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Abstract. There is increasing interest in the measurement of

methane (CH4) emissions from tree stems in a wide range

of ecosystems so as to determine how they contribute to the

total ecosystem flux. To date, tree CH4 fluxes are commonly

measured using rigid closed chambers (static or dynamic),

which often pose challenges as these are bulky and limit

measurement of CH4 fluxes to only a very narrow range of

tree stem sizes and shapes. To overcome these challenges we

aimed to design and test new semi-rigid stem-flux chambers

(or sleeves). We compared the CH4 permeability of the new

semi-rigid chambers with that of the traditional rigid cham-

ber approach, in the laboratory and in the field, with contin-

uous flow or syringe injections. We found that the semi-rigid

chambers had reduced gas permeability and optimal stem gas

exchange surface to total chamber volume ratio (Sc / Vtot) al-

lowing better headspace mixing, especially when connected

in a dynamic mode to a continuous flow gas analyser. Semi-

rigid sleeves can easily be constructed and transported in

multiple sizes, are extremely light, cheap to build and fast to

deploy. This makes them ideal for use in remote ecosystems

where access logistics is complicated.

1 Introduction

Recent research into ecosystem greenhouse gas fluxes has

shown that tree stems emit significant amounts of methane

(CH4; Terazawa et al., 2007, 2015; Rusch and Rennenberg,

1998; Gauci et al., 2010; Pangala et al., 2013; Rice et al.,

2010) although the transport mechanisms and global impor-

tance of tree-mediated emissions remain largely unknown.

These past investigations have used a variety of closed cham-

bers adapted to various tree-stem sizes. Presently, the most

common chambers used to measure CH4 emissions from tree

stems are closed rigid chambers in the form of either a ver-

tical cylinder, a horizontal cylinder or a cube fitted around

tree stems (e.g. Gauci et al., 2010; Pangala et al., 2013; Ter-

azawa et al., 2007; Hari et al., 1991; Rusch and Rennenberg,

1998). These chambers can be deployed either vertically by

enclosing the whole stem or, alternatively when the stems are

too large, laterally on the stem, covering only a small frac-

tion of the stem surface (e.g. Levy et al., 1999; Teskey and

McGuire, 2005; Ryan, 1990; Hari et al., 1991). These tech-

niques were originally designed to measure CH4 and carbon

dioxide (CO2) from samples manually taken with syringes

and analysed by gas chromatography. The ratio between the

gas exchange surface and the chamber volume (Sc / Vtot)

was transposed from soil chambers and was not necessar-

ily adapted to the lower fluxes found in tree stems, and are

therefore often too high (Hutchinson and Livingston, 2001).

In other words, if the chambers are too large for a given ex-

change surface, mixing problems may occur, making it im-

portant to circulate the air in their headspace (Hutchinson and

Livingston, 1993; Rusch and Rennenberg, 1998).

With the advent of continuous flow analytical techniques

and increasing precision of instruments (e.g. cavity ring-

down spectroscopy, infrared and photo-acoustic gas analy-

sers), the need for longer accumulation periods to detect sig-

nificant concentration changes has become obsolete. The ten-

dency is to reduce the accumulation period as much as pos-

sible in order to be able to use more straightforward linear

regressions to determine fluxes closest to the point of cham-

ber closure. Unlike open chamber techniques which allow

steady-state measurements (e.g. Bortoluzzi et al., 2006; Nor-
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man et al., 1997; Subke et al., 2003; Pumpanen et al., 2004),

closed chambers are non-steady state systems; the diffusive

laws advocate the use of non-linear regressions of gas con-

centrations as a function of time to determine rates, as these

decrease with increasing gas saturation (Hutchinson and Liv-

ingston, 2001; Pihlatie et al., 2013; Pumpanen et al., 2004;

Kutzbach et al., 2007).

With continuous flow gas analysers there are three main

advantages: (1) they are non-dispersive as no gas needs to be

taken out of the measurement system and irreversibly “con-

sumed”, (2) they circulate air between the chamber and the

gas detectors, which for small chamber volumes could repre-

sent enough mixing to avoid underestimations of fluxes by as

much as 36 to 58 % in non-mixed soil-atmosphere exchanges

(Christiansen et al., 2011), and (3) with measurement fre-

quencies of up to 10 Hertz and precisions of ±2 ppb the clo-

sure time needed to get a representative accumulation slope

has been dramatically reduced using these devices (excluding

the equilibration period) and therefore it also avoids underes-

timations due to regressions made over longer periods of time

(Hutchinson and Livingston, 2001; Pihlatie et al., 2013). In

addition, recent work has focused on trace gases (e.g. CH4

and N2O) which have lower accumulation rates compared to

the more frequently measured CO2 (IPCC, 2007), moderat-

ing the saturation issue inherent to non-steady state setups

(Hutchinson and Livingston, 2001). Altogether, these point

towards the use of a smaller stem chamber with larger gas

exchange surface per chamber volume proportion (Sc / Vtot

ratio).

A further complicating factor is field access. Stem-

methane emissions have recently begun to be investigated

in remote areas such as in forested tropical wetlands with

often no road access. In those areas it is a logistical chal-

lenge to carry large and/or heavy loads. Moreover, because

of the great variety of stem sizes and/or shapes, a whole col-

lection of rigid chambers is usually needed to cover most of

the ecosystem tree species thus creating further logistical and

cost issues.

