time series revealed that this soil background reference value

broadly matches the minimum NDVI values for our study

area. Application of reference soil values in NDVI decom-

position and normalization methodologies provides an effi-

cient standardization approach for characterizing the back-

ground soil baseline, particularly in areas with homogeneous

soils (Carlson and Ripley, 1997; Roderick et al., 1999; Lu

et al., 2003; Choler et al., 2010). Soil background NDVI

may change with soil-moisture content (Okin et al., 2001).

Although this effect can be especially important for dark

organic-rich soils, soil-moisture variations have shown lit-

tle impact in desert-type bright sandy and sandy-loam soils,

like those represented in the study area (Huete et al., 1985).

Therefore, a constant value of 0.12 was applied to subtract

the background soil baseline (Cbs) from the NDVI time se-

ries, obtaining a new set of soil-free series (NDVIO):

NDVIO (t)= Chv(t)+Cs(t). (4)

We applied the reference herbaceous- and shrub-

characteristic antecedent rainfall series, ARainhv and

ARains, to partition single time series of soil-free NDVI

(NDVIO) into separate contributions for herbaceous vege-

tation (Chv) and woody shrubs (Cs) across our study area.

This approach is based on the assumption that the primary

determinant of the dynamics of both NDVI and green

biomass in Chihuahuan landscapes is the rainfall pattern

(Huenneke et al., 2002; Weiss et al., 2004; Muldavin et al.,

2008; Pennington and Collins, 2007; Notaro et al., 2010;

Forzieri et al., 2011), and therefore the partial contributions

of herbaceous vegetation and shrubs to NDVI can be

estimated as a function of their characteristic dependency

on antecedent rainfall. In other words, we assume that

Chv and Cs for any ti are proportional to ARainhv and

ARains. The NDVI components for herbaceous vegetation

and shrubs were partitioned using the following two-step

NDVI-decomposition procedure (Maple 9.5 code for anal-

ysis provided as online supporting material of this article;

Code 2).

First, we applied first-order least-squares optimization of

the relationship between soil-free NDVI (NDVIO) and the

vegetation-type specific antecedent rainfall series (ARainhv

and ARains for herbaceous vegetation and shrub, respec-

tively):

NDVIO (t)= hARainhv (t)+ sARains(t), (5)

where h and s represent vegetation-type specific rainfall–

NDVI conversion coefficients for the herbaceous and shrub

components.

Secondly, we used the determined coefficients h and s to

calculate the weights of Chv and Cs on the time series (i.e.

the predicted percentage contribution of each vegetation type

over the predicted totals for any ti). Seasonal variations in

other environmental factors (e.g. temperature, day length)

may influence NDVI dynamics for Chihuahuan vegetation,

shaping the responses of vegetation to precipitation (Weiss

et al., 2004; Notaro et al., 2010). In order to preserve the
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observed seasonality of the original NDVI time series in the

decomposed signals for herbaceous and shrub vegetation, the

predicted weights (or percentage contributions) of the fitted

vegetation components were reassigned to the NDVI levels

of the original time series, obtaining the final NDVI com-

ponents for herbaceous vegetation and shrubs (Chv, and Cs,

respectively). Computed soil background baseline (Cbs) plus

the partitioned NDVI components for herbaceous vegetation

(Chv) and shrubs (Cs) totals the original NDVI levels of the

temporal series for any point in time and space.

The 2000–2013 time series of NDVI were decomposed

into separate contributions of herbaceous vegetation and

shrubs for the Black Grama and Cresotebush SEV LTER

core sites. We used the reference 2000–2011 field NPP

data set to study the relationship between the decomposed

NDVI time series and ground-based estimates of herbaceous

and shrub NPP for the core sites. The sum of the herba-

ceous and the shrub NDVI components (
∑

NDVIveg.type)

were calculated for each growing cycle of vegetation (April–

March). We further determined the relationships between

field ANPP estimates of herbaceous and shrub vegeta-

tion and
∑

NDVIveg.type. Finally, we applied the signal-

decomposition procedure to every single NDVI time series of

the 335 MODIS pixels contained within our study area. The

established core site NDVI–ANPP relationships were used

to estimate herbaceous and shrub ANPP across the 18 km2

study site.

3.6 Spatiotemporal dynamics of vegetation production

and impact of seasonal precipitation on herbaceous

and shrub ANPP

We used the remotely sensed ANPP estimations and

landscape-type classification (GD, grass-dominated; GT,

grass-transition; ST, shrub-transition; and SD, shrub-

dominated landscapes) to analyse the spatiotemporal dynam-

ics of ANPP along our study grassland–shrubland ecotone,

applying repeated-measures ANOVA with time as within

subjects factor and landscape type as between subjects fac-

tor. Departures from sphericity were corrected using the

Greenhouse–Geisser F-ratio method for repeated-measures

ANOVA (Girden, 1992). The 2000–2013 activity of the

shrub-encroachment phenomenon for the established land-

scape types (GD, GT, ST, and SD) was explored applying

Pearson’s R correlation between shrub contribution to total

ANPP and time.

