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Abstract. As part of the international, multidisciplinary

project Malina, downward particle fluxes were investigated

by means of a drifting multi-sediment trap mooring deployed

at three sites in the Canadian Beaufort Sea in late summer

2009. Mooring deployments lasted between 28 and 50 h and

targeted the shelf-break and the slope along the Beaufort-

Mackenzie continental margin, as well as the edge between

the Mackenzie Shelf and the Amundsen Gulf. Besides anal-

yses of C and N, the collected material was investigated for

pigments, phyto- and microzooplankton, faecal pellets and

swimmers.

The measured fluxes were relatively low, in the range of

11–54 mg m−2 d−1 for the total mass, 1–15 mg C m−2 d−1

for organic carbon and 0.2–2.5 mg N m−2 d−1 for nitrogen.

Comparison with a long-term trap data set from the same

sampling area showed that the short-term measurements

were at the lower end of the high variability characterizing

a rather high flux regime during the study period.

The sinking material consisted of aggregates and particles

that were characterized by the presence of hetero- and au-

totrophic microzooplankters and diatoms and by the corre-

sponding pigment signatures. Faecal pellets contribution to

sinking carbon flux was important, especially at depths be-

low 100 m, where they represented up to 25 % of the total car-

bon flux. The vertical distribution of different morphotypes

of pellets showed a marked pattern with cylindrical faeces

(produced by calanoid copepods) present mainly within the

euphotic zone, whereas elliptical pellets (produced mainly

by smaller copepods) were more abundant at mesopelagic

depths. These features, together with the density of matter

within the pellets, highlighted the role of the zooplankton

community in the transformation of carbon issued from the

primary production and the transition of that carbon from the

productive surface zone to the Arctic Ocean’s interior. Our

data indicate that sinking carbon flux in this late summer pe-

riod is primarily the result of a heterotrophic-driven ecosys-

tem.

1 Introduction

The export of carbon from the surface to the deep ocean

via the sinking of particulate organic matter is a major pro-

cess of the ocean carbon cycle and a key factor in the reg-

ulation of the atmospheric CO2 level (Archer et al., 2000;

Siegenthaler et al., 2005). The increase of the latter and the

related global warming have become a common subject in

climate change research, in which the Arctic Ocean is a

privileged target, since it is one of the most vulnerable re-

gions to climate change (Walsh, 2008). Vertical flux of par-

ticulate organic carbon (POC) in the Arctic Ocean shows

multiple facets. There is a marked regional variability illus-

trated by generally low POC fluxes (< 100 mg m−2 d−1) in

the central Arctic Ocean (Lalande et al., 2014; Olli et al.,

2007) and high fluxes (> 100 mg m−2 d−1) over the conti-

nental shelves and in polynyas (Amiel et al., 2002; Lalande

et al., 2009). Several factors lead to these different flux sce-

narios. Over the shelves, the interplay between seasonal ice
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coverage and break-up, episodical events of wind-driven up-

welling and resuspension of sediment seems to be the driv-

ing force for highly productive regimes and subsequent ele-

vated POC fluxes (Forest et al., 2013; Lalande et al., 2014;

Reigstad et al., 2011; Tremblay et al., 2014; Wassmann et al.,

2006). Fluxes in the Central Basin are low due to an ineffec-

tive “biological pump” (Honjo et al., 2010), as well as to a

low primary productivity related to a lack of nutrient supply

into the euphotic zone (Lalande et al., 2014).

Annual and seasonal variations are in a first place related

to the particular light regime over the Arctic Ocean (Wass-

mann et al., 2004), the annual light cycle being very regular

in contrast to the ice coverage, which is not only irregular

with respect to the seasonal break-up in summer but, in the

light of global warming, is deemed to disappear at least in

parts of this ocean (Leu et al., 2011; Wassmann, 2011). In

the Beaufort Sea, several studies with intercepting sediment

traps have shown that the ice-free season is normally the pe-

riod where maximum fluxes were observed, but they were

highly variable within this season between different years

(Forest et al., 2007, 2010; Juul-Pedersen et al., 2010). How-

ever, high temporal variability was also observed with regard

to shelf-basin exchanges, where lateral inputs from nepheloid

layers or eddy-driven processes led to flux pulses over the

shelf break (Forest et al., 2007) and even beyond the shelf

out in the basin (O’Brien et al., 2011). POC flux variabil-

ity does not only depend on physical but also on biological

and chemical parameters, of which the latter have an indirect

influence on POC flux through nutrient-limited primary pro-

duction (see above). The main actors of the biotic control of

sinking organic particles are on the one hand bacteria, which

reduce the flux by decomposition of the particles (Kellogg et

al., 2011), and on the other hand grazing zooplankton, pri-

marily copepods in arctic waters, which modulate the flux by

the ingestion of phytoplankton and the production of faecal

pellets (Wiedmann et al., 2014).

In fact, the different natures of variability in the verti-

cal particle flux are reflected in one of the objectives of the

Malina project: to understand the control of biogeochemical

fluxes through light penetration and the impact of ongoing

climate change on these fluxes. Malina aims at building a

self-consistent data set in order to improve our present un-

derstanding of biogeochemical fluxes in this remote ocean

and the prediction of future changes through modelling. Con-

cerning the vertical particle flux, Forest et al. (2013) esti-

mated POC fluxes over the entire Mackenzie shelf and adja-

cent areas and explored the spatial variability of these fluxes

and its forcing factors. In the present study, our goal is to

present a snapshot of the POC fluxes measured in situ along

the shelf-break in a more comprehensive manner using a set

of parameters obtained from the particulate material. We aim

to document the composition of sinking particles throughout

the water column to highlight some processes that shape the

transit of these particles from the surface to the deep ocean.
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Figure 1. Map of the region and close-up on sampling area; blue,

green and red circles represent areas of drifting trap deployment and

yellow triangles sites of long-term moorings. Blue dots depict main

CTD stations of the Malina programme sampling grid. Drifting trap

sampling was limited to the eastern part of the area because of the

sea-ice cover during the first part of the cruise.

2 Material and methods

2.1 Drifting line deployment and water column survey

Drifting sediment trap moorings were deployed at three sites

of the Beaufort Sea during leg 2b of the Malina field cam-

paign in August 2009. The location of the deployment sites

is represented in Fig. 1. It shows the sampling grid of the

Malina programme and the trap mooring sites within the

transects crossing the Mackenzie shelf. Site 345 had to be

moved to the east due to ice coverage at the desired location

of the corresponding transect. All three sites are situated on

the slope of the Mackenzie shelf in the south-eastern part of

the Beaufort Sea, site 135 being the easternmost at the en-

trance of the Amundsen Gulf. Throughout this article, the

three sampling sites will be presented in the order from west

to east, i.e. site 345 as the westernmost, site 235 further east

and site 135 as the easternmost one.