In order to meet the new challenges presented by the

growing interest in measuring greenhouse gas fluxes from

tree stems we aimed to design, describe and test/deploy new

semi-rigid stem-emission chambers in the laboratory and in

the field, and to compare their permeability to CH4 (gas con-

ductance) with previously described rigid chambers. Thus

far, semi-rigid sleeve chambers have been used effectively

in several of our measurement campaigns. We therefore con-

sider their detailed reporting to be of interest to a broader

constituency of eco-physiologists and biogeochemists. We

also examine various methodological benefits and logistical

advantages of using this new approach.

2 Materials and methods

2.1 Chamber designs: semi-rigid sleeve and rigid

chamber

Our approach to measure stem CH4 emissions, which could

also include other greenhouse gases produced in anaero-

bic conditions such as N2O, uses a semi-rigid chamber (or

sleeve). The preferred material was a pre-shaped and gas im-

permeable PET (polyethylene terephthalate) or PC (polycar-

bonate) plastic sheet with a natural tendency to curve induced

by 3–4 vertically distributed imprinted rims on the periphery.

These rims ensured good stability and helped maintain the

desired natural curvature of the sleeve that proved to be very

helpful for the deployment of the sleeves on the stems as the

sleeve could hold in place without straps.

To investigate permeability changes due to both the size

and the approach, we used two semi-rigid sleeves together

with a rigid chamber. As this was straightforward, for the

smaller semi-rigid sleeve we sourced the pre-shaped material

from a cylindrical 3 L soft drink bottle, which already had the

desired imprinted rims. The 0.1 mm thick bottle was trun-

cated above and below the cylindrical section, and opened

vertically on the side. For the larger sleeve we sourced the

material from 0.2 mm thick not pre-shaped semi-rigid PC

sheets. Both types of plastic sheets have very low gas per-

meabilities under experimental standard ambient tempera-

ture and pressure (SATP from UIPAC) conditions and short

chamber enclosure times (McKeen, 2012).

The edges of the sheets were framed with 1.5 cm thick

and 3 cm wide adhesive backed expanded Neoprene strips

(Seals+Direct Ltd, Hamphshire, UK); closed cell neoprene

foam that is gas tight and can be bent, but is hardly com-

pressible (≤ 3 % with 200 N). This Neoprene strip was placed

as a frame around the rectangular sheet to provide a seal

and to ensure a constant volume between the sheet and the

tree stem (Fig. 1). The adhesive was provided on one side

of the expanded Neoprene strips. Inside this framed vol-

ume we placed two Neoprene vertical wedges (1.5 cm thick

and 3 cm wide) to keep the sheet equidistant from the stem

all along the radial periphery of the sleeve. The sleeve was

also equipped with two snap-on rubber caps with inserted

three-way Luer-lock stopcocks (BBraun, Bethlehem, USA)

that permitted connection to the Ultraportable Greenhouse

Gas Analyser (UGGA, Los Gatos Research Inc., Mountain

View, USA) via two 4.6 m long and 5 mm inside diame-

ter PTFE (polytetrafluoroethylene) coated PVC (polyvinyl

chloride) parallel tubes (Nalgene, Rochester, USA). As vent-

ing was recommended (Hutchinson and Livingston, 2001;

Christiansen et al., 2011), both sleeves were equipped with

a coiled vent tube (18 cm long, 1.2 mm inner diameter). We

downscaled the vent described by Hutchinson and Livingston

(2001) by a factor 48 in terms of vent volume whereas the

sleeves were a factor 10 to 20 less voluminous as compared

to the authors’ chamber (14 L). Their study showed that in a
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Figure 1. Smaller semi-rigid stem sleeve attached to a stem. The

plastic PET sheet (a) has three imprinted circular rims (b) that en-

sured good stability and natural curvature of the sleeve. The circum-

ference of the sheet was framed with a 1.5 cm thick and 3 cm wide

expanded Neoprene strip (c) that sealed off the headspace located

between the sheet and the stem. Inside this volume there were two

vertical wedges (d) that kept the sheet at equidistance from the stem

along the radial periphery of the sleeve. In its centre the sleeve was

equipped with two snap-on rubbers with inserted three-way stop-

cocks (e) that were further connected to PVC tubes that went from

the sleeve to the Ultraportable Greenhouse Gas Analyser. A coiled

vent was placed in one corner of the sleeve (f) to regulate the pres-

sure. The chamber was tightened to the stem with the help of two

straps that perfectly aligned on top of the horizontal strips.

perfectly sealed chamber, after 30 min of deployment the gas

mass loss through the sole vent represented 0.038 % of the

target gas.

We tested all the components of the semi-rigid sleeves in-

dependently for unwanted background contaminations that

could interfere with CH4 emissions from the stems by incu-

bating them for 2 hours in 500 mL borosilicate glass beakers

filled with air and connected in continuous flow with the

UGGA. The selected raw material was inert and did not in-

terfere with measurements from the environment. We also

tested the compressibility of sleeves by pulling the straps

with a 200 N force (twice 100 N) and measuring the thick-

ness of the Neoprene frame before and after pulling (Fig. 2,

see also chamber deployment section).

We also compared the CH4 losses from our new semi-rigid

sleeves with a previously used rigid chamber design, sim-

ilar to the ones constructed and described in other studies

(Rusch and Rennenberg, 1998; Gauci et al., 2010; Pangala

et al., 2013). The closed rigid chamber was constructed from

cylindrical Perspex® (Perspex, Tamworth, UK) of inner di-

ameter of 28 cm and had an inner height of 30 cm. The cylin-

der was cut into two halves, which were held together with

a metal hinge. The two half-cylinders were framed within a

5 cm wide and 1 cm thick frame made of flat Perspex® that

was fitted with Neoprene strips. The cylindrical chamber had

a central opening to enclose the tree stem. Two smaller cylin-

ders (18 cm diameter× 5 cm height) were attached on either

side of that opening (Fig. 3). The chamber was equipped with

Figure 2. The three steps of the semi-rigid stem sleeve deployment.

