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Abstract. The current generation of marine biogeochemical
modules in Earth system models (ESMs) considers mainly
the effect of marine biota on the carbon cycle. We propose
to also implement other biologically driven mechanisms in
ESMs so that more climate-relevant feedbacks are captured.
We classify these mechanisms in three categories according
to their functional role in the Earth system: (1) “biogeochem-
ical pumps”, which affect the carbon cycling; (2) “biological
gas and particle shuttles”, which affect the atmospheric com-
position; and (3) “biogeophysical mechanisms”, which affect
the thermal, optical, and mechanical properties of the ocean.
To resolve mechanisms from all three classes, we find it suf-
ficient to include five functional groups: bulk phyto- and zoo-
plankton, calcifiers, and coastal gas and surface mat produc-
ers. We strongly suggest to account for a larger mechanism
diversity in ESMs in the future to improve the quality of cli-
mate projections.

1 Introduction

This “ideas and perspectives” paper deals with the role of
marine biota in the climate system and the way this role can
be adequately captured in the marine ecosystem components
of Earth system models (ESMs) for climate research.

The representation of the marine ecosystem in ESMs used
for climate projections has been significantly refined in re-
cent years. Plankton, for example, has been split into func-
tional groups, and physiological details, such as light or nu-
trient acclimation, have been added (e.g., Vichi et al., 2011;
Aumont and Bopp, 2006; Aumont et al., 2015). Most of these
modifications had been motivated by studies regarding the

impact of climate change on marine ecosystems, or improv-
ing the representation of biogeochemical cycles, specifically
the carbon cycle. Little attention, however, has been paid
to other biologically mediated climate-relevant mechanisms,
which we define as combinations of processes that lead to cli-
mate feedbacks. Here, we will present a framework to clas-
sify these biological–chemical–physical mechanisms and the
functional groups that are necessary to describe them.

Many of today’s marine biogeochemical models used in
ESMs for climate projections include several phyto- and zoo-
plankton functional groups; in some cases even variations
in element or chlorophyll content of organic matter are al-
lowed (see Laufkötter et al., 2015, for an overview). Apart
from discussions about the appropriate degree of complex-
ity in biogeochemical models (see Anderson, 2005; Flynn,
2006; and Le Quéré, 2006), even the most complex models
“only” refine the representation of the marine carbon cycle.
The climate–carbon cycle feedback, however, is just one of
several feedback loops in which marine biota interacts with
other components of the climate system.

These additional links are or may become important for
the evolution of the climate system and should be imple-
mented in ESMs. Thus, instead of adding more details to
better represent just one mechanism, we should account for
a “mechanism diversity”. This way, the consequences of an
altered functioning of the marine ecosystem with climate
change will feed back on the climate system in multiple
ways.

To adequately account for the proposed mechanism di-
versity, the first task is to come up with a list of relevant
mechanisms. We define biologically driven mechanisms to
be climate-relevant on timescales of contemporary climate
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change if they lead to a change in global energy (heat) con-
tent and distribution. These are, with decreasing levels of di-
rectness, (i) mechanisms with an immediate impact on the
planetary albedo and/or sea surface temperature, (ii) mech-
anisms which change the content and distribution of green-
house gases or ocean’s turbulent viscosity, and (iii) mecha-
nisms which change, for instance, the ocean’s nutrient inven-
tory with potential consequences for the marine carbon cy-
cle and thus atmospheric greenhouse gas concentrations. Be-
cause the climate relevance of mechanisms on the third level
is difficult to evaluate, we will limit this discussion to those
of the first and second level. Even for these, quantitative es-
timates about the impact on the global energy budget are not
available in all cases. Often, however, useful semiquantita-
tive evaluations, for example on ocean circulation patterns,
exist, and we will use them instead.

We will present a general framework that illustrates the
links between the marine biota, the mechanisms, and the
larger feedback loops in the climate system in a systematic
way. Within this framework, individual processes as part of
the mechanisms will be described only briefly, and only if
they are indispensable for a basic understanding. Our list of
processes cannot be complete, yet all mechanisms will be
presented at a comparable level of abstraction. We believe
that the framework will prove a useful basis for classifica-
tion, even if additional biological climate-relevant mecha-
nisms are discovered.