We used three different seasonal precipitation metrics to

analyse the impact of inter-annual variations in seasonal pre-

cipitation on the production of herbaceous and shrub veg-

etation at our ecotone: (i) preceding non-monsoonal rain-

fall (RainPNM, from October to May) that takes place be-

fore the summer peak of vegetation growth, (ii) summer

monsoonal precipitation (RainSM, from June to September),

and (iii) late non-monsoonal rainfall (RainLNM, from Octo-

ber to March) that takes place at the end of the annual cy-

cles of vegetation growth. The effects of seasonal precip-

itation on herbaceous and shrub ANPP for the established

landscape types (grass-dominated, grass-transition, shrub-

transition, and shrub-dominated landscapes) were explored

by applying Pearson’s R correlation. Effect significance and

size was determined using a general linear model (GLM)

that includes the different sources of seasonal precipitation

(RainPNM, RainSM, and RainLNM) as covariates, landscape

type (LT) as a factor, and the interaction terms between

landscape type and seasonal precipitation (LT : RainPNM,

LT : RainSM, and LT : RainLNM).

4 Results

4.1 Patterns of greenness and reference NDVI–rainfall

metrics in the core sites

Inter- and intra-annual variations of NDVI show similar pat-

terns of vegetation greenness for both the Black Grama and

the Creosotebush core sites (Fig. 3a). The signal generally

peaks slightly in spring (May) and strongly in summer (July–

September). The lowest NDVI values are observed between

February and April. Summer peaks in NDVI values are, how-

ever, less marked in the Creosotebush core site. In addition,

the NDVI signal for the creosotebush-dominated site gener-

ally shows a autumn (October–November) peak that is es-

pecially important during particular growing cycles (2000–

2001, 2001–2002, 2004–2005, 2007–2008, 2009–2010).

Correlations between NDVI and antecedent precipitation

using rainfall-accumulation lengths of 1–300 days indicate

that an optimal short-term cumulative rainfall period of

57 days best explains the NDVI variations for the domi-

nant herbaceous vegetation of the grassland site (ARainhv

antecedent rainfall series, with Olrhv accumulation length;

Fig. 3; see also Supplement Fig. S2 in the online support-

ing information of this study for details on the annual cy-

cles of vegetation growth). For the Creosotebush core site

(with dominant shrub vegetation and subordinate forbs and

grasses), the short-term, 57-day antecedent rainfall series

ARainhv also has an important impact on the strength of the

NDVI–rainfall relationship, particularly for three consecu-

tive growing cycles with strong summer precipitation (2006–

2007, 2007–2008, and 2008–2009; summer precipitation for

the period is 40 % above the long-term mean). However, the

NDVI–rainfall correlation in this shrub-dominated site gen-

erally peaks using a much longer optimal cumulative rainfall

period of nearly 145 days (ARains series, with Olrs length).

4.2 Spatial distribution of vegetation types and

landscape classification

PCA of the NDVI–rainfall correlation coefficients (per grow-

ing cycle) for the reference 57- and 145-day antecedent rain-

fall series (i.e. ARainhv and ARains with Olrhv and Olrs rain-

fall accumulation lengths, respectively, for all MODIS pix-
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Figure 3. Reference NDVI–rainfall relationships at the SEV LTER Black Grama and Creosotebush core sites: (a) 2000–2013 MODIS NDVI

time series for the core sites and (b) strength of the NDVI–rainfall relationship (Pearson’s R correlation) for the core sites using different

lengths of rainfall accumulation (maximum correlations, Rmax, for the annual cycles of vegetation growth are shown together with the 2000–

2013 mean trend; detailed correlograms for each growing cycle can be found in Supplement Fig. S1). R values above the dotted grey line are

significant at P < 0.05. ARainhv and ARains lines in panel (a) represent the antecedent rainfall series that best correlate with the NDVI series

for the Black Grama and Creosotebush Core sites (i.e. time series of precedent rainfall with rainfall accumulation lengths Olrhv and Olrs,

respectively). Reference Olrhv and Olrs values in panel (b) represent the optimal rainfall accumulation lengths for herbaceous vegetation (57

days) and shrubs (145 days), respectively.