To ensure a good contact between the frame strips and the stem

it was important to distribute the pressure of each strap all around

the frames’ periphery when tightening the sleeve. Close to the cen-

tre two snap-on rubbers with inserted three-way stopcocks were

pressed into the PET or PC plastic sheet. These stopcocks were con-

nected to the two PVC tubes that circulated air in a continuous flow

mode when connected to an Ultraportable Greenhouse Gas Anal-

yser (UGGA).

a gas sampling port and a small vent tube (12 cm long; 6 mm

diameter).

2.2 Enclosed chamber volume and gas exchange

surface determinations

The volume of the semi-rigid sleeves could be determined

precisely in two different ways. Firstly, we extrapolated the

empirical total chamber volume (V ′tot) from the CH4 concen-

tration dilution factor after having inserted a known volume

(Vstandard) of a 2000 ppmv CH4 standard (Air Liquide, Paris,

France) into the sleeve’s enclosed volume and measuring the

end concentration (C0) after dilution, and subtracting the at-

mospheric CH4 concentration (Catm) originally in the cham-

ber. The two semi-rigid sleeves and a rigid chamber were

attached to an inert stainless steel cylinder (see chamber de-

ployment). The dilution was done in 90 s so that the losses

through gas permeability of the chambers remained negligi-

ble. This extrapolation was formalised as

V ′tot = Vstandard×
(Cstandard)

(C0−Catm)
. (1)

Secondly, we also calculated the theoretical volume of the

sleeves (Vc) by subtracting a sector (K) of both, a smaller

cylinder volume (Vstem) from a larger cylinder volume (Vext),

minus the volume taken by the vertical wedges (Vwedges;

Fig. 4). The sector (K) was determined from a ratio between

the sleeve length (L) and the circumference at the external

edge of the sleeve (πDext). The sleeve length (L) is the length

of the incompressible external edge of the chamber and rep-

resents a fraction of the total circumference given by πDext.

The diameter of the smaller cylinder (the compressible inter-

nal foamy edge) is given by the diameter of the stem (Dstem).

The larger cylinder diameter (Dext) is the diameter given by
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the stem (Dstem) plus the thickness (T ) of the sleeve. Both

cylinders have the same height (H ). Thereafter, we have

Dext =Dstem+ 2T (2)

K =
L

πDext

=
L

π(Dstem+ 2T )
(3)

Vc =K (Vext−Vstem)−Vwedges =
HL

(Dstem+ 2T )

×

[(
Dstem+ 2T

2

)2

−

(
Dstem

2

)2
]
−Vwedges. (4)

However, the total volume (Vtot) is the sum of the chamber

volume (Vc) plus the dead volume enclosed in the gas anal-

yser and the tubes (Vdead):

Vtot = Vc+Vdead. (5)

Similarly, the gas exchange surface of the sleeves (Sc) was

calculated by considering the sector (K) of the stem surface

(Sstem) covered by the chamber at the circumference of the

stem (πDstem) and the height of the sleeve (H ), minus the

small surface covered by the vertical wedges (Swedges):

Sc =K × Sstem− Swedges =
HL

(Dstem+ 2T )

×Dstem− Swedges. (6)

2.3 Chamber deployment

The three types of chambers (two semi-rigid sleeves and one

rigid chamber) were deployed on a gas-inert stainless steel

cylinder of diameter 15 cm. The semi-rigid chambers were

flattened around the cylinder and subsequently attached and

tightened with two metal cam straps at the top and bottom of

the frame (Fig. 2). The straps were 1.5 m long and 3 cm wide.

An additional strap was necessary at mid-height of the bigger

sleeve to ensure a good cohesion of the vertical Neoprene

frames and vertical wedges with the stem (steel cylinder in

this case).

Before installing the rigid acrylic chamber, closed cell

Neoprene foam bands (7 cm wide and 4 cm thick) were at-

tached at the bottom of the inert stainless steel cylinder and

also at 35 cm height using double-sided Scotch tape (3M,

St-Paul, USA) to append the extremities of the band as

well as packing brown tape (5 cm wide) to tighten the band

firmly against the metallic cylinder. The two mobile pan-

els of the chamber were opened and the upper and lower

half-necks of one panel were lodged around the two foam

bands by compressing the foam so as to ensure gas tight-

ness. Finally, all open-end flanges surrounding the cylindri-

cal volume were progressively closed with Handy-grips (Ir-

win, Vernier, Switzerland).

We used the larger semi-rigid chamber to exemplify the

field deployment (Table 1). We deployed it on 12 tree stems

Figure 3. Potential air contact path lines (chamber air versus am-

bient air) where gas diffusion can occur; a comparison between the

acrylic rigid cylinder approach and the semi-rigid sleeve approach.

The red lines represented the mobile contact lines that needed to be

sealed properly every time the chambers were deployed and where

most of the losses were likely to occur. The green lines represented

the fixed contact lines which could have been leaking as a result of

twisting forces on the joints leading to cracks.

(diameter at breast height: 25–45 cm) located in the north-

ern boreal zone (Pinus sylvestris and Betula pendula, Degerö

mire, Sweden) as well as in a tropical lowland forest (Heis-

teria concinna, Barro Colorado Island, Panama). The sleeves

were placed at mid-height on the stems at 35 cm of height.