Figure 2 shows the schematic drawing of the moorings.

Each mooring line was equipped with four traps at nominal

depths of 40, 85, 150 and 210 m. Based on the data from the

hydrographical casts the trap depths were chosen to moni-

tor (1) the fluxes out of the polar mixed layer (PML) likely

to be influenced the most by the inputs from the Macken-

zie River, (2) the fluxes out of the layer with highest phyto-

plankton biomass and production, (3) the fluxes out of the

euphotic zone and (4) the fluxes monitored at a depth of

other long-term moorings in the area and therefore best com-

parable with these data. For each deployment, the length of

the mooring line and sampling intervals were adapted to the

constraints imposed by bottom depth, ice cover and survey

schedules. For instance at site 135, the trap at 210 m had to

be removed from the mooring to avoid its grounding. De-

tailed information for each trap and mooring deployment is
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Table 1. Drifting line deployment specifications.

Sampling stations 345 235 135

Deployment depths (m) 38, 85, 152, 211 38, 83, 151, 210 39, 87, 154

Bottom depth (m)* 500–600 550–650 220–230

Deployment date (UTC) 14 Aug 2009 22 Aug 2009 20 Aug 2009

Retrieval date (UTC) 16 Aug 2009 24 Aug 2009 22 Aug 2009

Deployment location 71.330◦ N

132.556◦W

71.775◦ N

130.726◦W

71.321◦ N

127.495◦W

Retrieval location 71.390◦ N

132.649◦W

71.713◦ N

130.797◦W

71.213◦ N

127.344◦W

Sampling duration (h) 32 50 28

∗ Indicates depth range within drifting track.
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Figure 2. Mooring configuration showing the depth of each sed-

iment trap with respect to its position within the different water

masses and to the horizon of maximum chlorophyll a.

given in Table 1. The traps used were TECHNICAP PPS3/3

of cylindro-conical body shape with an aspect ratio of 2.5 in

the cylindrical part and 4.0 over the whole length. The unbaf-

fled aperture of the traps had a collection surface of 0.125 m2.

Particles were collected in 260 mL polyethylene bottles poi-

soned with a solution of borax buffered formaldehyde 5 %

(v v−1) in filtered (0.2 µm) seawater. The pH was checked

with a pH-metre after the deployment and immediately be-

fore processing the samples in the laboratory. All samples

showed a value between 8.3 and 8.5.

At all three sites, multiple deployments of a rosette pro-

filer equipped with a conductivity-temperature-depth sys-

tem (CTD, Seabird SBE-911+), a fluorometer (Seapoint),

a transmissometer (Wetlabs C-Star), and a particle camera

(Underwater Vision Profiler 5, UVP5, Picheral et al., 2010),

were conducted in order to document the water column

properties before, during and after the drift of the mooring

equipped with sediment traps.

2.2 Processing and analysis of samples

Upon recovery on board, the sample cups were stored at 4 ◦C

in the dark until they were processed.

Swimmers were handpicked from the samples with for-

ceps under a stereomicroscope. Foraminifera and empty mol-

lusc shells were considered part of the passive sinking flux

and hence returned to the main sample, as well as even-

tual unidentified gelatinous material (e.g. appendicularian

houses).

For the analysis of different parameters, samples were di-

vided into several subsamples. Subsampling was done with a

McLane WSD 10 splitting device to obtain two fractions of

1/10 and 4/10 each. Of the latter fractions one was used for

mass, POC, nitrogen and thorium-234 and one for pigment

analysis, and of the former fractions one for faecal pellet and

one for microplankton identification.

For mass, POC, N and 234Th analysis, subsamples were

filtered onto a pre–combusted (500 ◦C) and pre-weighed mi-

cro quartz filter (QMF, ∅ 25 mm). Filters were then dried

in an oven at 50 ◦C. To determine mass flux the dried fil-

ters were transferred to a desiccator cabinet for stabilization

at room temperature and then weighed on a Mettler Toledo

analytical balance. After weighing, these QMF filters were

conditioned for 234Th measurement through non-destructive

counting of the β-decay, and that same sample could be used,

after dismounting, for the analysis of total carbon and POC.

Prior to POC analysis, inorganic carbon was removed from

the sample by acidifying twice with a 1 M H3PO4 solution

in excess, the filters being dried at 50 ◦C overnight, after

each step. POC and N analysis was performed with a vario

EL elemental analyser (Elementar Analysensysteme GmbH)

(Miquel et al., 2011). Inorganic carbon was calculated by the

difference between total and organic carbon.

The subsamples for pigment analysis (fraction 4/10) were

filtered onto a pre-combusted (500 ◦C) GF/F filter (∅ 25 mm)

and kept frozen at −30 ◦C. For analysis, residue on these fil-
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Table 2. Sampling period and location of long-term sediment traps used to document the seasonal and inter-annual variability (2008–2010)

of downward particle fluxes in the vicinity of the drifting stations.

Mooring Sampling starts Sampling ends Latitude

(◦ N)

Longitude

(◦W)

Sampling depth(s)

CA08 21 Oct 2007 24 Jul 2008 71.0539 126.0227 104 m

CA16 01 Nov 2007 28 Jul 2008 71.7904 126.4929 112 and 213 m

CA05 27 Jul 2008 31 Aug 2009 71.3125 127.5824 108 m

CA16 29 Jul 2008 31 Aug 2009 71.7868 126.4970 110 and 211 m

A1 21 Jul 2009 25 Jun 2010 70.7617 136.0083 98 and 199 m

G09 24 Jul 2009 29 Jun 2010 71.0025 135.4793 100 and 201 m

CA16 13 Oct 2009 16 Oct 2010 71.8015 126.5170 103 and 204 m

A1 13 Sep 2010 31 Aug 2011 70.7622 136.0094 101 and 201 m

ters was extracted by sonication in 3 mL methanol (100 %)

and clarified by filtration through “Whatman” GF/F filters.

Extracts were analysed by HPLC diode array detector (“Ag-

ilent Technologies” system) the same day. Chromatogra-

phy was performed on a narrow reversed-phase C8 Zorbax

Eclipse XDB column. Pigment detection was obtained at

450, 667 and 770 nm. Vitamin E acetate (“Sigma“) was used

as internal standard, and external calibration standards were

provided by DHI Water and Environment (Denmark). Details

on pigment analysis are reported in Ras et al. (2008).