els contained within our study area) shows that PCA fac-

tor 1 (about 40 % of total data variance) reflects a land-

scape gradient that discriminates the two reference responses

of vegetation greenness to antecedent rainfall (Fig. 4a and

b). The correlation between the NDVI and the short-term

antecedent rainfall series ARainhv increases to the negative

side of factor 1 (particularly for growing cycles 2001–2002,

2002–2003, 2005–2006, and 2012–2013), while the correla-

tion with the 145-day antecedent rainfall series (ARains) in-

creases to the positive side of the this factor (particularly for

cycles 2000–2001, 2002–2003, 2005–2006, and 2006–2007;

Fig. 4b). Analysis of the relationship between PCA factor 1

and vegetation dominance for the ground-based set of control

points indicates that this landscape gradient is explained by

the field distribution of dominant vegetation types since the

dominance of herbaceous vegetation and shrubs increases to

the negative and positive side of PCA factor 1, respectively

(R2 approx. 0.90, Fig. 4c).

Four different landscape types (GD, GT, ST, and SD) are

defined in the 18 km2 study area as determined by the spatial

projection of the relationship between PCA factor 1 and field

dominance of herbaceous and shrub vegetation (Fig. 4c and

d). SD, ST, and GT landscapes are distributed in the south-

western part of the study site, while GD landscapes are lo-

cated in the central and northeastern parts of the area (Fig. 4d

and e).

4.3 NDVI transformation into herbaceous and shrub

ANPP components

Temporal decomposition of NDVI into partial herbaceous

and shrub vegetation components results in very different

outputs for the reference Black Grama and Creosotebush

core sites (Fig. 5a). The herbaceous component (which is

derived from the relationship between NDVI and the refer-

ence 57-day antecedent rainfall series, ARainhv) prevails in

the grass-dominated reference site, while the shrub compo-

nent (which is a function of the reference 145-day antecedent

rainfall series, ARains) comprises the leading NDVI fraction

in the shrub-dominated reference site.

The annual sums of herbaceous and shrub NDVI compo-

nents for the reference core sites show a strong linear agree-

ment (R2
≥ 0.65; P < 0.001) with ground-based measure-

ments of ANPP (Fig. 5b), while the remote-sensing ANPP

estimations yield a root-mean-square error of 26 g m−2

(NRMSE 12 %, Fig. 5c).

Spatial projection of the reference NDVI–ANPP relation-

ships across the 18 km2 study area displays a contrasted

distribution of mean 2000–2013 ANPP for herbaceous and

shrub vegetation (Fig. 5d and e). Herbaceous ANPP is mainly

distributed in the central and northeastern parts of the study

site, contributing to> 80 % of total ANPP. Conversely, shrub

ANPP is concentrated in the southwestern edge of the study

area.
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Figure 4. Principal component analysis (PCA) of the NDVI–rainfall correlation coefficients for the herbaceous- and shrub-specific antecedent

rainfall series ARainhv and ARains (57- and 145-day cumulative rainfall series, respectively) and resulting landscape-type classification

across the 18 km2 study area: (a) PCA projection of cases (MODIS pixels), (b) PCA projection of variables (per growing cycle NDVI–

antecedent rainfall correlation scores), (c) landscape-type classification (GD, grass-dominated; GT, grass-transition; ST, shrub-transition;

and SD, shrub-dominated landscapes) as a function of the relationship between PCA factor 1 and field-estimated vegetation dominance for

a reference set of 27 control points, (d) spatial distribution of landscape types in the study area, and (e) general view and characteristics of

the landscape types. MODIS pixel locations for the ground control points are highlighted in panel (a). Vector labels in panel (b) indicate

the dates of the yearly cycles of vegetation growth (April–March). Source for background image in panel (d): 2009 National Aerial Imagery

Program (USDA Farm Service Agency).

4.4 ANPP spatiotemporal dynamics and impact of

seasonal precipitation on herbaceous and shrub

primary production

Remotely sensed estimations of ANPP are significantly im-

pacted by landscape type (F3, 334 = 48.6, P < 0.01), with

grass-dominated sites supporting in general higher levels

of vegetation production (Fig. 6a). However, landscape-type

effects are variable in time (landscape type× time inter-

action: F14, 1515 = 57.2, P < 0.01). Year-to-year variabil-

ity of ANPP is particularly large for the grass-dominated

sites, which show higher levels of ANPP than the transition

and shrub-dominated landscapes for highly productive years

(Fig. 6a). For growing cycles with low primary production

there are no significant ANPP differences or the differences

are reversed, with shrub-dominated sites showing higher pro-

duction than grass-dominated sites (e.g. 2003–2004 cycle,

Fig. 6a).