We shaded the sleeves with a plasticised aluminum foil to

minimise any changes to chamber temperature which might

otherwise affect stem-gas exchange processes. In the lab this

measure was unnecessary. We tested the sleeve’s CH4 con-

centration change on both, very smooth birch stems and very

rough pine-tree stems to contrast the concentration readings

as much as possible. To ensure optimal gas tightness it was

important to distribute the pressure of each strap all around

the surface of the sleeve. We visually checked for gaps be-

tween the stem and the Neoprene strips. Monitoring the

CH4 concentration change in a continuous flow mode made

an optimal gas tightness test. A leaking chamber (mainly

pressure-driven bulk flow following Hagen-Poiseuille’s law)

typically displayed fluctuating concentrations with concen-

tration build-up being recurrently drawn down. Finally, we

also used the larger semi-rigid sleeve together with a manual

syringe sampling. For that purpose we used a 30 mL plastic

syringe fitted with a Luer-lock three-way stopcock (BBraun,

Bethlehem, USA) and connected it to one of the two stop-

cocks on the sleeve. At t = 0, t = 5, t = 10 and t = 15 min

we collected 12 mL of gas sample from the sleeve and trans-
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Table 1. Chamber dimensions and mean permeabilities (P) determined, for each replicated chamber (n= 3), from the methane decline slope

(Slope), the total chamber volume (Vtot), the initial concentration gradient between outside and inside (C0−Catm) and the gas exchange

surface (Sc). D =metallic cylinder diameter, L= peripherical length of the enclosure, H = height, T = thickness, C0 = initial enclosure

concentration, Catm = 1.8951 ppmv, R2
= coefficient of determination of the decline regression, Vc = volume of the chamber, Vtot = Vc+

Vdead, Vdead = dead volume of the analyser plus the tubes= 416 cm3. Values in brackets represent the standard error of the mean (±SEM).

Enclosure type D L H T Sc Vc Vtot C0 Slope R2 P

(cm) (cm) (cm) (cm) (cm2) (cm3) (cm3) (ppmv) (mg m−3 s−1)× 10−4 (m s−1)× 10−7

Small sleeve 15 25 16 1.5 330 550 966a 109.12 (2.00) −21.40 0.930 8.30 (0.85)d

Large sleeve 15 30 24 1.5 594 990 1406b 71.43 (1.14) −9.86 0.922 4.77 (0.64)e

Rigid chamber 15 28 30 6.5 1413 13165 13581c 9.58 (0.16) −0.82 0.931 14.62 (1.86)f

Volume inaccuracies: a
±3.4 %, b

±2.4 %, c
±4.1 %; Permeability inaccuracies∗: d

±3.7 %, e
±2.8 %, f

±4.3 %; ∗ Calculated from the error propagation formula:

dP
|P |
≤

2

√(
dC
|C|

)2
+

(
dV
|V |

)2
+

2
√

dC2 + dC2
atm
∼=

2

√(
dV
|V |

)2
+ 2

Figure 4. 2-D Layout for the chamber volume (Vc) calculation

based on the stem diameter (Dstem), the thickness of the chamber

(T ), the sector covered by the chamber (K) and the volume of the

wedges (Vwedge). Refer to the text for the volume calculations.

ferred it into pre-evacuated glass Exetainers (Labco Ltd,

Ceredigion, UK) before analysing CH4 concentrations on a

Fast Methane Analyser (Los Gatos Research Inc., Mountain

View, USA) equipped with a sampling loop as described in

Baird et al. (2010).

2.4 Gas analyses

For the permeability tests, the CH4 concentration change

was analysed in the laboratory under SATP conditions for

three types of chamber (Tables 1, S1 in the Supplement); a

rigid chamber and two semi-rigid sleeves. We injected 50 mL

of a 2000 ppmv methane standard (Air Liquide, Paris) into

these chambers after which the CH4 concentration decline

was measured over 20 min in continuous flow mode. Each

chamber type was tested in triplicate. For the blanks, we in-

jected ambient air. The slopes were measured from a linear

regression of declining concentrations starting after an equi-

libration time of 90 s (dead band) and running for 20 min.

This dead band represents a maximum time for the continu-

ous flow circuit to mix the entire headspace (Vtot).

In the field, the CH4 concentration changes of a larger

sleeve were monitored when deployed on various tree-stem

species (see chamber deployment). In order to have a set of

contrasting responses we selected, a posteriori, measurement

runs with both high and low rates, and also included runs

where leakages of the sleeve were present (Figs. 5 and 6,

Tables S3 and S4). Methane concentration accumulations

were measured as in the laboratory although with shorter

runs of approximately 420 s. In the manual sampling mode

with syringe, the accumulation period was 900 s. The slopes

were measured from linear, quadratic and exponential regres-

sions of increasing concentrations starting after a dead band

of 90 s. The gas pressure, temperature and humidity inside

the stem sleeve were measured from the circulated gas run-

ning through the UGGA’s flow-cell and we used temperature,

pressure and humidity compensated CH4 concentrations for

the slope calculations. The advantage of using the cell tem-

perature is the perfect synchronicity of the airflow with the

temperature measurement. In previous tests we showed that

the cell temperature was strongly correlated (R2
= 0.994) to

the chamber temperature measured with a small data log-

ger (ST-171, Clas Ohlson, Insjön, Sweden). Besides, the an-

alytical laser did not significantly increase the temperature

of the closed circuit (cell, connection tubes and chamber),

as the temperature drift over 20 min of enclosure was only

+0.7 % under lab conditions (SATP). The chamber pressure

was equilibrated to the outside monitored atmospheric pres-

sure (Gas pressure sensor, Vernier, Beaverton, USA) via the

vent tube.