2 What is needed: a classification of biologically driven
mechanisms

We adopt the idea to split the marine biota into different
groups, but in contrast to previous approaches, we classify
them according to their functional role in the climate sys-
tem. The functions these organism groups carry are drivers
of climate-relevant mechanisms.

This leads us to three classes of mechanisms (M1–M3)
that generate climate feedbacks (see Fig. 1). For each class
we briefly explain the main mechanisms, present the key or-
ganisms involved, and highlight the climate relevance. Fi-
nally, we describe the functional groups needed to represent
this mechanism in ESMs (Table 1).

M1 – biogeochemical pumps

The first class of mechanisms comprises the marine part of
the carbon cycle, including the organic carbon pump, the mi-
crobial carbon pump, and the alkalinity pump.

The organic carbon pump includes the processes related
to the uptake of carbon dioxide in the upper ocean and the
sinking of organically bound carbon to deeper waters. Three
main organism groups are involved – phytoplankton, zoo-
plankton, and bacteria. Phytoplankton drives the carbon cy-
cle because inorganic carbon is transferred to organic carbon

via photosynthesis and zooplankton decisively contributes to
carbon export to the deeper ocean via fecal pellet produc-
tion. Bacteria decompose the organic matter while it is sink-
ing down and thereby determine the efficiency of the organic
carbon pump. The climate relevance of the organic carbon
pump has been evaluated in several model studies; rough
estimates suggest that atmospheric CO2 levels would rise
by approximately 200 ppmv after a complete shutdown of
the organic carbon pump (Volk and Hoffert, 1985; Broecker
and Peng, 1986). As part of the climate–carbon cycle feed-
back (Friedlingstein et al., 2006), this mechanism is well
known and regarded as the most important marine biologi-
cally driven mechanism. To capture the organic carbon pump
in ESMs, two functional groups are, in principle, sufficient –
a bulk phytoplankton and a bulk zooplankton group to de-
scribe the transformation process from inorganic to organic
matter and the sinking of the latter. All additional functional
groups that are needed for other mechanisms, however, will
also contribute (see Table 1). Bacteria do not need to be ex-
plicitly included as a key group to adequately represent the
organic carbon pump because bacterial decomposition can be
assumed to be roughly proportional to the available organic
matter.

The microbial carbon pump describes the pathway from
more easily degradable to refractory organic carbon by mi-
crobes (e.g., Jiao et al., 2010). These organisms transform
dissolved or particulate organic carbon into compounds that
are resistant towards degradation and are therefore stored
for thousands of years. The refractory organic carbon pool
is large and comparable to the atmospheric CO2 reservoir
(Hansell et al., 2009), but it will have little impact on the
climate system on timescales of several hundreds of years,
unless an imbalance between sources and sinks evolves. Al-
though it has been speculated that such changes may oc-
cur under ocean acidification and eutrophication (Jiao et al.,
2014), there is insufficient knowledge to account for the
microbial carbon pump and the corresponding functional
groups in ESMs. In addition, no evaluation of the relevance
of this pump with respect to contemporary climate change
exists yet.