Analysis of the temporal evolution of shrub contribution

to total ANPP over 2000–2013 reflects significant (although

very weak) positive correlations with time for the grass- and
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Figure 5. NDVI decomposition and transformation into partial annual net primary production (ANPP) components for herbaceous and

shrub vegetation: (a) decomposed NDVI time series of herbaceous and shrub vegetation for the reference SEV LTER Black Grama and

Creosotebush core sites, (b) relationships between field ANPP and the (per growing cycle) annual integrals of herbaceous and shrub NDVI

components for the SEV LTER core sites, (c) remotely sensed ANPP estimates against field ANPP determinations (root-mean-square error,

RMSE, and normalized error, NRMSE, of the estimates are shown within the plot), (d) remotely sensed ANPP estimations of herbaceous

and shrub vegetation (mean for the 2000–2013 series), and (e) herbaceous and shrub contribution to total ANPP (mean for the 2000–2013

series) across the 18 km2 study area.

shrub transition landscapes (Fig. 6b). The same analysis at

the individual pixel level, however, does not show any signif-

icant correlations between shrub contribution to total ANPP

and time.

Exploratory analysis of the influence of seasonal pre-

cipitation on remotely sensed estimations of ANPP indi-

cates different responses for herbaceous and shrub vegetation

(Fig. 7). Herbaceous ANPP strongly correlates with mon-

soonal summer precipitation for all landscape types (Fig. 7a).

The slope of the relationship between herbaceous ANPP

and monsoonal summer (June–September) precipitation de-

creases for the shrub-transition and shrub-dominated land-

scapes. Conversely, shrub ANPP strongly correlates with

both preceding non-monsoonal (October–May) and mon-

soonal summer (June–September) precipitation for all land-

scape types (Fig. 7b).

General linear model results confirm the exploratory ob-

servations of the relationships between remotely sensed es-

timations of ANPP and seasonal precipitation (Table 1).

Model results identify both monsoonal summer precipita-

tion (RainSM) and the interaction between RainSM and land-

scape type as the most important contributors (effect size, η2

> 10 %; P < 0.001) to the total variance comprised in ANPP

data for herbaceous vegetation. Similarly, non-monsoonal

summer precipitation (RainPNM) and monsoonal summer
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Figure 6. Spatiotemporal dynamics of remotely sensed ANPP: (a) ANPP differences between landscape types (grass-dominated, grass-

transition, shrub-transition, and shrub-dominated landscapes) over 2000–2013 and (b) 2000–2013 temporal variations of the shrub contribu-

tion to total ANPP for the different landscape types (Pearson’s R correlations of shrub ANPP contributions with time). Different letters in

panel (a) for each cycle of vegetation growth indicate significant differences between landscape types at P < 0.05 (tested using repeated-

measures ANOVA and post hoc Tukey HSD tests). Dotted lines in panel (b) represent weak (R < 0.40) correlations. Displayed correlations

are significant at P < 0.05. Numbers in plot (b) indicate correlation coefficients.

precipitation (RainSM) are identified as the leading contribu-

tors to shrub ANPP.

5 Discussion

5.1 Vegetation-growth patterns and reference

NDVI–rainfall metrics for herbaceous and shrub

vegetation

Analysis of time series of NDVI provides important informa-

tion on the dynamics of vegetation growth in drylands (Pe-

ters et al., 1997; Holm et al., 2003; Weiss et al., 2004; Choler

et al., 2010). NDVI trends in the grass-dominated site show

strong peaks centred in the summer season (Fig. 3a), which

agrees with both field and remotely sensed observations of

the dynamics of aboveground biomass for desert grasslands

dominated by Bouteloua eriopoda and B. gracilis in the area

(Peters and Eve, 1995; Huenneke et al., 2002; Muldavin et

al., 2008; Notaro et al., 2010). For the shrub-dominated site,

summer peaks in the NDVI signal are smaller, and for par-

ticular years both spring and late-autumn peaks can exceed

summer greenness. Accordingly, the timing of plant growth

for Larrea tridentata (which dominates the reference shrub-

land site) has been shown to vary from year to year, since

this species has the ability to shift the temporal patterns of

vegetation growth to take advantage of changes in resource

availability (Fisher et al., 1988; Reynolds et al., 1999; Weiss

et al., 2004; Muldavin et al., 2008).

The analysis of the relationships between NDVI and pre-

cipitation provides further insights into plant water-use pat-

terns and, hence, on vegetation function and structure (Pen-

nington and Collins, 2007; Veron and Paruelo, 2010; No-

taro et al., 2010; Garcia et al., 2010; Forzieri et al., 2011;

Moreno-de las Heras et al., 2012). Temporal trends in NDVI

for the reference grass- and shrub-dominated SEV LTER

sites are explained by antecedent (or preceding cumulative)

rainfall amounts, reflecting the coupling of the history of

plant-available soil moisture with vegetation growth (Fig. 3).