Both faecal pellets and microplankton were determined

by eye under a stereomicroscope. For faecal pellets, a Leica

MZ 12 stereomicroscope was used. Absolute numbers of fae-

cal pellets counted were between 25 and 75 per sample. The

pellets were sorted into three morphotypes: cylindrical, el-

liptical and amorphous. Pellet fragments, mostly cylindrical

ones, were included in the counts. The dimensions of all pel-

lets were determined with a semi-automated image analysis

program, in order to calculate the form-specific volumes. To

convert volumes into organic carbon we used a conversion

factor of 0.11 mg C mm−3 (Carroll et al., 1998). Although

higher than many values reported in the literature (e.g. Gon-

zalez et al., 1994; Gonzalez and Smetacek, 1994; Reigstad

et al., 2005), this conversion factor represents organism and

pellet diversity and, especially, different density levels of the

faecal pellets, which is mostly lacking elsewhere. The tax-

onomic determination down to genus level of microplank-

ton was done according to the Utermöhl method (Utermöhl,

1931). Number of cells counted per sample varied between

10 and 100 and in a few samples between 100 and 1000.

2.3 Samples from long-term moorings

With the aim of putting the results of the Malina study

within a broader context, we used a 3-year record of verti-

cal POC fluxes (2008–2010) as sampled with long-term sed-

iment traps moored at ca. 100 and 200 m depth in the vicinity

of the drifting stations (Fig. 1, Table 2) within the frame-

work of the ArcticNet programme. The data from 2009 were

reported in detail by Forest et al. (2013), where a full de-
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Figure 3. Vertical profiles of salinity, temperature, fluorescence and

transmissivity and main water masses at the three sites of drifting

trap deployment.

scription of the methodology associated with long-term trap

samples can be found. The traps were of the same kind (i.e.

TECHNICAP PPS3/3) as those used in the short-term de-

ployment of the present Malina study, though the long-term

traps were equipped with a 24 instead of a 12 sample cup car-

rousel. Otherwise, the design of the trap was exactly the same

as the one described in Sect. 2.1. Sample cups from long-

term traps were filled with filtered seawater (GFF 0.7 µm) ad-

justed to 35 salinity with NaCl and poisoned with formalin

(5 % v v−1, sodium borate buffered). Long-term trap sam-

ples were processed (i.e. swimmer picking, fractioning, fil-

tration), weighed for total mass, acidified and analysed for

POC and nitrogen, in a similar way to short-term trap sam-

ples.

3 Results

3.1 Environmental parameters

The profiles obtained from the hydrographical casts in the

vicinity of the trap deployments show the characteristics of

the different water masses present in the Beaufort Sea with

only minor variations between the three deployment sites

(Fig. 3).
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Figure 4. Vertical profiles of total particle concentration (in the size

range 0.08–10 mm, in equivalent spherical diameter, ESD) mea-

sured at the drifting mooring sites and obtained with multiple de-

ployments of the Underwater Vision Profiler 5.

Salinity values < 31 were measured in the upper 50 m and

are typical of the PML water. Between 50 and 200 m depth

the salinity increases from 31 to 34, while the temperature

profiles show minimum values. This water mass originates

from the Pacific and enters the Arctic Ocean through the

Bering Strait into the Chukchi Sea. The fluorescence max-

ima were mostly found at the top of this water layer around

75 m depth. Transmissivity measured at all three sites did not

exhibit any clear pattern, except for generally low values near

the surface and an increased variability near the bottom, be-

tween profiles at site 135. The waters below 200 m depth are

of Atlantic origin and are characterized by the highest salin-

ity (> 34) and a warming of the water temperature compared

to the overlying waters.

Based on UVP5 data, the upper water column (< 100 m) at

all three sites was particularly devoid of particulate material

and aggregates in the range 0.08–10 mm ESD (Fig. 4). We

detected a general augmentation in particle inventory within

the interval depth of ∼ 350–500 m at sites 345 and 235, and

between∼ 100–200 m at site 135 (as seen in the transmissiv-

ity signal, Fig. 3). However, the magnitude of those increases

varied markedly between each CTD-UVP5 deployment and

some profiles did not show any increase at all.

3.2 Flux and composition of settling particles

Mass fluxes measured at the three sites showed different

depth patterns (Fig. 5). Although the flux increase from 40

to 85 m was common to all sites, only site 135 showed an

increase from 85 to 150 m depth, while at the two other sites,

the flux decreased. The fluxes at 150 m of sites 345 and 135

were respectively the lowest and highest ones registered at

each site. The high value of site 135 is possibly due to ef-

fects of matter resuspension, the trap being just 70 m above

Figure 5. Downward flux of mass, particulate carbon (POC, PIC

and TC, the sum of both) and carbon : nitrogen molar ratio obtained

from drifting sediment trap moorings. Colours correspond to sites

in Fig. 1.

the ocean bottom (Table 1). The overall highest mass fluxes

of 54.20 and 51.94 mg m−2 d−1 at 85 m of sites 345 and 235,

respectively, were observed just below the depth of relatively

high phytoplankton biomasses shown by the fluorescence

profiles in Fig. 3.

The vertical distribution of the total carbon fluxes was

similar to the mass fluxes, with highest values (15–

20 mg C m−2 d−1) at 85 m and a sharp decrease in flux to-

wards depth, except for site 135 where the trap near to the

bottom recorded a relatively high flux of 9.51 mg C m−2 d−1.

At 210 m depth of the two other sites, fluxes were lowest

(< 5 mg C m−2 d−1).

POC fluxes, too, showed depth distributions very similar to

mass and total carbon. This suggests a relationship between

mass and carbon fluxes, and that the composition of the biotic

compartment of the flux seemed to be similar all over the

studied area. Also, the contribution of POC to total carbon

was high owing to similar flux values up to 15 mg m−2 d−1

for the maximum at 85 m of site 235 and < 2 mg m−2 d−1 at

210 m. Generally, POC fluxes were low with values mostly

< 5 mg m−2 d−1. Higher fluxes were observed just below the

www.biogeosciences.net/12/5103/2015/ Biogeosciences, 12, 5103–5117, 2015
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Table 3. Mass flux (DW) and composition of sedimenting particles.