The alkalinity pump is another essential part of the ma-
rine carbon cycle because this mechanism alters the carbon-
ate chemistry in the ocean. Organisms that affect the car-
bonate equilibrium are calcifying species, forming calcite or
aragonite shells. They occur in the open ocean (e.g., coccol-
ithophores) as well as in shallow regions (e.g., corals), where
they “consume” alkalinity and release CO2 during the calci-
fication process, causing a decrease in alkalinity. Since alka-
linity is the capacity of the ocean to buffer acids and sets the
limit of how much CO2 can be stored, changes in alkalin-
ity have consequences for CO2 storage. While the quantita-
tive impact of the alkalinity pump on climate is currently un-
clear, its role via the “calcification feedback” on atmospheric
CO2 concentrations is assumed to be large (Zhang and Cao,
2016). Among the calcifiers, coccolithophores are the most
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important group (see, e.g., Rost and Riebesell, 2004) and
mainly responsible for the vertical gradient in alkalinity.
When coccolithophores die, they sink down to the deeper
part of the ocean, where the calcareous shells dissolve and the
alkalinity increases. Other calcifying organism groups have
been shown to be regionally important (see, e.g., Baumann
et al., 2004; Kleypas et al., 2006) or are assumed to be rele-
vant for aragonite (Gangstøet al., 2008) but presumably only
marginally for climate dynamics. To represent the alkalinity
pump in ESMs, calcifiers need to be included to generate the
vertical alkalinity gradient and to adequately resolve the car-
bonate chemistry. From a climate perspective, the gain from
representing calcifiers by more than one key group might be
relatively small unless regional ESMs are applied. With one
additional key group, the calcifiers, represented by coccol-
ithophores, the basic features of the alkalinity pump would
be captured.

M2 – biological gas and particle shuttles

The second class of mechanisms, the biological gas and
particle shuttles, addresses the impact of the marine bio-
sphere on the atmosphere due to emission of gases and par-
ticles. These substances belong to the group of “short-lived
climate-relevant air contaminants” (SCCs), a subset of short-
lived health- and climate-relevant air contaminants (SHCCs),
sensu Pöschl and Shiraiwa (2015). They may act as aerosols,
influencing cloud formation. They may also affect the atmo-
spheric chemistry or influence the thermodynamics as green-
house gases.

Particulate SCCs of marine biogenic origin directly af-
fecting cloud formation are called “marine biogenic primary
aerosols”. These include entire organisms, like phytoplank-
ton cells or organisms’ remnants, or “exudates”, which are
substances secreted by organisms (e.g., Knopf et al., 2011;
Burrows et al., 2013; Wilson et al., 2015). Although the re-
search area of marine biogenic aerosols is relatively new, re-
cent studies suggest that, at least on a regional scale, ocean
biota strongly influences the concentrations of cloud droplets
with significant consequences for the reflected shortwave ra-
diation (McCoy et al., 2015). Thus, ocean biota as a source
for primary aerosols can directly contribute to the cloud–
albedo feedback. As a first approximation, no additional
functional group needs to be added in ESMs; a fraction of
those organisms in the surface layer that are implemented in
ESMs may serve as a source for primary aerosols anyway.

Gaseous SCCs may be involved in aerosol formation or
participate in ozone reactions. The most important gaseous
SCCs produced by marine organisms are dimethyl sulfide
(DMS) and short-lived halocarbons. For both of these it is
meaningful to distinguish open and coastal ocean sources
since their efficiency in gas release is highly dissimilar and
different organism groups are involved. DMS (or its pre-
cursor) is produced by “open ocean” (coccolithophores) and
“coastal” phytoplankton (Phaeocystis) groups (e.g., Barnard

et al., 1984; Malin et al., 1993). Zooplankton and bacteria are
involved in the DMS shuttle (Reisch et al., 2011) and, sim-
ilar to the organic carbon pump, bacteria determine the effi-
ciency to a large extent. Short-lived bromine halocarbons are
associated with “open ocean” phytoplankton and “coastal”
macroalgae (e.g., Moore et al., 1996; Nightingale et al., 1995;
Carpenter and Liss, 2000).

Dimethyl sulfide (DMS) is a precursor of sulfate aerosols
and involved in the cloud–albedo feedback (e.g., Charlson
et al., 1987; Ayers and Cainey, 2008), although its climate
relevance is still under discussion (e.g., Quinn and Bates,
2011). Local effects on shortwave radiation of DMS emis-
sion by a phytoplankton bloom can induce cooling of up
to 15 W m−2 at the top of the atmosphere; such a high
value is usually associated with heavily air-polluted regions
(Meskhidze and Nenes, 2006). The global direct radiative ef-
fect of DMS has been estimated to be −0.23 W m−2, and the
indirect as −0.76 W m−2. The contribution of primary pro-
ducers via DMS production to sources of natural aerosols is
therefore larger than those from sea salt or volcanoes, for ex-
ample (Rap et al., 2013).