Correlations between NDVI and precipitation indicate that

plant-growth pulses for the grass-dominated site are associ-

ated with short-term antecedent rainfall (ARainhv series; 57

days optimal length, Olrhv). For the shrub-dominated land-

scape, vegetation greenness shows a strong association with

longer-term antecedent precipitation (ARains series; optimal

length 145 days, Olrs), although, importantly, NDVI dy-

namics for this site also correlate with the 57-day cumula-

tive rainfall series. Previous work on the analysis of NDVI–

rainfall relationships found similar variations in the length of

the antecedent rainfall series that best explain the dynamics

of vegetation greenness, suggesting that such differences re-

sult from site variations in dominant vegetation (Evans and

Geerken, 2004; Prasad et al., 2007; Garcia et al., 2010).

Given the strong relationship between time-integrated

NDVI values and ground-based ANPP estimations for our

site (Fig. 5b), our herbaceous and shrub exploratory mod-

elling results provide a biophysical explanation for the
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Figure 7. Scatter plots and correlations (Pearson’s R) between remotely sensed ANPP estimations and seasonal precipitation (preceding

non-monsoonal, summer monsoonal, and late non-monsoonal rainfall) for the different landscape types (grass-dominated, grass-transition,

shrub-transition, and shrub-dominated landscapes): (a) herbaceous ANPP and (b) shrub ANPP. Solid and dotted lines represent strong

(R ≥ 0.40) and weak (R < 0.40) correlations, respectively. Displayed correlations are significant at P < 0.05. Numbers within the plots

indicate correlation coefficients.

range of variations found in the NDVI–rainfall relationships

(Fig. 1). The length of the cumulative precipitation series

that optimizes the relationship between plant biomass and

antecedent rainfall (Olr) appears to be a function of the char-

acteristic water-use and plant-growth pattern of dryland veg-

etation, that are largely influenced by the plant-growth and

mortality rates of vegetation (Fig. 1c). Vegetation growth and

water use strongly differ for herbaceous and shrub life forms

in drylands (Sparrow, 1997; Ogle and Reynolds, 2004; Gi-

lad et al., 2007; Garcia et al., 2010), in which case plant

biomass dynamics respond to short-term and long-term an-

tecedent precipitation, respectively (Fig. 1a–b). Olr varia-

tions in the reference SEV LTER core sites may, therefore,

be expressed as a function of the dominant vegetation types

(Fig. 3): the strong and quick responses of greenness to

short-term precipitation (ARainhv) in the grass-dominated

Black Grama core site characterize herbaceous growth for

the area, while the slow responses of NDVI to medium-

term precipitation (ARains) in the shrub-dominated Cresote-

bush core site define the characteristic pattern of vegetation

growth for shrubs in the ecotone. The high correlation be-

tween ARainhv and NDVI values in the shrub-dominated

Creosotebush core site (Fig. 3b) can be explained by the

growth of non-dominant herbaceous vegetation (mainly an-

nual forbs), which can be especially important during wet

years (Muldavin et al., 2008; Baez et al., 2012). Similarly,

Moreno-de las Heras et al. (2012) found, in dry open shrub-

lands of central Australia (Olrs values about 220 days), the

emergence of secondary Olrhv metrics on the study of lo-

cal NDVI–rainfall relationships (approx. 85-day antecedent

rainfall length) caused by the growth of non-dominant herba-

ceous vegetation. Overall, Olr values determined for herba-

ceous and shrub vegetation in this work are in agreement

with the range of characteristic antecedent rainfall series re-

ported in other studies to best describe green biomass dy-

namics for arid and semi-arid grasslands (1–3 months) and

woody shrublands (4–8 months) (Evans and Geerken, 2004;

Munkhtsetseg et al., 2007; Garcia et al., 2010; Moreno-de las

Heras et al., 2012).
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Table 1. Main effects and interactions of seasonal precipita-

tion (preceding non-monsoonal rainfall, October–May; monsoonal

summer rainfall, June–September; late non-monsoonal rainfall,

October–March), and landscape type (four levels: grass-dominated,

grass-transition, shrub-transition, and shrub-dominated landscapes)

on remote-sensing-estimated annual (per growing cycle, April–

March) net primary production for herbaceous vegetation and

shrubs.