Sampling stations 345 235 135

Sampling depths (m) 40 85 150 210 40 85 150 210 40 85 150

Mass flux (mgm−2 d−1) 45 54 15 21 15 52 27 11 20 31 43

Tot. carbon (TC) (% of DW) 31 28 29 19 31 38 25 14 18 31 22

Org. carbon (% of DW) 27 23 27 11 27 29 18 10 17 28 18

Inorg. Carbon (% of DW) 4.1 5.0 1.8 7.7 4.6 8.3 6.9 3.5 1.2 2.1 4.0

Org. carbon (% of TC) 87 82 94 59 85 78 73 74 94 93 82

Nitrogen (% of DW) 5.6 2.8 4.5 1.9 5.0 4.7 4.1 1.6 2.3 4.5 2.9

C : N atomic 5.7 9.3 7.1 7.0 6.2 7.3 5.2 7.4 8.7 7.4 7.3

Cinorg : Corg 0.15 0.22 0.06 0.69 0.17 0.28 0.37 0.35 0.07 0.07 0.22
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Figure 6. Time series of mean downward POC fluxes as measured

at (a) ∼ 100 m and (b) ∼ 200 m with the ArcticNet sequential sedi-

ment traps (A1, G09, CA05, CA08 and CA16) moored in the vicin-

ity of the drifting stations (see Fig. 1, Table 2). Vertical grey bars de-

pict the standard deviation associated with each mean POC flux data

point. The vertical red bar delimits the third week of August 2009

when short-term traps were deployed. N/S: no sampling.

biomass maximum, and also at 40 m of site 345 and near the

bottom of site 135.

The flux pattern of inorganic carbon, essentially calcium

carbonates, was quite similar to the one of mass flux, but

about 1 order of magnitude lower. As for POC, this shows

that the biotic component of the vertical flux was relatively

homogeneous over the studied area. The only notable differ-

ence in the vertical flux pattern between total and organic

carbon on the one hand and mass and inorganic carbon on

the other hand concerns the results from the deepest traps at

sites 345 (210 m) and 135 (150 m), where fluxes of both mass

and inorganic carbon were higher than at the above sampling

depths. This is most likely due to the vicinity of these two

traps to the bottom where resuspended matter including inor-

ganic carbon may have been added to the vertical flux. This

shows that the resuspended material was mainly of abiotic

origin. Interestingly, at site 235, where all components of

the flux, mass, total, organic and inorganic carbon decreased

from 150 m to 210 m, the deepest trap was the furthest away

from the bottom among the moorings at the three sites (Ta-

ble 1).

The C /N ratios did not show big variations within and

between the three sites, neither could we observe any clear

depth pattern. But the obtained ratios are above the Redfield

ratio, a finding that was already reported by Schneider et

al. (2003) from a global data set of sediment trap samples (0–

500 m). This study showed that the average C /N ratio (8.55,

±3.58 (SD), n= 744) was significantly above the Redfield

ratio despite the high variability of values in the data set.

The composition of the particles collected in the sediment

traps (Table 3) revealed for almost all the samples a very high

content of POC relative to total carbon with values often ex-

ceeding 80 % or even 90 %. Only at site 235, these values

were lower, just slightly below 80 %. But also the POC con-

tent relative to the mass flux was rather high. The obtained

values were between 23 and 29 % for the traps at 40 and 85 m

with one exception (17 % at 40 m, site 135), but decreased to

10 and 11 % in the traps at 210 m of sites 345 and 235.

The importance of inorganic carbon (PIC) relative to total

carbon was, unlike POC, rather low at the surface and high

at depth. The PIC/POC ratio, in turn, was relatively high in

the deep traps (150 and 210 m) except at 150 m of site 345

where very low amounts of PIC were measured.

3.3 Seasonal and inter-annual variability of downward

flux

Using the long-term trap data sets (cf. Forest et al., 2013)

available for the region from 2008–2010 (Table 2), we have

created a composite time-series of mean POC fluxes at∼ 100

and ∼ 200 m depth (Fig. 6). This figure enables us to grasp

quickly the seasonality and large variability (i.e. SD) of

downward POC fluxes across the eastern Mackenzie Shelf.

Over those years, mean POC fluxes oscillated between near-

Biogeosciences, 12, 5103–5117, 2015 www.biogeosciences.net/12/5103/2015/
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Table 4. Faecal pellet flux (numerical and carbon) and relative contribution of each type of pellet to the total numerical flux. Note: different

units for pellet flux (mg and µg).

Sampling stations 345 235 135

Sampling depths (m) 40 85 150 210 40 85 150 210 40 85 150

Pellet flux (all pellets)

(mg Corg m−2 d−1)

1.32 0.45 0.77 0.92 0.22 0.34 0.44 0.27 0.66 0.25 0.82

Pellet flux (only 100 % full pel-

lets) (µg Corg m−2 d−1)

17.4 7.6 439.8 670.0 0.0 2.7 362.3 220.4 0.7 0.0 424.2

Numerical flux (all pellets)

(nb. m−2 d−1)

4680 2880 1920 3120 806 2342 2458 960 4389 2057 4663

Cylindrical pellets (%) 56.4 52.1 18.8 11.5 52.4 62.3 9.4 20.0 85.9 53.3 22.1

Elliptical pellets (%) 32.1 35.4 56.3 40.4 47.6 32.8 76.6 60.0 14.1 46.7 69.1

Amorphous pellets (%) 11.5 12.5 25.0 48.1 0.0 4.9 14.1 20.0 0.0 0.0 8.8

zero values up to ∼ 110 mg C m−2 d−1. In general, POC

fluxes were higher at 100 than at 200 m depth, except dur-

ing the winter months when the background flux was higher

at 200 than at 100 m depth. Peak fluxes (from 1–3 modes)

occurred systematically over the summer period, but rapid

declines were detected after every one of those maxima. In

2009, the peak export flux (as detected at the 4 moorings

deployed across the region) was recorded over August, dur-

ing the month of the Malina campaign. However, the stan-

dard deviation associated with the values measured during

the peak period in 2009 as well as in the other years was

particularly high at both 100 and 200 m depth.

3.4 Particle characterization

3.4.1 Faecal pellets

Apart from microplankton cells, the main types of identi-

fiable particles in the sediment trap samples are shown in

Fig. 7. Most of these particles were faecal pellets of cylin-

drical or elliptical form (Fig. 7a–d). A third category that

was distinguished contained amorphous pellets. Also, no-

table numbers of crustacean eggs (Fig. 7e) and foraminifera

(Fig. 7f) were observed. Total numbers and the relative im-

portance of the different types of faecal pellets are listed in

Table 4. Flux of the total number of pellets showed two dis-

tinct vertical patterns. At sites 345 and 135, high numbers

were recorded at the surface and in the deepest traps, and

at site 235, this pattern was reversed with the lowest num-

bers at surface and bottom. Cylindrical pellets were most im-

portant at 40 and 85 m depth at all sites and elliptical ones

were present at relatively higher numbers in the deepest traps

(150 and 210 m), especially at site 235. The absolute num-

bers of cylindrical pellets but also their relative importance

are slightly overestimated owing to the fragmented pellets

included in the counts. We accepted this bias in favour of the

more important pellet carbon content, which is more precise

when fragments are included. Amorphous pellets were gen-

Figure 7. Faecal pellets (a–d), fish eggs (e) and foraminifera (f)

present in sediment traps. The two main morphotypes of pellets,

cylindrical, produced by large calanoid copepods, and elliptical,

produced by small cyclopoid copepods (c) and appendicularians

(d), are shown at two different levels of fullness: cylindrical pel-

lets (a full, b partly filled), elliptical pellets (c full, d partly filled).