All chambers were connected to an UGGA via two flex-

ible tubes (see chamber designs section) set in parallel in a

continuous flow mode; one tube bringing air from the gas

analyser towards the chambers and the other tube pumping

www.biogeosciences.net/13/1197/2016/ Biogeosciences, 13, 1197–1207, 2016
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Figure 5. Contrasting methane concentration changes in the semi-

rigid sleeve from enclosed gas samples measured in a manual

mode (syringe) from tree stems. In the first six runs (top quad-

rants) the concentration changes were regressed with a linear

fit, while in the second set of runs they were regressed with a

quadratic fit (non-linear). All runs 1–6 were measured on Heisteria

concinna stems from a tropical lowland forest. The blue line corre-

sponds to 95 % confidence intervals, RMSE= root mean square er-

ror, R2
= coefficient of determination, Y =methane concentration

in ppmv.

air from the headspaces towards the gas analyser. The tubes

were connected to the gas analyser via two 1/4 inch push-

connect fittings. The UGGA’s pump ensured a continuous

flow of 2–4 L min−1. The UGGA measured CH4 with the

Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

at a frequency of 0.33 Hz. The analyser’s uncertainty in the

range of 0.01 to 100 ppmv of methane is < 1 % without cal-

ibration and the precision is ±0.6 ppb over a period of 100 s

(LGR, 2013).

2.5 Methane permeability calculations

In order to quantify and compare CH4 losses from the three

types of chambers (two semi-rigid sleeves and one rigid

chamber) attached to an inert stainless steel cylinder we cor-

rected the loss rates by taking into account both the stem ex-

change surface covered by each sleeve (or chamber) as well

as the concentration gradient between inside and outside of

each chamber. To express this we calculated the permeability

as a function of the effluxes (outgoing fluxes) and the concen-

tration gradient between inside and outside the chambers.

In the first step we multiplied the slope (mg m−3 s−1) by

the total volume of the chamber (Vtot) to get the loss rates

(mg s−1). We then divided the loss rates from each sleeve (or

chamber) by the stem exchange surface (Sc) covered by each

sleeve (or chamber) to express the methane flux (J ) which

can be used for both the permeability experiment on the

metallic cylinder and the methane accumulation runs from

tree stems in the field:

Loss rate= slope×Vtot =
dC

dt
×Vtot

[mg

s

]
(7)

Flux (J )=
Loss rate

Sc

=
dC

dt
×
Vtot

Sc

[ mg

m2 s

]
. (8)

In the second step, from Fick’s first law (Fick, 1855) we

could apply the general equation often used in cell biologi-

cal or textile fabric applications (Ogulata and Mavruz, 2010)

to calculate, for each sleeve (or chamber), the CH4 perme-

ability (P ) through a porous medium by dividing the CH4

flux (J ) by the CH4 concentration gradient (1C) between in-

side (Cchamber) and outside of the sleeve (Catm). We assume

that the diffusive CH4 losses (including dilutions) through

the rigid and semi-rigid material are negligible at SATP con-

ditions (McKeen, 2012). Thereafter the equation was

J =−P ×1C → Permeability (P )=

−
J

(Cchamber−Catm)

[
m3

m2 s

]
. (9)

2.6 Numerical analyses

We used linear, quadratic and exponential regressions to

fit the CH4 concentrations as a function of the accumula-

tion time in the chambers. The fitting was based on sum

of squares’ minimisation of the errors. The frequency dis-

tribution, homogeneity and homoscedacity of the residuals

were previously checked using normal quartile plots, resid-

ual versus predicted plots, and box plots. The coefficient of

determination (R2) was used to quantify the level of fit. All

the data were analysed with the SAS software (SAS Institute

Inc., Toronto, Canada).
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Figure 6. Contrasting methane concentration changes in the semi-

rigid sleeve from enclosed gas samples measured in continuous flow

mode (UGGA) from tree stems. In the first six runs (top quadrants)

the concentration changes were regressed with a linear fit, while in

the second set of runs (bottom quadrants) they were regressed with

quadratic fit (non-linear). Runs 1, 2, 3, and 5 were made on Betula

pendula stems, runs 4 and 6 were made on Pinus sylvestris stems,

runs 3 and 6 show the concentration responses in situations where

the sleeves were leaking. The blue line corresponds to 95 % confi-

dence intervals, RMSE= root mean square error, R2
= coefficient

of determination, Y =methane concentration in ppmv.

3 Results

3.1 Calibration of the semi-rigid sleeves

The compared predicted (theoretical) and the mean observed

empirical V ′tot (Eqs. 1 and 4) were, respectively, 966 and

933 cm3 for the small sleeve, 1406 and 1439 cm3 for the large

sleeve, and 13 581 and 13 026 cm3 for the rigid chamber (Ta-

ble S1). The observed V ′tot values included variability due to

the possible but very tiny compaction of the Neoprene foam

over the whole frame. This compaction was less than 3 % of

Vtot, which was a maximum considering the pulling force of

200 N applied on the straps (twice 100 N).

The difference between the mean observed V ′tot and the

predicted Vtot values gave us an estimate of the bias in size.