F df P η2 (%)

Herbaceous vegetation ANPPr.sensing

RainPNM (Oct–May) 194.2 1 0.000 4.2

RainSM (Jun–Sep) 1483.4 1 0.000 25.4

RainLNM (Oct–Mar) 129.3 1 0.000 2.0

LT 35.9 3 0.000 2.3

LT : RainPNM (Oct–May) 122.4 3 0.000 7.8

LT : RainSM (Jun–Sep) 282.4 3 0.000 16.2

LT : RainLNM (Oct–Mar) 1.1 3 0.326 0.0

Shrubs ANPPr.sensing

RainPNM (Oct–May) 1661.2 1 0.000 27.7

RainSM (Jun–Sep) 1720.8 1 0.000 28.4

RainLNM (Oct–Mar) 7.1 1 0.010 0.1

LT 2.9 3 0.030 0.2

LT : RainPNM (Oct–May) 6.6 3 0.000 0.4

LT : RainSM (Jun–Sep) 46.2 3 0.000 3.0

LT : RainLNM (Oct–Mar) 31.9 3 0.000 2.1

Abbreviations: ANPPr.sensing, remotely sensed annual net primary production;

RainPNM (Oct–May), preceding non-monsoonal rainfall; RainSM (Jun–Sep),

monsoonal summer rainfall; RainLNM (Oct–Mar), late non-monsoonal rainfall;

LT, landscape type; “:”, interaction terms; η2, eta squared (effect size).

Notes: η2 values in bold are > 10 % (effects that contribute more than 10 % to

the total variance comprised in ANPPr.sensing).

5.2 Spatial distribution and net primary production of

herbaceous vegetation and shrubs

Our results indicate that the relationship between temporal

series of remotely sensed NDVI and antecedent precipitation

is highly sensitive to spatial differences in dominant vegeta-

tion (Fig. 4). The main PCA factor (explaining about 40 %

variance in data) extracted using the annual NDVI responses

(i.e. the Pearson’s R coefficients) to the reference 57- and

145-day characteristic antecedent rainfall series (ARainhv

and ARains series, respectively) accurately discriminates the

behaviour of herbaceous and shrub vegetation for the 18 km2

study area (Fig. 4b–c), hence providing a robust approach

for classifying landscapes as a function of the dominance of

vegetation types using coarse-grained remotely sensed data

(Fig. 4d). This parsimonious approach offers a practical al-

ternative to other more complex remote-sensing methodolo-

gies for the analysis of the spatial distribution of vegetation

types in mixed systems, such as spectral mixture analysis

(SMA; Smith et al., 1990), which may be difficult to apply in

this Chihuahuan case study since both the mixed nature and

fine-grained distribution of vegetation in the area (patches

of grass and shrubs are typically < 1 m2 and 0.5–5 m2, re-

spectively; Turnbull et al., 2010b) can impose serious draw-

backs on the detection of reference spectral signatures for

pure herbaceous and shrub vegetation using coarse-grained

MODIS data. Implementing SMA-based approaches for the

analysis of vegetation distribution and landscape classifica-

tion in drylands using medium- and coarse-grained data is

very challenging since it requires significant amounts of an-

cillary data (e.g. laboratory-based or field multi-date spectra

for vegetation types) to solve data uncertainties generated by

surface heterogeneity, which is often not feasible (Somers et

al. 2011).

The relationships of vegetation greenness to ARainhv and

ARains also provide criteria for decomposing and transform-

ing the NDVI signal into structural components of primary

production for this study. Lu et al. (2003) applied seasonal

trend decomposition to partition NDVI into (cyclic) herba-

ceous and (trend) woody vegetation in Australia. They as-

sumed a long-term weak phenological wave and a strong an-

nual response for determining the shrub and herbaceous com-

ponents of vegetation, respectively. Our approach relies on

the use of differences in biophysical properties of herbaceous

and shrub vegetation related to the coupling between vege-

tation growth and precipitation for decomposing the NDVI

signal, rather than apparent differences in the seasonality of

vegetation greenness alone. As expected, signal decomposi-

tion outcomes indicate that the herbaceous component of the

NDVI leads the temporal trends for the grass-dominated ref-

erence Black Grama core site, while the shrub component

largely dominates the NDVI signal for the Creosotebush core

site (Fig. 5a).

Although affected by data dispersion, the annual sums

of decomposed NDVI strongly agree with field estimations

of ANPP for herbaceous and shrub vegetation (R2
≥ 0.65,

Fig. 5b), resulting in a small root-mean-square error for our

remote-sensing ANPP estimates (26 g m−2, NRMSE 12 %,

Fig. 5c) that is within the lower limit of reported errors by

other NDVI decomposition studies (for example, Roderick et

al., 1999; DeFries et al., 2000, Hansen et al., 2002; Lu et al.,

2003; with NRMSE ranging 10–17 %). Other dryland stud-

ies have found important levels of data dispersion when re-

lating fine-grained field ANPP to coarse-scale NDVI values

(Lu et al., 2003; Holm et al., 2003; Pennington and Collins,

2007; Veron and Paruelo, 2010). Major sources of data dis-

persion for this study are most likely associated with the

high spatial variability of ANPP in the analysed systems. For

instance, field estimations have shown that ANPP for both

grass- and shrub-dominated Chihuahuan landscapes are af-

fected by important levels of spatial variability, primarily due

to the patchiness of vegetation cover (Huenneke et al., 2002;