White bar is 100 µm.

erally observed at relatively low numbers and were absent at

40 and 85 m of site 135 and at 40 m of site 235.

The different forms of the faecal pellets were taken into

account when calculating their organic carbon content (Car-

roll et al., 1998). Another outstanding feature was the den-

sity of the matter inside the pellet membrane, as illustrated in

Fig. 7a–d. Across the sampling sites, there was a clear spatial

pattern in the relative importance of faecal pellets with differ-

ent matter density. As an example, the pellets considered as

full (highest matter density) were essentially observed at 150

and 200 m depth at all sites. Since the conversion factors for

the calculation of the organic content are based on full pellets

(Fig. 7a and c) we defined four empirical categories of full-

ness, 100, 75, 50 and 25 %, and corrected the conversion fac-

tors accordingly. The resulting flux of organic carbon chan-

nelled via faecal pellets is listed in Table 4, which also shows

the carbon flux attributed to full (100 %) pellets. While the

depth distributions of the pellets’ carbon flux resemble the
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Figure 8. Relative abundance of phyto- and microzooplankton in

the sediment traps at the different deployment depths. The identified

taxa were grouped into diatoms, flagellates and ciliates.

numerical flux with an inverse pattern at site 235 compared

to the two other sites, full pellets were only observed at 150

and 210 m depth. But they represent about 50 to 80 % of the

total pellet flux. Overall, the carbon channelled through the

flux of faecal pellets represented from a few percent up to

25 % of the total carbon flux, especially in the deepest traps.

3.4.2 Phytoplankton and microzooplankton

The recognizable particles other than faecal pellets were pro-

tist cells which were counted and identified to genus level.

This identification revealed a near absence of large sized di-

atoms (e.g. Chaetoceros sp., Thalassiosira sp.), which are

commonly found in polar regions (Coupel et al., 2015; Love-

joy et al., 2002). Among the diatoms observed, the epiphytic

genus Licmophora was the most abundant one. Flagellates,

especially the dinoflagellate Pronoctiluca often showed high

abundances, and only in a few traps, some tintinnids (loricate

ciliates) and naked ciliates were important.

The identified taxa were classified into three groups, di-

atoms, flagellates and ciliates, of which the relative abun-

dance in each sample is shown in Fig. 8. At site 345, the dom-

inant groups were flagellates and diatoms, the former group

being mainly composed of dinoflagellates, and the latter of

the genus Licmophora. Ciliates were present at all but one

depth but at low relative abundance, except at 40 m where

they reached 32 %. At site 235, microzooplankton (dinoflag-

ellates and ciliates) were most abundant and diatoms were

relatively important at 40 m depth. Similar to site 345, di-

atoms and flagellates showed highest relative abundances at

site 135, while ciliates represented < 10 %. At 150 m, the

percentage of diatoms (53 %) was the highest of all three

sites.

3.4.3 Pigment composition

The results of the pigment analysis in the sediment trap sam-

ples are presented as concentrations (ng mg−1 POC or ppm,

Table 5). The POC flux being generally low (Fig. 5), many

pigments were below detection limits. Only pigments de-

Table 5. Concentration of major pigments in sedimenting particles

at the three mooring sites (in ngmg−1 POC).

Sampling stations 345 235 135

40 m: Total Chl a

Astaxanthin

5.6

7.8

76.3

87.1

n.d.

138.3

85 m: Total Chl a

Total Chl b

Fucoxanthin

Prasinoxanthin

Astaxanthin

Phaeophytin a

185.5

26.7

35.5

26.4

66.4

15.3

393.4

61.4

36.0

52.4

72.1

13.4

562.8

42.2

179.6

42.7

n.d.

23.1

150 m: Total Chl a

Total Chl b

Fucoxanthin

Prasinoxanthin

Astaxanthin

Phaeophytin a

–

–

–

–

–

–

303.2

32.7

86.9

26.6

23.5

24.9

432.2

42.7

182.8

46.5

n.d

26.9

210 m: Total Chl a

Total Chl b

Fucoxanthin

Prasinoxanthin

Astaxanthin

Phaeophytin a

n.d.

n.d.

n.d.

n.d.

n.d.

n.d.

405.9

62.7

67.9

80.1

29.6

43.5

–

–

–

–

–

–

n.d. = not detected (below detection limit); – = not sampled or measured.

tected in most of the trap samples are presented. One pig-

ment, Peridinin, was observed at all sites but only in the 85 m

traps, plus once at 40 m of site 235.

At site 345, highest concentrations were measured for

Chl a at 85 m depth. The presence of phytoplanktonic mate-

rial is contrasted by relatively high concentrations of Astax-

anthin, which is rather an indicator for zooplankton. These

two pigments were the only ones detected in the shallowest

trap at 40 m.

The same observations were made at site 235, although

the concentrations of the two pigments at 40 m were much

higher. In the deeper traps, besides the high Chl a concentra-

tions, Fucoxanthin at 150 m and also Prasinoxanthin at 210 m

showed relatively high concentrations. The increasing con-

centrations with depth of Phaeophytin at this site indicate the

increase of the relative importance of phytoplankton degra-

dation.

At site 135, Chl a was still observed at very high con-

centrations except in the shallowest trap where it was not

detectable. Fucoxanthin, however, was much more abundant

than at the other sites and its concentration even slightly in-

creased between 85 and 150 m. Fucoxanthin being a typical

pigment of diatoms (Wright and Jeffrey, 1987), this could

correspond to the increase in the relative importance of di-

atoms observed before (see Sect. 3.4.2).

3.4.4 Swimmers

Swimmers were abundant in sediment trap samples, partic-

ularly at the two shallowest sampling horizons. A dedicated
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study on the swimmers collected in the sediment traps will

be published elsewhere and only a summary is offered here.

Copepods were by far the most abundant group among the

swimmers’ community. In all traps they represented more

than 75 and up to 95 % of the total abundance. Among

the other groups, only appendicularians (mostly Oikopleura

spp.) and pelagic molluscs (essentially Limacina helicina)

were observed at notable numbers. The relative depth dis-

tribution of the different organisms was similar at all sites.