Short-lived halocarbons, particularly brominated sub-
stances, are important SCCs because they destroy ozone and
thereby significantly change the radiative forcing (Sturges
et al., 2000; Saiz-Lopez et al., 2012; Laube et al., 2008).
The radiative effect is estimated to be about −0.2 W m−2 and
thus larger than the one by the widely known anthropogeni-
cally produced long-lived halocarbons such as CFCs (Hos-
saini et al., 2015).

For both DMS and short-lived halocarbons, it is crucial to
correctly represent the spatial patterns of marine primary pro-
duction and corresponding SCCs (e.g., Stemmler et al., 2015,
for halocarbons). To capture the gradient between coastal and
open ocean, an additional model compartment, the “coastal
gas producers”, has to be included in ESMs. A relatively easy
way to describe them in a model is by allowing the uptake of
nutrients from sediment or deepest model layer and by pre-
scribing relatively high emissions per unit biomass. Even if
different types of organisms are involved in the coastal pro-
duction of DMS and short-lived halocarbons, one functional
group is sufficient because coastal patterns of the two SCCs
do not differ clearly. The group of open-ocean organisms can
be represented by either coccolithophores in the case of DMS
or by a “bulk phytoplankton” group in the case of halocar-
bons (although parameterizations are necessary because only
part of the entire bulk phytoplankton produces halocarbons).
Just like for the organic carbon pump, bacteria do not need
to be explicitly considered for the DMS shuttle; zooplankton,
the other group involved in DMS release, is included anyway
because of its role in the organic carbon pump.

Lastly, there are a number of greenhouse gases of marine
biogenic origin, notably CO2. This gas is respired by all or-
ganisms and is more or less automatically captured in ESMs
through the loss rate of all functional groups. In addition to
CO2, another important long-lived greenhouse gas is N2O,
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which has a global warming potential of a 100-year time
horizon that is approximately 300 times higher compared to
CO2 (Myhre et al., 2013). About 20 % of the global produc-
tion of N2O is of marine origin (Denman et al., 2007), me-
diated by microbes. N2O is released mainly during nitrifica-
tion, (the oxidation of ammonium to nitrate under oxic condi-
tions) and, to a lower extent, during denitrification (the reduc-
tion from nitrate to dinitrogen gas under anoxic conditions)
(Freing et al., 2012). Two organism groups, bacteria and ar-
chaea, are involved in these transformation processes. So far,
our knowledge regarding the spatial variations in the occur-
rence of the organisms involved and the respective rates is too
fragmented to explicitly describe these processes in models.
Instead, these bacterial transformation processes can be im-
plicitly considered in the same way as done for other mecha-
nisms (by choosing turnover rates that are proportional to the
available resources); thus, no further model compartment is
necessary.

Marine sources of other biogenic greenhouse gases like
CH4 are mainly related to marine microorganisms (e.g.,
Valentine, 2011). To the best of our knowledge, the effect
of these greenhouse gases such as CH4 on the climate sys-
tem may be considered negligible because the marine sources
are small compared to the terrestrial or anthropogenic ones.
Thus, it is currently not justifiable to add more model com-
partments.

M3 – biogeophysical mechanisms

The third class of biologically driven climate-relevant
mechanisms includes all biogeophysical mechanisms. These
mechanisms comprise changes in thermal, optical, and me-
chanical properties of the ocean, predominantly caused by
phytoplankton species. Among them, positively buoyant
cyanobacteria are particularly important because they can
produce surface mats of up to several millions of square kilo-
meters (e.g., Capone et al., 1998). Such surface mats signif-
icantly change light absorption, impacting the surface mixed
layer heat balance (e.g., Sathyendranath et al., 1991; Kahru
et al., 1993). In addition, they increase the albedo (e.g., Kahru
et al., 1993), alter the turbulent viscosity, and reduce vertical
mixing (e.g., Jöhnk et al., 2008). Surface mats may also re-
duce the air–sea gas exchange, if we assume effects similar
to surface microlayers (e.g., Liss and Duce, 2005).