Muldavin et al., 2008).
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5.3 Spatiotemporal dynamics of ANPP and impact of

seasonal precipitation on herbaceous and shrub

primary production

Cross-scale interactions between vegetation composition, in-

dividual plant characteristics, and climatic drivers (e.g. vari-

ations in precipitation amount and seasonality) have an im-

portant role in determining primary production patterns in

arid and semi-arid ecosystems (Peters, 2002; Snyder and

Tartowsky, 2006; Pennington and Collins, 2007; Notaro et

al., 2010; Baez et al., 2013). Analysis of the spatiotempo-

ral dynamics of ANPP in our ecotone indicates that grass-

dominated sites, although very importantly affected by year-

to-year variability, generally support higher primary produc-

tion than transition and shrub-dominated landscapes, partic-

ularly for wet years with high ANPP levels (Fig. 6a). This

result is consistent with other shrub-encroachment studies

which have found associations between shrub proliferation

and ANPP reductions in dry North American grasslands

(Huenneke et al., 2002; Knapp et al., 2008).

Our results suggest that primary production is differ-

ently controlled by seasonal precipitation for herbaceous

and shrub vegetation across the 18 km2 Chihuahuan Desert

ecotone (Fig. 7, Table 1). Monsoonal summer precipita-

tion (June–September) controls ANPP for herbaceous veg-

etation (Fig. 7a), while ANPP for shrubs is better explained

by the preceding year’s non-monsoonal (October–May) plus

the summer monsoonal precipitation in the present year

(Fig. 7b). Accordingly, field observations of ANPP for Chi-

huahuan landscapes found that grassland primary production

is particularly coupled with monsoonal rainfall, while desert

shrublands appear to be less dependent on summer precipita-

tion (Fisher et al., 1988; Reynolds et al., 1999; Huenneke et

al., 2002; Muldavin et al., 2008; Throop et al., 2012).

Differences in the distribution of rainfall types, soil-

moisture dynamics, and rooting habits of dominant plant

species may explain the variable impact of seasonal pre-

cipitation on herbaceous and shrub ANPP for the studied

Chihuahuan landscapes. Monsoonal summer precipitation

(July–September, approx. 60 % annual precipitation) gener-

ally takes place in the form of high-intensity thunderstorms

that infiltrate shallow soil depths (top 15–35 cm) (Snyder

and Tartowsky, 2006). Summer soil-water resources for plant

production are ephemeral and strongly affected by evapo-

transpiration, which typically reduces soil moisture to pre-

storm background levels in 4–7 days after rainfall (Turnbull

et al., 2010a). C4 grasses (Bouteloua eriopoda and B. gra-

cilis), which dominate herbaceous vegetation in the analysed

ecotone, concentrate active roots in the top 30 cm of the soil

and intensively exploit ephemeral summer soil moisture for

plant growth (Peters, 2002; Muldavin et al., 2008). Prefer-

ential spatial redistribution of runoff to grass patches fol-

lowing summer storms further enhances plant production for

black and blue grama (Wainwright et al., 2000; Pockman and

Small, 2010; Turnbull et al., 2010b).

Non-monsoonal precipitation (about 40 % of annual pre-

cipitation, primarily from November to February) typically

falls in the form of long-duration low-intensity frontal rain-

fall that often percolates to deep soil layers (Snyder and Tar-

towsky, 2006). Larrea tridentata, the dominant C3 shrub in

the studied ecotone, has a bimodal rooting behaviour that

facilitates the use of both shallow and deep soil moisture

for plant production (Fisher et al., 1988; Reynolds et al.,

1999; Ogle and Reynolds, 2004). Deep creosotebush roots

(70–150 cm depth) may acquire winter-derived soil-water re-

sources that are unavailable to grass species, while active

roots near the surface (20–40 cm depth) may serve to ac-

cess summer-derived shallow soil moisture for plant growth

(Gibbens and Lenz, 2001). The observed reduction in sum-

mer rain-use efficiency of herbaceous vegetation for the

shrub-transition and shrub-dominated landscapes (i.e. vari-

ations on the slope of the relationship between herbaceous

ANPP and summer precipitation, Fig. 7a) suggests compet-

itive effects of creosotebush for the use of shallow water

sources, probably associated with the large spatial extent of

near-surface active roots (the radial spread of which typi-

cally ranges between 2 and 6 m; Gibbens and Lenz, 2001).

Alternative, landscape changes induced by shrub encroach-

ment (i.e. increased runoff and erosion) may reduce the abil-

ity of grass patches to capitalize on horizontal redistribution

of runoff for plant growth after summer storms (Wainwright

et al., 2000; Turnbull et al., 2012; Stewart et al. 2014).