In the shallow traps (40 m), a herbivorous copepod (Calanus

glacialis) and appendicularians (Oikopleura spp.) repre-

sented 40 to 70 % of all swimmers present. In the traps be-

low the phytoplankton biomass maximum at 85 m, the ab-

solute number of swimmers was about twice as much as

that from 40 m depth, and the omnivorous copepod Metridia

longa was by far the most abundant swimmer organism (60–

75 %). Among the other organisms found at 85 m depth, the

herbivorous pteropod Limacina helicina was present at all

sites. In the deepest traps at 150 m (all sites) and 210 m (sites

345 and 235) the absolute number of swimmers decreased

five to ten fold relative to the shallower traps. The omniv-

orous Metridia longa became even more important, but the

carnivorous copepod Pareuchaeta glacialis represented 15–

25 % of the swimmers at 150 m depth of sites 235 and 135.

This copepod was also present in all other traps at percent-

ages between 10 and 15 %, except at site 345 where it was

absent at 150 m and represented 25 % at 85 m. The only her-

bivore swimmers observed in these deepest traps were Li-

macina helicina (150 m, sites 235 and 135) and Calanus hy-

perboreus (150 and 210 m, site 235).

4 Discussion

Sediment trap moorings anchored at the ocean floor on a

long-term basis have a relatively long history in arctic re-

search (Honjo et al., 2008 and reference therein). However,

the deployment of drifting sediment trap moorings in the

Beaufort Sea was part of only a few oceanographic expe-

ditions. This is most likely due to the ice conditions not

favourable to such deployments during most of the year and

over a vast area, while for fixed moorings, ice conditions

are only critical during deployment and retrieval. An indi-

rect method based on the deficit between the particle reactive
234Th and its conservative parent radionuclide 238U (Rutgers

van der Loeff et al., 2006) is better adapted to these condi-

tions and was used in various studies to assess the vertical

POC flux in the Arctic seas (Wassmann et al., 2004).

When comparing our results with the published data from

the same region and at similar depths, we notice that the

POC fluxes we measured were always at the lower end of

the broad range of fluxes reported, which spans from some

10 mg C m−2 d−1 to a few hundred mg of carbon per m2 and

per day. Such was the case for the studies using drifting trap

moorings (Juul-Pedersen et al., 2010; Lalande et al., 2007;

Sallon et al., 2011) as well as for the ones obtained via the
234Th/238U disequilibrium (Baskaran et al., 2003; Lalande et

al., 2007; Moran and Smith, 2000).

Temporal and spatial variabilities have been given special

attention in studies undertaken in the Barents Sea and sur-

rounding areas (Wassmann et al., 2006; Wassmann, 2011;

Reigstad et al., 2011) where the receding ice edge is at

the origin of production and subsequent vertical flux pulses,

which together with an uneven bottom morphology and

hydrological factors lead to a highly variable environment

(Reigstad et al., 2011). While these factors probably play a

role in the annual and seasonal variabilities and also in spa-

tial heterogeneities occurring within the Beaufort-Mackenzie

continental margin, their interplay results in different produc-

tion and flux regimes. The seasonal ice zone covers not only

the Mackenzie shelf but also the deep Canadian basin and

the hydrological environment is also different from the one

observed in the Barents Sea. Limited input of nutrients to

the euphotic layer and episodical inputs from the shelf edge

together with upwelling events are the relevant factors for

the variabilities observed in this area. They are ultimately at

the origin of the flux differences between the present study

and the published data. Another possible factor of variabil-

ity is the trap design, which in our case was different from

the above mentioned studies, in particular the collecting sur-

face. However, in the present study the same type of sedi-

ment traps was used for both drifting and fixed moorings, and

were both used for sampling in the same region and during

the Malina campaign (Tables 1, 2). Nevertheless, the traps

of the two moorings are likely to collect different amounts

of particle flux due to spatial heterogeneities and also due to

the hydrodynamic environment. A fixed mooring is exposed

to water currents, but not so a drifting mooring as the ad-

jective indicates, although it appears that the direction of the

drifting path sometimes differs from the current direction.

In order to minimize collection biases, trap moorings should

be deployed in tranquil regions and the aspect ratio of the

traps should be 3 for water currents < 10 cm s−1 and higher

if water currents are expected to increase (Knauer and Asper,

1989). Current speeds at the fixed moorings site of this study

were < 10 cm s−1 (Forest et al., 2013) and the aspect ratio of

the traps was 2.5 in the cylindrical part and 4 for the overall

length. We would therefore expect a minimum collection bias

for both mooring types. Still, Forest et al. (2011) showed in a

similar study that the fluxes measured with short-term drift-

ing traps were always higher than those with the long-term

fixed traps, but the collecting surfaces were different between

the two mooring types.

The present study revealed the opposite situation with the

POC fluxes recorded by the short-term traps being relatively

low compared to the long-term traps (Fig. 6). But as we al-

ready mentioned, the data of these latter traps are shown

as a composite figure and the standard deviation is particu-

larly high during the peak flux periods, while it is low during

low flux regimes although we would expect not only spatial
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heterogeneities related to the distance between the different

mooring locations, but also temporal variabilities between

sampling years. Since we observed no spatial nor temporal

trend in the flux differences during the peak periods, which

occurred at all mooring sites, the high standard deviation re-

flects a general variability of the vertical particle flux during

these periods. The 2009 period in particular was reported by

Forest et al. (2013), who discussed these data in more detail

and recalled us the fact that the “peak fluxes were presum-

ably linked to episodic sinking flux events”. With respect to

our data, we consider that, although the late summer months

seem to be a period of an elevated flux regime (Forest et

al., 2013), the vertical particle flux monitored by our traps

during < 3 days is situated between or around these episodic

flux pulses. From the data recorded by the particle camera

(UVP5) we know at least that at that time, the particle load

of the water column along the drifting path was very low

(Fig. 4).

If the flux quantity is an important factor of carbon cycling

in terms of, e.g., parameterization and validation of models,

the flux quality is just as important when it comes to concep-

tualization of models (Le Fouest et al., 2013). The composi-

tion of the particulate matter collected in our sediment traps

is characterized by both a relatively high total carbon content

(average 26± 7 %) and a high Corg to Ctot ratio. This indi-

cates that an important part of the settling particles is of bio-

genic origin and that these particles contain relatively small

amounts of calcium carbonates. It also explains that high-

est fluxes were observed just below the depth layer of maxi-

mum phytoplankton biomass (Figs. 3 and 5) and underlines

that the decrease at depth of the organic carbon content in

the particles settling further down the water column is due

to remineralization (Table 3). However, these results suggest

that the Mackenzie River plume seems to have little or no in-

fluence on the particle composition at the drifting trap loca-

tions. Surface POC concentrations obtained through satellite

image processing from the sampling period confirm this ob-

servation (Forest et al., 2013). We also do not expect any in-

fluence of the high C /N ratio (> 10) in river water particles

(Emmerton et al., 2008) on our trap material, although the

ratios we measured did not indicate any spatial trend. Such

was the case in the traps of the long-term series (Forest et

al., 2013), too. A study by Tamelander et al. (2013) in the

European Arctic Ocean reported C /N ratios well above the

Redfield ratio and suggested that the ratios varied according

to new production, which depended on the nitrate availability

and thus the trophic state of a given ecosystem. Other studies

put forward the increase of the C /N ratio with depth (Copin-

Montégut and Copin-Montégut, 1983; Schneider et al., 2003)

related to preferential remineralization of nitrogen. There is

insufficient consistency in both the data of the present study

and the data of the long-term study (Forest et al., 2013) to

be able to relate them to any of the findings reported in those

previous studies, but at least they confirmed that the C /N

ratio of trap samples is above the classical Redfield ratio.

