

Supplement of

Global spatiotemporal distribution of soil respiration modeled using a global database

S. Hashimoto et al.

Correspondence to: S. Hashimoto (shojih@ffpri.affrc.go.jp)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Table S1. Statistics of the parameterizations conducted using various datasets and models. When the new model was parameterized with a dataset with LAI and GPP, we used $F=(F_0+\gamma \text{LAI})$, "new T-P-LAI model," or $F=(F_0+\gamma \text{GPP})$, "new T-P-GPP model," respectively; where, γ is a parameter. The new T-P model was also parameterized using the datasets with LAI and GPP to compare the performance of each model structure. RMSE is the root mean square error, and *N* is the number of data points. AIC and BIC are the Akaike's information criteria and the Bayesian information criteria, respectively. We also parameterized the original Raich model (Raich et al., 2002) using the global dataset ("Raich model with new parameters").

				Y-		<u>^</u>	2			
Dataset	Ν	Model	Slope	intercept	Р	R^2	<i>R</i> ²adj	RMSE	AIC	BIC
Т, <i>Р</i>	1638	New T-P model	0.98	19.8	< 0.001	0.32	0.32	376.8	14374	14401
		Raich model	0.79	361.1	< 0.001	0.31	0.31	453.0	14672	14689
		Raich model with new parameters	0.99	7.6	< 0.001	0.32	0.32	377.2	14372	14389
		New T-P model	0.98	9.7	< 0.001	0.34	0.34	320.4	3901	3921
T, P, LAI	452	Raich model	0.74	440.0	< 0.001	0.27	0.27	457.6	4058	4070
		Raich model with new parameters	0.98	18.0	< 0.001	0.33	0.32	323.8	3901	3914
		New T-P-LAI model	0.97	26.7	< 0.001	0.36	0.36	315.2	3895	3920
		New T-P model	0.96	39.0	< 0.001	0.46	0.46	251.9	1123	1137
T, P, GPP	133	Raich model	0.95	313.7	< 0.001	0.43	0.42	389.3	1177	1185
		Raich model with new parameters	0.95	40.9	< 0.001	0.45	0.44	255.7	1121	1129
		New T-P-GPP model	0.95	34.9	< 0.001	0.47	0.47	249.3	1123	1141

 Table S2. List of the Earth system models in CMIP5 considered in this study.

		Earth system model
	1	BCC-CSM1-1
	2	BNU-ESM
	3	CCSM4
	4	CESM1-BGC
	5	CESM1-CAM5
	6	CESM1-FASTCHEM
	7	CanESM2
	8	GFDL-ESM2G
	9	GFDL-ESM2 M
	10	GISS-E2-H
	11	GISS-E2-R
	12	HadGEM2-CC
	13	HadGEM2-ES
	14	IPSL-CM5A-LR
	15	IPSL-CM5B-LR
	16	MIROC-ESM-CHEM
	17	MIROC-ESM
	18	MPI-ESM-MR
	19	NorESM1-ME
-	20	NorESM1-M

Year	$R_{\rm S}$ (Pg C yr ⁻¹)	$R_{\rm H}$ (Pg C yr ⁻¹)	$R_{\rm A}$ (Pg C yr ⁻¹)
1965	87.7	49.4	38.3
1966	90.4	50.6	39.8
1967	89.8	50.4	39.4
1968	90.8	50.7	40.1
1969	89.9	50.4	39.6
1970	88.3	49.5	38.8
1971	89.2	50.1	39.2
1972	89.0	49.9	39.1
1973	90.9	50.6	40.3
1974	90.4	50.5	39.9
1975	90.8	50.7	40.1
1976	90.1	50.5	39.6
1977	91.2	50.9	40.3
1978	91.2	50.8	40.4
1979	91.5	51.1	40.4
1980	89.2	50.0	39.1
1981	91.7	51.2	40.5
1982	91.4	51.1	40.3
1983	90.7	50.7	40.0
1984	89.0	49.9	39.1
1985	89.5	50.1	39.4
1986	90.2	50.5	39.7
1987	90.2	50.5	39.7
1988	90.8	50.9	40.0
1989	90.7	50.7	40.0
1990	91.8	51.1	40.7
1991	90.4	50.6	39.8
1992	90.9	50.8	40.0
1993	91.1	50.9	40.2
1994	90.2	50.5	39.7
1995	91.6	51.2	40.5
1996	90.7	50.7	40.0
1997	93.6	52.0	41.6
1998	93.5	51.9	41.6
1999	92.1	51.3	40.8
2000	92.4	51.4	41.0
2001	93.2	51.7	41.4
2002	91.9	51.2	40.7
2003	94.2	52.3	41.9
2004	93.5	51.9	41.6
2005	93.1	51.8	41.3
2006	93.6	52.0	41.6
2007	92.8	51.7	41.1
2008	92.4	51.4	41.0
2009	92.7	51.6	41.2
2010	95.1	52.6	42.5
2011	93.9	52.1	41.8
2012	93.2	51.8	41.4

Table S3. Estimated annual R_S , R_H , and R_A .