The climate impact of the light absorption mechanism
has been only assessed for neutrally buoyant phytoplank-
ton groups so far. Their impact alone, however, is signifi-
cant: pronounced effects on oceanic and atmospheric tem-
perature, circulation patterns, cloudiness, humidity, precipi-
tation and evaporation, and sea ice cover (Patara et al., 2012)
as well as El Niño–Southern Oscillation (ENSO) dynamics
(e.g., Jochum et al., 2010) have been shown to be influenced
through light absorption. The strong response triggered by
this mechanism results from multiple feedback loops that in-
volve different Earth system components.

Table 1. Organism groups that drive climate mechanisms: M1: bio-
geochemical pumps; M2: gas and particle shuttle and M3: biogeo-
physical mechanisms. Note that zooplankton is partly involved in
the production of DMS due to grazing and thus checked in paren-
thesis.

Organism groups M1 M2 M3

Bulk phytoplankton X X X
Bulk zooplankton X (X) –
Calcifier X X X
Coastal gas producer X X X
Surface mat producer X X X

Rough estimates indicate that changes in albedo through
phytoplankton, specifically coccolithophores, can result in a
cooling by roughly 0.2 W m−2 globally (Tyrrell et al., 1999).
A more sophisticated evaluation, however, points towards a
negligible impact on the albedo, at least on the basin scale
(Gondwe et al., 2001). In any case there is a direct link to the
albedo–temperature feedback (Watson and Lovelock, 1983).

Unfortunately, the effect on climate through biologically
induced changes in the ocean’s turbulent viscosity has not
been addressed yet. Idealized model studies, however, sug-
gest that a biologically induced increase or decrease in tur-
bulent viscosity by surface mats can affect ocean circulation
patterns on a basin scale (Sonntag, 2013).

To account for biogeophysical aspects in ESMs, one ad-
ditional key group, “surface mat producers”, is needed.
Cyanobacteria are a good candidate to represent this group.
They possess the trait “positive buoyancy”, which is not
shared with other phytoplankton. Clearly, all other groups
of marine primary producers that are explicitly described in
ESMs have an impact on light absorption, too, but by dis-
tinguishing neutrally or negatively from positively buoyant
phytoplankton, a more realistic representation of the light ab-
sorption feedback will be achieved.

To summarize, including the abovementioned five func-
tional groups (Table 1) will meet the requirements for an ad-
equate representation of biologically driven mechanisms in
ESMs.

3 What changes may occur in the future: sensitivity of
marine biota to climate stressors

The marine biota itself, as well as the strength of the indi-
vidual mechanisms, may evolve under climate change due to
changes in the three climate stressors – temperature, pH, and
oxygen. As a rule of thumb, higher temperatures increase the
metabolic rates of organisms. Lower pH may increase the
growth of non-calcifiers and decrease that of calcifiers (e.g.,
Raven, 2011). Low oxygen concentrations will particularly
impact higher trophic levels and microbial processes. In prin-
ciple, however, the response will be species-specific.
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Figure 1. Major global climate feedback loops, based on the three classes of mechanisms (light grey-shaded boxes), driven by marine
biota (green-shaded boxes). Only links originating from the marine biota are shown; additional inter- and cross-links between the different
boxes are omitted for clarity. (a) The three mechanisms (the organic and the microbial carbon pump, and the alkalinity pump) affect the
CO2 inventory in the ocean, which in turn leads to changes in atmospheric CO2 and thus in climate. An altered global climate influences
the marine biota (through, for example, changes in SST, near-surface stratification, and circulation patterns), closing the marine part of
the climate–carbon cycle feedback loop which also includes the CO2 calcification feedback. (b) The gas and particle shuttle alters cloud
formation rates and distribution as well as atmospheric chemistry. There is a complex interplay between different atmospheric components
that ultimately lead to climate change, again with consequences for the marine biota. A number of atmospheric feedbacks (e.g., the cloud–
albedo feedback, the long-wave radiation feedback, the chemistry feedbacks) are involved in this loop. Note that the influence of marine biota
on local cloud cover is not illustrated here. (c) Two biogeophysical mechanisms (based on light absorption and turbulent viscosity changes)
directly affect the upper ocean physics such as heat distribution and circulation and hence the biota. The third one (albedo changes) has a
direct effect on the planetary radiation budget, which influences in turn the marine biota.