By dividing the absolute value of the bias through the pre-

dicted value we get an estimate of the inaccuracy of Vtot

(chamber, tubes and detector’s cell). As all terms of the frac-

tion (Eq. 4) are linearly dependent, the inaccuracy of the per-

meability (P ) is the quadratic mean of all other terms (Ta-

ble 1, footnote). The gas exchange surface (Sc) could be pre-

cisely determined and we assume that there is no error asso-

ciated with it. The inaccuracies in the concentration measure-

ments are dependent on the uncertainty of the UGGA, which

in our case was < 1 % for the un-calibrated device.

The precision of our measurement system, related to re-

peatability, is the level to which repeated measurements show

the same results under the same conditions. For each sleeve

or chamber we repeatedly injected 50 mL of a 200 ppmv

standard and measured the initial concentration (C0, Ta-

bles 1, S1) in the enclosed volume. We used the relative

standard error (RSE) of the initial concentration (Co) to ex-

press the level of precision between different types of cham-

bers. Thereafter, precision is of±1.82 % for the small sleeve,

±1.59 % for the large sleeve and±1.68 % for the rigid cham-

ber.

3.2 Chamber permeability comparisons

The comparison of permeability (Tables 1, S1) of the three

types of chamber shows that the semi-rigid sleeves are on

average less permeable than the rigid chamber, and that the

smaller semi-rigid sleeve had a higher permeability com-

pared to the larger one. It was also interesting to note that

the CH4 loss (negative slope) is lower for the rigid cham-

ber compared to semi-rigid sleeves. The contrasting higher

permeability of the rigid chamber was counterbalanced by

the much greater Vtot as well as a much lower initial con-

centration gradient between inside and outside of the cham-

ber (dC = C0–Catm). The rigid chamber was 14.1 times that

of the small sleeve in volume and 9.7 times that of a large

sleeve, and the initial concentration gradient in the rigid

chamber was only 1/14 of that in the smaller sleeve and 1/9

of that in the bigger sleeve. Moreover, the larger sleeve had a

larger Sc-to-Vtot ratio (0.42) compared to the smaller sleeve

(0.34).

In order to understand why the permeability of the semi-

rigid sleeves was lower than that of the rigid chamber we

compared and calculated the potential contact distances be-

tween air from inside and outside of the chamber volumes

(Fig. 3, Table S2). Those contact zones represented the paths

where gas effusion could occur, which were driven by the ar-

chitecture of the chamber. For that purpose we distinguished

two types of contact lines: (1) mobile lines that needed to

be sealed properly every time the chambers were deployed
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and from which most of the losses were likely to occur,

and (2) fixed lines that resulted from the manufacture which

could be cracked and leak as a result of twisting forces on the

rigid joints. The result was that for the same theoretical stem

gas exchange surface (Sc) between the two chambers (same

length and height), the ratio between the length of the mobile

lines and the stem gas exchange surface (Sc) was 2.17 times

smaller for the semi-rigid as compared to the rigid approach.

3.3 Stem-methane emissions and field deployments

In the field, the manual sampling by syringe showed steady

concentration changes with the sleeve technique (Fig. 5,

Table S3), and the linear fitting of those concentration

changes was always high (R2
≥ 0.924). When applying a

quadratic fit the coefficient of determination improved sub-

stantially (R2
≥ 0.995). In continuous flow mode the con-

centration changes were also consistent with the sleeve tech-

nique (Fig. 6, Table S4), and the linear fitting was very high

(R2
≥ 0.989) for all the runs not displaying leakages. Equally

to the manual sampling mode, in continuous flow mode, the

fitting improved slightly when applying a quadratic function

or an exponential function (R2
≥ 0.998).

The two modes also distinguish themselves by the fact that

with the continuous flow mode the runs are shorter compared

to the manual mode. The runs were set to 15 min closure for

the manual mode and to 7 min closure for the continuous flow

mode. These times included a maximum of 90 s equilibration

time just after the sleeve was deployed to allow the headspace

to mix properly.

Runs 3 and 6 of the continuous flow mode were delib-

erately presented to display situations where leakages from

sleeves were occurring when placed on Betula pendula or

Pinus sylestris tree stems (Fig. 6). In those cases, the CH4

concentrations developed in a disordered way with periods of

increases immediately followed by sudden drops. These ana-

lytically monitored leakages were confirmed when checking

the chamber fitting on the stems.

The determination of the coefficient of variation of the root

mean square error CV(RMSE), often used to measure the

relative differences between two populations of values, and

which was calculated between the linear fitted slopes and the

non-linear fitted slopes, was higher in the case of the manual

sampling mode (0.69) as compared to the continuous flow

mode (0.45). In other words, the difference between the lin-

ear and non-linear fittings was 53 % higher in the manual

mode as compared to the continuous mode. This went in par-

allel with the differences between the average slope in the

linear fitting and that from non-linear fitting which was 27 %

higher with the manual sampling mode as compared to 18 %

with the continuous mode.

4 Discussion

4.1 Semi-rigid sleeve construction

The semi-rigid sleeves are easy to assemble, lightweight, and

can be locally sourced. The sleeves could easily be assem-

bled on-site following transportation. This allows for mini-

mal luggage or shipping space and low costs, a major asset in

terms of logistics where remote fieldwork is concerned. The

PET or PC sheets were precisely cut in advance whereas the

framing with the Neoprene strips was done on-site. We made

sure that all components were not emitting CH4, which might

otherwise confound in situ measurements. Nevertheless, the

raw materials are commonly available internationally, could

be found on-site and likewise tested. For small sleeves (stem

diameters ≤ 15 cm) and middle-sized sleeves (stem diame-

ters ≤ 25 cm) the pre-shaped PET sheet can easily be con-

structed from soft drink PET bottles or PC water-fountain

tanks. Larger sleeves (stem diameters > 25 cm) can be built

from flat PC sheets as the curvature and volume stability of

the chamber becomes less compromised with larger stem di-

ameters. Most important for the construction of the sleeves

are the vertical wedges that keep the sheet equidistant from

the stem along the radial periphery of the sleeve. The con-

struction of a sleeve took about 1 hour and there was no re-

quirement for specific machine tools and no adhesives were

needed, as the Neoprene bands used were adhesive backed.