Faecal pellets form a well-distinct and sometimes major

part of the sinking particles in the Beaufort Sea area (For-

est et al., 2008; Juul-Pedersen et al., 2010). The quantitative

distributions of total pellets in the present study, be it numer-

ically or in terms of carbon, indicate at sites 345 and 135

relatively high grazing activities above the trap at 40 m depth

and above the deepest trap at 210 and 150 m, respectively

(Table 4). Lowest quantities at these sites in terms of car-

bon were observed in the samples from 85 m just below the

phytoplankton biomass maximum. This is in contrast to the

findings by Forest et al. (2012), who found good agreement

between maximum phytoplankton abundance and copepods,

which were by far the most abundant grazers around 60 m

depth. It follows that, either grazing activity at this depth was

low despite the relatively high food availability or the pro-

duced pellets were subject to enhanced coprophagy and/or

coprohexy (Svensen et al., 2014), a process, which has al-

ready been reported from the nearby Baffin Bay (Sampei et

al., 2004) and which we cannot exclude although we do not

have direct evidence. Another possibility for this observation

could be that defecation from these grazers took place above

the 40 m depth horizon. A detailed study on copepod migra-

tion in the Beaufort Sea (Darnis and Fortier, 2014) did not

show evidence of diel but rather seasonal vertical migration,

which does not explain an eventual short-term displacement

observed in our study. However, Cottier et al. (2006) de-

scribe an unsynchronized migration by large calanoid cope-

pods, which took place at around the same period of the year

in an arctic fjord. We do not have data to confirm such be-

haviour. However, our data showed that at 40 m the pellet

fluxes were highly variable across the three sites, but were

much less variable at 85 m. We therefore do not exclude the

possibility that the depth distributions at sites 345 and 135 are

due to this high variability observed at 40 m. Nonetheless, the

pellet flux did not have a considerable impact on the total car-

bon flux distribution in the euphotic zone, since it represented

< 10 %, except at 40 m of site 135, where a lower pellet flux

would accentuate the discrepancy of the carbon flux between

40 and 85 m depth.

The decrease of faecal pellet flux from the surface to 85 m

depth just below the phytoplankton maximum (except at

site 235) and especially the increase at 150 m (sites 235 and

135) and 210 m (site 345) can best be explained by the qual-

itative features of the faecal particles. The relative contribu-

tion of the two major morphotypes, cylindrical and elliptical

pellets, was high in the two upper traps for the former and in

the lower traps for the latter ones, or in other words, the ver-

tical flux patterns of these morphotypes were inversed. This

implies, on the one hand, that cylindrical pellets are less pro-

duced at greater depths and that the sinking pellets from the

upper layers are degraded and remineralized before reaching

these depths (Honjo et al., 2010). On the other hand, there

is a production of elliptical pellets below the trap at 85 m

and/or elliptical pellets produced above are more refractory
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than cylindrical ones and are therefore sampled by the traps

at greater depths.

Cylindrical pellets are mainly produced by large calanoid

copepods (Carroll et al., 1998; Yoon et al., 2001), which were

indeed the most abundant zooplankton observed in surface

waters at this period of the year in the Beaufort Sea (Forest

et al., 2012), but also elsewhere in the Arctic Ocean (Daase

et al., 2008; Kosobokova and Hirche, 2000; Kosobokova and

Hopcroft, 2010; Thor et al., 2005). Without any experimental

evidence it is difficult to attribute a given type and size of pel-

lets to a certain organism. The cylindrical pellets in our sam-

ples were between 40 and 170 µm wide (mean: 88± 19 µm

(SD), n= 224), which is within published ranges for large

calanoid copepods (Sampei et al., 2009; Wexels Riser et al.,

2008). Although we cannot exclude the presence of at least

fragments of cylindrical pellets produced by euphausiids, the

pellets in our samples did not show typical characteristics of

these pellets (irregular cylindrical shape, filiform, colour dif-

ferences, etc., see also Wexels Riser et al., 2002; Wilson et

al., 2008). Moreover, we did not observe them as swimmers

or their fragments as passive flux in our trap samples, and

they were not reported from zooplankton observations made

during the same study (Forest et al., 2012).

The smaller elliptical faecal pellets are attributed to small

copepods, but also to appendicularians (Carroll et al., 1998;

Yoon et al., 2001). While for the cylindrical pellets we had

at least indirect evidence for potential producers of the pel-

lets (see Sect. 3.4.4 swimmers), for the elliptical pellets we

had only evidence for appendicularians but not for smaller

copepods. Again, we can only speculate on the origin of el-

liptical pellets observed in our samples. Their mean width

was 115± 43 µm (SD), n= 236 (range: 44–282 µm). Some

values reported from the literature are the following: 100 µm

(Beaumont et al., 2001), 30–100 µm (Gonzalez et al., 1994)

and < 60 µm (Sampei et al., 2009). This puts the size of the

pellets in our samples at the high end of previously mea-

sured values. It is, however, clearly below the width size

range (250–900 µm) of some values reported for elliptical

pellets produced by appendicularians (Deibel and Turner,

1985; Lombard et al., 2013; Wexels Riser et al., 2008). We

assume therefore that most of the elliptical pellets in our sam-

ples originate from small copepods, e.g., cyclopoids. How-

ever, given the size range of the pellets in our study, the

bigger-sized ones were probably produced by appendicu-

larians (Fig. 7d). The example in Fig. 7d matches well the

description given by Wilson et al. (2013): “The ellipsoid

pellets. . . were slightly pointed on both ends and readily rec-

ognizable as larvacean fecal pellets.” Forest et al. (2012) re-

ported cyclopoid copepods of the genera Oncaea, Triconia

and Oithona as being among the most abundant copepods

in the study area. Together with the small calanoid cope-

pod genus, Microcalanus, they represented close to 70 %

of the zooplankton assemblage caught by a plankton net.