Among phytoplankton, cyanobacteria are assumed to
strongly benefit from climate change, and thus they are ex-
pected to become more abundant in the future (e.g., O’Neil
et al., 2012; Hense et al., 2013). In particular, a moderate rise
in sea surface temperature (Fu et al., 2014), as well as a de-
crease in pH, will favor their growth conditions (Hutchins
et al., 2007). More cyanobacteria will intensify the bio-
geophysical feedback mechanisms and possibly the parti-
cle shuttle. The response of other phytoplankton to pH is
not well understood. While ocean acidification may signifi-
cantly affect calcifiers and the calcification rate, the response
is not uniform (see Kleypas et al., 2006) and genetic adap-
tation (Lohbeck et al., 2012) might outweigh the negative
consequences of a decreasing pH. Ocean acidification (but
also increasing temperature) may directly affect DMS pro-
ducing organisms and thus outgassing of DMS: depending
on the grazing pressure, DMS production seems to be either
enhanced (Kim et al., 2010) or reduced (Archer et al., 2013).
A strong response of the climate system to reduced DMS-
production on radiative forcing has been proposed (Six et al.,
2013).

Sensitivity to climate stressors has also been described
for many microbial organisms. Nitrifiers are one example.
For lower pH, nitrification and therefore N2O production are
strongly reduced (Beman et al., 2011). It is expected never-
theless that the production of N2O will increase in the future

(Naqvi et al., 2010) due to the expansion of oxygen mini-
mum zones (Stramma et al., 2008), taking into account that
the highest N2O production usually occurs at the anoxic–oxic
interface. Another example of microbes that seem to benefit
from climate change is those involved in the aerobic decom-
position of organic matter. A rise in temperature and a drop in
pH stimulates bacterial turnover rates (Pomeroy and Deibel,
1986; Piontek et al., 2010). With enhanced remineralization,
the efficiency of the organic carbon pump will be reduced,
altering the ocean’s carbon uptake capacity (Segschneider
and Bendtsen, 2013). On the other hand, bacterial decom-
position rates may be affected through a decrease in oxygen
concentrations with an expansion of oxygen minimum zones
(Stramma et al., 2008). It is still unclear, however, whether
low oxygen concentrations will impair bacterial degradation
of organic matter or not (see, e.g., Kristensen et al., 1995;
Devol and Hartnett, 2001).

In addition to the immediate effect of climate stressors on
ocean biota, we expect significant alterations in the environ-
ment with potentially large long-term consequences on the
organisms and biologically driven mechanisms. For example,
the organic carbon pump will likely be altered by changes in
stratification (Steinacher et al., 2009), the ocean’s molecu-
lar viscosity (Taucher et al., 2014), and plankton community
composition (see, e.g., Laufkötter et al., 2016). The alkalin-
ity pump may be affected by changes in freshwater input or
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Table 2. Different marine biosphere modules (MBMs) in Earth system models (ESMs) that participated in CMIP5 (Arora et al., 2013;
Laufkötter et al., 2015): OCMIP: Wu et al. (2013); CMOC: Christian et al. (2010); BEC: Moore et al. (2013); TOPAZ2: Supplement of
Sarmiento et al. (2010), Dunne et al. (2013); Diat-HadOCC: Palmer and Totterdell (2001); HadGEM2-ES: The HadGEM2 Development
Team (2011); PELAGOS: Vichi et al. (2007), Vichi et al. (2011); PISCES: Aumont and Bopp (2006), Lengaigne et al. (2009), Aumont et al.
(2015); NPZD: Watanabe et al. (2011), Kawamiya et al. (2000); HAMOCC: Maier-Reimer et al. (2005), Ilyina et al. (2013). We only use
the most recent peer-reviewed reference of each MBM. MBMs are only listed once, even though some of them are used in more than one
ESM. The numerals refer to the biologically driven mechanisms while P, Z, C, cG, S, and B denote the organism groups phytoplankton,
zooplankton, calcifiers, coastal gas producers, surface mat producers, and bacteria, respectively. Organism groups that are not explicitly
described but parameterized are in parentheses. Checkmarks with additions refer to the biogeochemical carbon pump (bcp), DMS or N2O
(specific SCCs), light absorption by neutrally/negatively buoyant phytoplankton (LA-nbp), or the numbers of explicitly described functional
groups. In PISCES, the SCCs are not included by default but available through additional modules.