For the production of large numbers of sleeve rectangular

plastic sheets could be thermoformed using a specially de-

signed mould (Throne, 1996).

The average CH4 mass losses (2.2–3.3 %) from the sleeves

after 20 min of deployment were 2 orders of magnitude

greater as compared to the 0.038 % mass loss after 30 min of

deployment reported by Hutchinson and Livingstone (2001)

for a perfectly sealed chamber with a sole vent tube. There-

after, our downscaled vent tube was proportioned to the CH4

losses from the sleeves.

4.2 Calibration of the semi-rigid sleeves

All the chambers were reasonably precise (repeatable) in

terms of total volume and the semi-rigid chambers (sleeves)

performed equally compared to the rigid chambers. In terms

of total volume inaccuracy, all chambers were below the

threshold significance level of 5 %. Moreover, the semi-rigid

sleeves’ total volume accuracy increased with increasing

Sc / Vtot. Nevertheless, getting good accuracy is a matter of

calibration as biases can be subtracted from the original read-

ings.

The average 33 cm3 greater V ′tot values as compared to Vtot

for the large sleeve (Table S1) can be attributed to the volume

of the wedges that were also undergoing a compaction when

deployed as the interior periphery gets compressed. This tiny

volume correction was not inserted in formula 4 for the sake
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of simplicity and because the difference with the calibration

was still below 5 %.

We added a known amount of CH4 instantaneously to the

chambers and followed its decline and associated chamber

permeability. Thereafter, we can be aware of how well the

chambers are doing in keeping the considered gas but not

how well they do in minimizing the errors associated with the

gas exchange processes between stems and the chamber. For

those errors we referred to recommendations from other stud-

ies, such as the following: ensuring air-mixing, venting, re-

ducing closure times, reducing chamber volume and consid-

ering non-linear fitting (Christiansen et al., 2011; Hutchinson

and Livingston, 2001; Juszczak, 2013; Pihlatie et al., 2013).

4.3 Chamber permeability comparisons

A reasonable mechanistic explanation to the fact that both

semi-rigid sleeves were on average 57 % less permeable

compared to the rigid chamber (Table 1) could come from

the sleeve’s smaller proportion of air contact lines between

inside and outside the chambers thereby reducing opportu-

nities for gas diffusion to occur. The difference in that pro-

portion is similar in order of magnitude to the difference in

permeability (Table S2). Moreover, it is possible that with an

ageing rigid chamber the permeability could increase faster

than in the case of an ageing semi-rigid sleeve as the propor-

tion of fixed contact lines could be exposed to more cracks

and unforeseen reduced air-tightness (Fig. 3, green lines).

This is also in line with the fact that for the same semi-rigid

chamber design with the increasing Sc-to-Vtot ratio, thus by

increasing frame size, there is a concurrent decrease in the

proportion of contact lines as well as a concurrent decrease in

permeability. The rigid chamber had a much lower Sc-to-Vtot

ratio when compared to the sleeves and showed the greatest

permeability. From our observations we can generalise the

common trend found for all chamber types by saying that the

larger the total volume of a stem chamber is, for a given gas

exchange surface, the greater the expected permeability.

With the same logic and by considering the strong lever-

age effect of the concentration gradient (1C) between in-

side and outside the chamber, the advantage of the larger

rigid chamber is that it keeps the concentration gradient more

constant during the chamber deployment and therefore mini-

mizes the non-steady-state gas saturation effect of the closed

chamber system. However, this advantage loses its impor-

tance when semi-rigid sleeves are connected to precise gas

analysers with analytical frequencies of up to 10 H as the

gradient effect can equally be minimized by reducing the clo-

sure times to a few minutes. Additionally, by increasing the

Sc-to-Vtot ratio by 6 fold compared to rigid chambers and by

mixing the enclosed gas through the continuous flow circu-

lation, we also avoided the problems associated with large

volume chambers (Hutchinson and Livingston, 2001, 1993).

Nevertheless, the only non-compressible time factor is the

sleeve’s equilibration period; a 90 s period for the continu-

ous air circulation to mix the entire headspace. This could be

shortened by reducing the tube length, increasing the pump’s

flow-through or by installing a complementary fan if the

sleeves were to be built much larger. In any case, the thresh-

old time by which the sleeve headspace is mixed entirely can

be monitored graphically while running every sample. Retro-

spectively, 90 s of equilibration, together with 3 min closure

time, conservatively characterised all replicates made for two

different sleeve sizes (n= 24).

4.4 Deployment in the field

As expected, deployment of the semi-rigid sleeve was very

straightforward and could be operated by a single person.

The fact that the sleeves had a natural tendency to curve (pre-

shaped) allowed them to stay in place when initially placed

around the stem. This gave the researcher free hands to at-

tach the straps subsequently. The whole setup takes 2 min

to install and swapping the sleeves between different stem

heights was also done much more efficiently in comparison

to the rigid chamber deployment.