Also, Oncaea is well known to dwell in and to be adapted

to the meso- and bathypelagic zone below the euphotic layer

(Kosobokova and Hopcroft, 2010; Thor et al., 2005). Individ-

uals of the genus Triconia, too, tend to occupy mesopelagic

depths (Kosobokova and Hopcroft, 2010), while Oithona and

Microcalanus seem to have a preference for shallower depths

even if they can be found over almost the entire water column

(Kosobokova and Hopcroft, 2010). Although appendiculari-

ans were most abundant above 100 m depth during the study

(Forest et al., 2012), we observed large elliptical pellets in

all our traps, but they were too scarce to detect any depth

pattern.

We cannot exclude that the elliptical faecal pellets pro-

duced at shallow depths reach the deeper traps at 150 and

210 m. We know, however, that this production was of mi-

nor importance compared to the cylindrical pellets. Also,

given the relative as well as absolute increase in abundance

towards the trap at 145 m, elliptical faecal pellets are pro-

duced at greater depths, most likely by cyclopoid cope-

pods. The depth distribution of the swimmers in our traps

corroborates these findings, though not quantitatively but

with respect to the planktonic feeding regimes. Large her-

bivore copepods (Calanus gracilis) and appendicularians

were the main swimmers in the traps at 40 m; a typically

omnivorous copepod species (Metridia longa) prevailed in

the intermediate traps, and in the deepest traps a carniv-

orous species (Paraeuchaeta glacialis) was most abundant

after M. longa. Herbivorous conditions can be expected in

the surface layer where primary production takes place, as

well as an omnivorous or omnivorous/carnivorous regime at

mesopelagic depths where deep-dwelling organisms and the

vertical flux of organic matter are the main food sources.

But together with our faecal pellet data we can now put for-

ward that below the euphotic zone, there was omnivorous ac-

tivity sustained largely by cyclopoid copepods, which were

also present at the surface in a rather herbivorous environ-

ment, thus adding a heterotrophic component and suggest-

ing epipelagic retention of faecal pellets as described in a

review by Turner (2015) as a possible reason for the drastic

reduction of cylindrical pellets in the deeper sediment traps.

Such observations were made in the northern Barents Sea

where zooplankton was responsible for up to 50 % of reten-

tion of faecal pellet carbon within the euphotic layer (Wexels

Riser et al., 2008), which lead to a significant flux attenuation

around the depth of the pycnocline (Reigstad et al., 2008).

Our observations add another component to these activities:

coprophagous feeding at mesopelagic depths acting as a flux

“hub” and increasing the contribution of faecal pellet carbon

to the vertical POC flux at depth.

Even stronger evidence for the above scenario comes from

the density level of the matter packed inside the faecal pellet

membrane. Our data revealed a clear pattern for both mor-

photypes, with rather low-density pellets at the surface and

high-density pellets at depth. Pellets within the 100 % full-

ness category (see Sect. 3.4.1) were almost exclusively ellip-

tical pellets, and they were only observed in the samples of

the deepest traps. Feinberg et al. (1998) found in a feeding
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5114 J.-C. Miquel et al.: Downward particle flux and carbon export in the Beaufort Sea

experiment with Acartia tonsa, that feeding on phytoplank-

tonic matter yielded pellets with low density, whereas feed-

ing on heterotrophic matter resulted in a density increase of

the pellets. Although we do not have experimental data from

the copepod species present during our study, we can assume

that the distribution pattern of the different categories of full-

ness reflected the trophic condition at each of the mooring

locations. Within the euphotic zone, large calanoid copepods

but also larvaceans are grazing upon the biomass issued from

the primary production and consisting of photosynthetic flag-

ellates and diatoms, as shown in our data from the micro-

scopic investigation of the sinking material (cf. Fig. 8), and

as reported by a pigment study in the same area (Coupel et

al., 2015). Such food yields relatively low-density faecal pel-

lets, which undergo bacterial degradation along their verti-

cal sinking path, but also serve as a potential food source to

the deeper-dwelling zooplankton community characterized

by an omnivorous feeding behaviour. Although these pel-

lets represent less than a third of the particle flux arriving

in this zone, they are certainly part of the material described

as a “fluffy and sticky gel-like matrix” by Forest et al. (2013)

and composed among others, of ciliates and dinoflagellates

(Fig. 8), which yield rather dense faecal pellets (Feinberg and

Dam, 1998).

As a summary, the vertical particle flux measured within

the shelf-basin area of the eastern Beaufort Sea during the

late summer period of the 2009 Malina field campaign is at

the lower end of fluxes registered in this area. However, simi-

lar or even lower fluxes have been reported from elsewhere in

the Arctic Ocean (Cai et al., 2010; Chen et al., 2003). Com-

pared to the long-term series data obtained from ArcticNet

fixed moorings deployed in the vicinity, the fluxes from this

study could be identified as background level flux, at least for

the period 2008–2010 (Fig. 6). Although late August 2009

was a period of elevated fluxes for that year, the high spatial

and also temporal variability of particle fluxes (cf. Forest et

al., 2013) does not exclude short periods of minimal flux and

indicates the event-driven nature of the particle flux in this re-

gion, that is, most of the time-averaged flux is probably tak-

ing place during short-lived events that are easily missed by

short-term sampling. Extrapolation of short-term data should

be done with much precaution, but situated within long-term

series, such data sets can provide valuable information on

processes that govern the fluxes under the given conditions.

Integrated field studies such as the ArcticNet-Malina field

campaign are an ideal platform to monitor these conditions.

A rather complete set of complementary parameters mea-

sured on the sinking particles together with other data from

the Malina study allowed us to analyse some processes in-

volved in the export of particulate carbon from the surface to

the deep ocean. In particular, we could highlight (1) the role

of zooplankton, especially copepods, in the transformation

of assimilated carbon by phytoplankton into particular or-

ganic carbon and (2) the transition of that carbon from the eu-

photic zone to the mesopelagic zone where it is re-processed

by another zooplankton community. The former process, i.e.

the role of zooplankton in shaping the export flux has been

largely documented from the Barents Sea region (Wassmann

et al., 2008 and references therein), but the latter process adds

another piece to the puzzle that links the carbon flux to the

trophic structure within the pelagic food web. Yet, we believe

that these processes are also active during peak flux periods,

since, as already mentioned by Forest et al. (2013), “the sink-

ing POC can be viewed as what heterotrophic plankton were

not able to assimilate”. This shows the need not only for both

short- and long-term surveys but also for an understanding of

the mechanisms that lead to the transition between high and

low fluxes (e.g. Andersen and Prieur, 2000), for which abi-

otic rather than biotic factors seem to be of primordial impor-

tance (Watanabe et al., 2014). Surely, in order to predict POC

fluxes within a complex ecosystem such as the Arctic Ocean,

all of physical, chemical and biological parameters are nec-

essary to conceptualize and parameterize reliable models.
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