Mechanisms Functional groups

ESMs MBMs M1 M2 M3 P Z C cG S B

BCC_CSM1.1 OCMIP Xbcp – – – – – – – –
CanESM1 CMOC X – – X1 X1 – – – –
CESM1 BEC X – XLA-nbp X3 X1 (X) – – –
ESM2M/ESM2G TOPAZ2 X – XLA-nbp X3 (X) (X) – – –
HadGEM2-ES Diat-HadOCC X XDMS – X2 X1 (X) – – –
CMCC-CESM PELAGOS Xbcp – XLA-nbp X3 X3 – – – X1

IPSL-CM5A PISCES X (XDMS,N2O) XLA-nbp X2 X2 (X) – – –
MIROC-ESM NPZD Xbcp – – X1 X1 – – – –
MPI-ESM HAMOCC X XDMS – X1 X1 (X) – – –

evaporation (see Steinacher et al., 2009; Jiang et al., 2014).
Overall, it is very certain that the relative abundance of some
phytoplankton organisms will change as a result of their re-
sponse to climate stressors and altered environmental con-
ditions. Such a shift in community composition will affect
the strength of all three classes of mechanisms, and with that
their relative importance within the climate system.

4 What is currently done: the state of the art

Today’s ESMs represent the first class of biologically driven
climate-relevant mechanisms, the biogeochemical pumps (in
particular the organic carbon pump), reasonably well (Ta-
ble 2). Most of these models explicitly consider phyto- and
zooplankton, which are described in such a way that the
model results give reasonable values for export production
(see Ilyina et al., 2013; Palmer and Totterdell, 2001). The
carbonate chemistry is also relatively well represented, even
though calcifiers are not explicitly included but are parame-
terized by assuming that they constitute a certain proportion
of bulk phytoplankton.

The second class of mechanisms, which affect the atmo-
spheric composition, has received less attention. Some ESMs
do consider DMS and N2O (Table 2), and their results sug-
gest significant changes in the production with consequences
for the climate system in the future (e.g., Six et al., 2013;
Martinez-Rey et al., 2015). Other marine biologically pro-
duced SCCs (except CO2) and aerosols are usually not in-
cluded, but there are a number of recent modeling activi-

ties in which the pertinent processes have been implemented,
and the climate impact of these substances has been par-
tially evaluated (e.g., Kirkevåg et al., 2013; Stemmler et al.,
2014, 2015; Hossaini et al., 2015). The largest deficiency
of ESMs in this respect is that primary production is still
not sufficiently well represented, in particular in coastal re-
gions (e.g., Schneider et al., 2008; Anav et al., 2013). Even
though the respective ESMs and global marine biogeochem-
ical models have become more and more complex in recent
years (see Aumont et al., 2003; Le Quéré et al., 2005; Dunne
et al., 2013; Buitenhuis et al., 2013), the situation has only
marginally improved. Not surprisingly, models generally fail
to simulate SCC concentrations and air–sea fluxes on the
shelf (see Halloran et al., 2010; Stemmler et al., 2015); much
could be gained if coastal primary production were captured
more realistically.