In theory all stem sizes could be fitted, the only limitation

comes from the stem texture and this is valid for both semi-

rigid sleeves as well as rigid chambers. In some situations,

the tree bark had large crevices and it was necessary to pre-

pare the stem prior to attachment of the sleeves or rigid cham-

bers. The preparation was made by filling the crevices with

mastic or play dough in the shape of a frame before the cham-

ber or sleeve could be sealed to the stem. In some other situ-

ations it was enough to increase the thickness of the sleeves

to reduce the percentage of uncertainty in the chamber vol-

ume (Vc). The impact of both crevices and bumps could be

assessed with distance measurements made on photos taken

on one side of the deployed sleeves.

Using five sleeve sizes it was possible to cover stem di-

ameters ranging from 5 to 127 cm at breast height (DBH).

Moreover, in terms of weight the two sleeves we tested were

respectively 156 and 297 g, compared to 3.3 kg for the rigid

chamber. As a consequence, the whole collection of sleeves

fitted in a single backpack and was light to carry.

Under changeable conditions such as varying sunlight in-

tensities we recommend the temperature inside and outside

of the sleeve to be measured, and to shade the sleeve. Oth-

erwise, these varying conditions may alter the gas exchange

processes between the stem and the atmosphere.

4.5 Sampling modes and regression fits

In both cases, for manual sampling and continuous flow

(Figs. 5 and 6), methane accumulation rates were better fit-

ted with non-linear functions (quadratic or exponential). This

confirms that the sleeve’s closure system was sealing prop-

erly against the stems, as the headspace concentration change

of a closed non-steady-state chamber (static chamber) will al-

ways remain non-linear and this is driven by the laws of dif-
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fusion (Hutchinson and Livingston, 2001). For the semi-rigid

sleeve, the difference between both the R2 and the slopes

between the linear fitted and the non-linear fitted concentra-

tion changes were roughly twice as small compared to those

reported in the literature for soil chambers (Christiansen et

al., 2011; Hutchinson and Livingston, 2001; Juszczak, 2013;

Pihlatie et al., 2013).

Furthermore, the impact of the manual syringe sampling

on the pressure fluctuation in the sleeve could be some-

what minimised by the fact that the chamber volume (Vc),

where the actual air mixing occurred, was increased by the

additional dead volume added from the analyser and tub-

ing in continuous flow mode. Thus, the total volume (Vtot =

Vc+Vdead) was increased as much as 76 % with the smaller

sleeve. With rigid soil chambers this aspect is often not men-

tioned as in those cases the dead volume is negligible com-

pared to the large chamber volume. In our case, for the man-

ual sampling, over a 15 min period, we drew 1.8 % of the to-

tal volume from the larger sleeve (4 steps of 0.44 %), which

in terms of mass loss remains below the significance level of

5 % and could be accounted for if more accuracy is needed.

Although the repeated gas sampling minimises somewhat the

pressure build up, recent studies have recommended avoiding

manual sampling as much as possible because of associated

pressure fluctuations (Christiansen et al., 2011; Juszczak,

2013).

The coefficient of variation of the root mean square er-

ror CV (RMSE) gave 53 % higher coefficients for the man-

ual sampling mode compared to the continuous flow mode

thus indicating that the discrepancy between the linear fitting

and the non-linear fitting is higher for the manual sampling

mode. Moreover, as reported by some authors, fluxes calcu-

lated using linear fitting together with non-steady state cham-

bers could be underestimated by as much as 40 % (Chris-

tiansen et al., 2011; Pihlatie et al., 2013; Kutzbach et al.,

2007). In our case, the underestimation was 27 % for manual

sampling mode and 18 % for the continuous flow mode. As

a consequence we would recommend using non-linear fitting

(quadratic or exponential) together with manual sampling of

the semi-rigid sleeves. In continuous flow mode, it is better

to reduce the closure times as much as possible if planning

to use linear fitting for greater simplicity. Both measures will

contribute to improving line-fitting and estimating CH4 ac-

cumulation rates.

5 Conclusions

Although all chamber types performed well, the semi-rigid

design had numerous benefits including reduced gas perme-

ability and an optimal Sc-to-Vtot ratio. Furthermore, they can

be easily constructed and transported in multiple sizes, are

extremely light, cheap to build and fast to deploy. As an ex-

ample, in three of our tropical campaigns it was possible to

carry a complete collection of semi-rigid sleeves in a single

backpack. The collection covered the sampling of all ecosys-

tem stem-sizes. Alternatively, we could also build the cham-

bers on-site after prior testing of the compounds for back-

ground emissions. The PET and PC sheets of the sleeves are

sturdy and lasted the duration of the campaigns, while the

closed-cell Neoprene strips could be used for several weeks

in the field before they needed to be replaced.

Connecting the sleeves in continuous flow mode to fast

and precise laser-spectroscopic gas analysers (CRD or OA-

ICOS technologies) enables the combined analysis and air

mixing of the sleeve’s enclosed volume, as well as reduc-

ing the closure periods to no-more than 3 min, making linear

fitting from initial rates less problematic. To ensure optimal

accuracy of the concentration measurements, it is best to cali-

brate each individual sleeve’s total volume by diluting a stan-

dard gas in the entire setup (chamber, connectors, tubes and

analyser) prior to starting a measurement programme.

Finally, to make good estimates of the global importance

of tree-stem CH4 emissions, it is essential to make mea-

surements that cover all types of trees (species and mor-

photypes) present within the often remote ecosystems ex-

plored. This necessitates great adaptability in the chamber

sizing and transport logistics. The semi-rigid sleeves meet

these requirements without compromising the quality of the

data collected.

The Supplement related to this article is available online

at doi:10.5194/bg-13-1197-2016-supplement.
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