$R_{\rm S}$ (Pg	С	Uncertainty/Range	Year	Reference
yr ⁻¹)				
98		±12 (C.I.)	2008	Bond-Lamberty and
				Thomson, 2010b
80.4		79.3-81.8 (interannual)	1980–1994	Raich et al., 2002
78		64–95 (C.I.)	1980-2009	Hashimoto, 2012
76.5		-	-	Raich and Potter, 1995
75		-	-	Schlesinger, 1977
68		± 4 (S.D., variation due to	-	Raich and Schlesinger,
		different biome area data)		1992

Table S4. Previous estimates of global $R_{\rm S}$.

	NPP			R _H			
Reference	Year	Trend	- •	Reference	Year	Trend	
Nemani et al., 2003^{*1}	1982–1999	0.19					
Ichii et al., 2001 ^{*1}	1983–1991	0.10 0.24		This study	1980–1999	0.05	
Ichii et al., 2001 ^{*2}	1980–1989	0.06		This study			
Ito and Sasai, 2006^{*2}	1982–2001	0.08–0.21					
Sitch et al., 2015, $(CO_2 \text{ and } \text{climate effect})^{*2}$	1990–2009	0.22		Sitch et al., 2015, $(CO_2 \text{ and } \text{climate effect})^{*2}$	1990–2009	0.16	
Sitch et al., 2015, (climate effect only) ^{*2}	1990–2009	0.15		Sitch et al., 2015, (climate effect only) ^{*2}	1990–2009	0.04	
Ito and Inatomi, 2012^{*2}	2000-2009	0.06					
Ahlström et al., 2012 ^{*2}	2000-2009	0.33		This study	2000-2012	0.04	
Zhao and Running, 2011 ^{*1}	2000–2009	-0.055					

Table S5. Comparison of reported NPP and $R_{\rm H}$ trends and the $R_{\rm H}$ trends estimated in this study (Pg C yr⁻²).

^{*1} Satellite based estimate.

*2 Model based estimate.

Table S6. Temperature sensitivities estimated in previous studies. R_E indicates ecosystem respiration.

Q ₁₀	Respiration	Temperature	Reference
1.5	R _s	Air	Bond-Lamberty and Thomson, 2010b
1.4	$R_{ m E}$	Air	Mahecha et al., 2010
$1.43 - 2.03^{*1}$	$R_{ m H}$	Air	Zhou et al., 2009
1.37	$R_{ m H}$	Soil	Ise and Moorcroft, 2006
1.5-2.6	$R_{ m H}$	Soil	Todd-Brown et al., 2013
$1.2 - 2^{*2}$	$R_{ m H}$	Air	Kaminski et al., 2002
2.1	$R_{ m H}$	Air	Jones and Cox, 2001

^{*1} The mean values for multiple biomes.

^{*2} Range of the optimized value taken from the figure.

Figure S1. Distribution of the data in the climate space. Grey circles represent the climate conditions on land based on CRU 3.21, and red circles indicate the climate conditions for the R_S data.

Figure S2. Seasonality of global $R_{\rm S}$.

Figure S3. Distribution of monthly $R_{\rm S}$.

Figure S4. Histogram of modeled R_S (values for each grid cell).

Figure S5. Relationships between the air temperature anomaly and R_S in boreal (A), temperate (B), and tropical regions (C). The anomaly is the deviation from the 1965–2012 mean.

Figure S6. Relationship between the mean temperature multiplier and mean precipitation multiplier, at the level of the grid cell. The tick marks on the top and right axes indicate the 2.5, 25, 50, 75, and 97.5 % quantiles.

Figure S7. Relationship between the grid-scale R_S estimated by our model and (A) the values of R_S estimated using the original Raich model, as well as (B) the values of R_S estimated using the original Raich model with newly determined parameters. Hence, the Raich model was run with the original parameters (A) and with new parameters that were determined using the global dataset (B) (see Table S1).

Ahlström, A., Miller, P. a. and Smith, B.: Too early to infer a global NPP decline since 2000, Geophys. Res. Lett., 39, 1–6, doi:10.1029/2012GL052336, 2012.

Ichii, K., Matsui, Y., Yamaguchi, Y. and Ogawa, K.: Comparison of global net primary production trends obtained from satellite-based normalized difference vegetation index and carbon cycle model, Global Biogeochem. Cy., 15, 351, doi:10.1029/2000GB001296, 2001.

Ito, A. and Inatomi, M.: Water-use efficiency of the terrestrial biosphere: a model analysis focusing on interactions between the blobal carbon and water cycles, J. Hydrometeorol., 13, 681–694, doi:10.1175/JHM-D-10-05034.1, 2012.

Ito, A. and Sasai, T.: A comparison of simulation results from two terrestrial carbon cycle models using three climate data sets, Tellus B, 58, 513–522, 2006.

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B. and Running, S. W.: Climate-driven increases in global terrestrial net primary production from 1982 to 1999., Science, 300, 1560–1563, doi:10.1126/science.1082750, 2003.

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z. and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653–679, doi:10.5194/bg-12-653-2015, 2015.

Zhao, M. and Running, S. W.: Drought-induced reduction in global terrestrial net primary production from 2000 through 2009, Science, 329, 940–943, doi:10.1126/science.1192666, 2011.