Finally, the third class of mechanisms, the marine biogeo-
physical mechanisms, is hardly addressed in today’s ESMs;
so far, only half of them include the light absorption mecha-
nism involved in the feedback between the biota and temper-
ature (Table 2). Recent studies with neutrally or negatively
buoyant phytoplankton indicate that consequences for the up-
per ocean heat balance and the climate system are substan-
tial (e.g., Patara et al., 2012; Lengaigne et al., 2009). Thus,
the effects might be even stronger if positively buoyant or-
ganisms are added; whether organisms stay at the surface or
whether they are homogeneously distributed in the surface
mixed layer makes a large difference for the upper ocean
heat budget (e.g., Sonntag and Hense, 2011). None of today’s
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ESMs or coupled global biogeochemical ocean circulation
models account for other biogeophysical effects, i.e. changes
in albedo and turbulent viscosity.

5 What needs to be done: an alternative way to design
the marine biological component of ESMs

The mechanism diversity in today’s Earth system models is
low, although the marine biological modules include a rela-
tively large number of biological variables. In fact, most of
the models include more functional groups than we think are
necessary to capture all three classes of mechanisms. Hence,
it should be relatively easy to increase the mechanism diver-
sity and allow for the desired more complete description of
links between marine biota and other Earth system compo-
nents.

Given the current level of process understanding, we pro-
pose to keep the organic carbon and alkalinity pumps and
add at least one gas shuttle, as well as light absorption. In
parallel, pilot studies with biogenic primary aerosols should
be conducted and sensitivity experiments with the other two
biogeophysical mechanisms should be performed. Further
mechanisms may have to be added with improved process
knowledge or increasing model resolution, while others may
have to be omitted if they turn out to be negligible. Hence,
the list of mechanisms is not fixed.

To capture the suggested mechanisms in ESMs, only a
few additional functional groups are needed. Calcifiers and
coastal gas and surface mat producers should be explicitly
taken into account. Parameterizing calcification may work
out for today’s ocean, but in climate change scenario experi-
ments, this parameterization may no longer be appropriate.
Under future acidified conditions, the composition of cal-
cifying and non-calcifying species of the phytoplankton as
well as the growth behavior of calcifiers may significantly
change due to competing selection pressures. To allow for
such shifts in community composition, calcifiers should be
explicitly implemented as a separate state variable. Surface
mat producers, represented by cyanobacteria, are included in
a few ESMs (e.g., Dunne et al., 2013) because of their role
as nitrogen fixers in the nitrogen cycle. Their role in the bio-
geophysical mechanisms is not included, and we suggest to
account for that by adding the trait “surface buoyancy”.

Our knowledge of other sensitivities is still underdevel-
oped, so it would be premature, for example, to include
functional dependencies of the pH effect on phytoplankton
growth. The same is true for our knowledge about genetic
adaptation towards climate stressors.

6 Summary and conclusions

We distinguish three main classes of biologically driven
climate-relevant mechanisms. We argue that a fundamen-
tally different kind of progress will be achieved if members

of all classes of mechanisms are included in ESMs for cli-
mate projections. To resolve the mechanisms, five functional
groups are needed: bulk phyto- and zooplankton, calcifiers,
and coastal gas and surface mat producers. Thus, our sug-
gested marine biosphere module for ESMs may be even less
complex than those modules currently used for climate pro-
jections. However, in contrast to these state-of-the-art con-
cepts, a wider range of important links between the marine
biosphere and other Earth system components – and conse-
quently more feedbacks – is allowed.

We believe that mechanism diversity is better suited to ac-
count for possible changes in ocean biota and consequences
for the climate system. With global warming and ocean acid-
ification, the marine biota will be altered (e.g., Hallegra-
eff, 2010). Since key groups respond differently to climate
change, the strength of biologically driven mechanisms will
also change, as will links to other Earth system components.
The feedback loops associated with these mechanisms will
be altered accordingly. Thus, to evaluate the response of the
climate system, the mechanism diversity should be increased.
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