Conceptual and mechanistic models of vegetation change

suggest that vegetation composition in arid and semi-arid

landscapes is likely to be highly sensitive to climate change,

and point at variations in the amount and distribution of pre-

cipitation as a major driver of shrub encroachment into desert

grasslands (Peters, 2002; Gao and Reynolds, 2003; Snyder

and Tartowsky, 2006). Overall our results agree with those

findings and suggest that changes in the amount and tem-

poral pattern of precipitation comprising reductions in mon-

soonal summer rainfall and/or increases in winter precipi-

tation may enhance the encroachment of creosotebush into

desert grasslands dominated by black and blue grama. Anal-

ysis of long-term rainfall series indicates that winter precip-

itation has increased during the past century in the northern

Chihuahuan Desert, particularly since 1950, probably associ-

ated with the more frequent occurrence of El Niño–Southern

Oscillation events for that period (Dahm and Moore, 1994;

Wainwright, 2006). This pattern of precipitation change may

be responsible, at least in part, for past increases in woody

shrub abundance over desert grasslands in the southwestern

USA (Brown et al., 1997; Snyder and Tartowsky, 2006; Webb

et al., 2003). Our results suggest that shrub encroachment

was not particularly active in the studied ecotone for the pe-

riod 2000–2013 (Fig. 6b). Accordingly, Allen et al. (2008),

in a recent study on creosotebush plant architecture and

age structure, indicated that the most important pulses of

shrub encroachment for this area took place between 1950

and 1970. Precise estimation of shrub cover applying seg-
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mentation methods in time series of high-resolution imagery

could help to accurately determine the intensity of the shrub-

encroachment phenomenon under the present variability in

precipitation for our grassland–shrubland ecotone.

Climate-change projections for the area suggest a gen-

eral picture of increased aridity in the next 100 years, with

increased evaporation due to higher summer temperatures,

as well as increased drought frequency (Christensen and

Konikicharla, 2013). The capacity of L. tridentata to switch

between different soil-water sources (i.e. summer-derived

ephemeral shallow soil moisture and more stable deep soil-

water reserves derived from winter rainfall) and adapt the

timing of vegetation growth to take advantage of changes

in resource availability makes this C3 shrub less suscepti-

ble to predicted increases in aridity than C4 grasses that are

strongly dependent on summer precipitation (Reynolds et al.,

1999; Throop et al., 2012; Baez et al., 2013). Current in-

creases in atmospheric CO2 concentrations may also con-

tribute to reduce the competitiveness of C4 grasses for the

use of soil-water resources against C3 desert shrubs (Polley

et al., 2002). Remaining desert grasslands in the southwest-

ern USA may, therefore, be increasingly susceptible to shrub

encroachment under the present context of changes in cli-

mate and human activities.

6 Conclusions

In this study we applied a new analytical methodology for

the study of the organization and dynamics of vegetation

at a grassland–shrubland Chihuahuan ecotone with variable

abundance of grasses (primarily Bouteloua eriopoda and B.

gracilis) and shrubs (mainly Larrea tridentata), based on

the exploration of the relationship between time series of

remotely sensed vegetation greenness (NDVI) and precip-

itation. Our results indicate that the characteristics of the

NDVI–rainfall relationships are highly dependent on differ-

ences in patterns of water use and plant growth of vegeta-

tion types. In fact, NDVI–rainfall relationships show a high

sensitivity to spatial variations on dominant vegetation types

across the grassland–shrubland ecotone, and provide bio-

physically based criteria to study the spatial distribution and

dynamics of net primary production (NPP) for herbaceous

and shrub vegetation. The analysis of the relationship be-

tween NDVI and precipitation therefore offers a powerful

methodology for the study of broad-scale vegetation shifts

comprising large changes in the dominance of vegetation

types in drylands using coarse-grained remotely sensed data,

and could be used to target areas for more detailed analysis

and/or the application of mitigation measures.

Analysis of remotely sensed NPP dynamics at the

grassland–shrubland ecotone reflects a variable performance

of dominant vegetation types. Herbaceous production is syn-

chronized with monsoonal summer rainfall, while shrub NPP

shows a flexible response to both summer and winter pre-

cipitation. Overall our results suggest that changes in the

amount and temporal pattern of precipitation (i.e. reductions

in summer precipitation and/or increases in winter rainfall)

may intensify the shrub-encroachment process in the studied

desert grasslands of the southwestern USA, particularly in

the face of predicted general increases in aridity and drought

frequency for the area.

The Supplement related to this article is available online

at doi:10.5194/bg-12-2907-2015-supplement.
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