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Abstract. Modeling net ecosystem exchange (NEE) at the
regional scale with land surface models (LSMs) is relevant
for the estimation of regional carbon balances, but studies
on it are very limited. Furthermore, it is essential to bet-
ter understand and quantify the uncertainty of LSMs in or-
der to improve them. An important key variable in this re-
spect is the prognostic leaf area index (LAI), which is very
sensitive to forcing data and strongly affects the modeled
NEE. We applied the Community Land Model (CLM4.5-
BGC) to the Rur catchment in western Germany and com-
pared estimated and default ecological key parameters for
modeling carbon fluxes and LAI. The parameter estimates
were previously estimated with the Markov chain Monte
Carlo (MCMC) approach DREAM(zs) for four of the most
widespread plant functional types in the catchment. It was
found that the catchment-scale annual NEE was strongly pos-
itive with default parameter values but negative (and closer
to observations) with the estimated values. Thus, the estima-
tion of CLM parameters with local NEE observations can
be highly relevant when determining regional carbon bal-
ances. To obtain a more comprehensive picture of model un-
certainty, CLM ensembles were set up with perturbed me-
teorological input and uncertain initial states in addition to
uncertain parameters. C3 grass and C3 crops were particu-
larly sensitive to the perturbed meteorological input, which
resulted in a strong increase in the standard deviation of the
annual NEE sum (σ∑NEE) for the different ensemble mem-
bers from ∼ 2 to 3 gCm−2 yr−1 (with uncertain parameters)
to ∼ 45 gCm−2 yr−1 (C3 grass) and ∼ 75 gCm−2 yr−1 (C3

crops) with perturbed forcings. This increase in uncertainty
is related to the impact of the meteorological forcings on leaf
onset and senescence, and enhanced/reduced drought stress
related to perturbation of precipitation. The NEE uncertainty
for the forest plant functional type (PFT) was considerably
lower (σ∑NEE ∼ 4.0–13.5 gCm−2 yr−1 with perturbed pa-
rameters, meteorological forcings and initial states). We con-
clude that LAI and NEE uncertainty with CLM is clearly un-
derestimated if uncertain meteorological forcings and initial
states are not taken into account.

1 Introduction

Net ecosystem CO2 exchange (NEE), the difference of CO2
release via soil and plant respiration and photosynthetic CO2
uptake, is an important indicator for the net carbon sink or
source function of terrestrial ecosystems. The understanding
of factors controlling the spatial and temporal variability of
carbon fluxes like respiration is still limited (Reichstein and
Beer, 2008). Eddy covariance (EC) net carbon flux measure-
ments are limited to a relatively small area. Chen et al. (2012)
showed that the 90 % cumulative annual footprint area of
12 EC towers located at Canadian sites (with different land
cover including grassland and forest) varied from about 1.1
to 5.0 km2, and that the spatial representativeness of the EC
flux measurements depends on the degree of the land surface
heterogeneity. Biogeochemical fluxes are spatially and tem-
porally highly variable and nonlinear due to the spatial het-
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erogeneity of soil properties, vegetation and fauna, and to the
temporal variability of the environmental drivers (e.g., me-
teorological conditions, management schemes; Chen et al.,
2009; Stoy et al., 2009; Borchard et al., 2015). Therefore,
conventional interpolation methods, such as kriging or in-
verse distance weighting, are not suitable for upscaling EC
carbon flux measurements to larger areas.

Land surface models like CLM (Oleson et al., 2013) sim-
ulate the coupled carbon, nitrogen, water and energy cycle of
the land surface, and are essential to understand interactions
between the climate and the terrestrial carbon cycle and to
predict climate–ecosystem feedbacks (e.g., Le Quéré et al.,
2012; Arora et al., 2013; Brovkin et al., 2013; Todd-Brown et
al., 2014). In this study, CLM version 4.5 in the biogeochem-
istry (BGC) mode (CLM4.5-BGC) was applied. The prog-
nostically calculated leaf area index (LAI) is a major indica-
tor for the model representation of plant phenology. More-
over, it affects photosynthesis and transpiration. Therefore,
the LAI is a key state variable for carbon flux predictions and
land surface–atmosphere exchange fluxes of water and car-
bon. Thus, a correct representation of the simulated LAI in
terms of magnitude and timing is highly desirable. The rep-
resentation of plant phenology (timing of plant emergence,
length in growing season) has been shown to be seriously
flawed in land surface models (LSMs; e.g., Richardson et al.,
2012) including CLM (Dahlin et al., 2015), which can also
affect carbon flux estimates (Baldocchi and Wilson, 2001;
Richardson et al., 2012). Simulated carbon fluxes and the
prognostic LAI in CLM4.5-BGC are closely linked, because
they depend on common ecological key parameters and plant
phenology schemes.

Commonly, LSMs are applied at global or continental
scale (e.g., Stöckli et al., 2008; Bonan et al., 2011; Lawrence
et al., 2012) with grid sizes of ∼ 0.25–1.5◦. At this coarse
scale with such a high degree of spatial aggregation, and
given the non-linearity of the governing equations, the mod-
eled values for output variables like NEE can deviate strongly
from those that would have been calculated with a fine-
resolution model using fine-resolution input. Moreover, re-
liable calibration and validation of global LSMs is difficult,
because observed data including soil carbon stocks and EC
fluxes are only available for single locations. When applying
a LSM for a small region or catchment with high spatial res-
olution (e.g., 1 km2, as in this study) the error of simulated
fluxes is expected to be smaller due to the lower degree of
spatial aggregation (Anderson et al., 2003). In addition, the
land cover within a 1 km2 grid cell more likely matches with
the land cover at the EC site, which enables grid-based eval-
uation of modeled NEE. High spatial resolution can better
represent the land surface heterogeneity and regional weather
variability than a coarse spatial resolution. Thus, regional or
catchment-scale applications of LSMs allow for investigat-
ing spatial patterns of model states, biogeochemical fluxes
and interactions with the regional climate and catchment hy-
drology. Accordingly, quantification of carbon fluxes at re-

gional scales can enhance the understanding of CO2 dynam-
ics and their drivers (Desai et al., 2008). This has been shown
in various studies, for example, for western Africa (Bonan et
al., 2002; Li et al., 2007) and the Alaskan Arctic (Fisher et
al., 2014). However, to our knowledge, studies like Xiao et
al. (2011), who optimized a simple ecosystem model to up-
scale measured EC carbon fluxes to the regional scale, do not
exist yet for more complex LSMs like CLM. This is because
(i) high-resolution input data are often not available, (ii) the
implementation of a new model setup to a specific region is
relatively time consuming and (iii) careful parameter estima-
tion is required to allow for meaningful predictions.

LSM predictions of carbon, water and energy fluxes
are still subject to a high degree of uncertainty due to
(i) model structural deficits related to an imperfect and in-
complete model representation of the biogeochemical pro-
cesses (Todd-Brown et al., 2012; Foereid et al., 2014),
(ii) poorly constrained model parameters (Abramowitz et
al., 2008; Beven and Freer, 2001; Todd-Brown et al., 2013),
(iii) errors in the representation of initial model conditions
generated via a spin-up (Carvalhais et al., 2010; Kuppel et
al., 2012; Xia et al., 2012; Exbrayat et al., 2014) and (iv) er-
rors in both atmospheric and land surface input data. Some
studies estimate the uncertainty of terrestrial carbon flux pre-
dictions based on an ensemble of many different LSMs (e.g.,
Fisher et al., 2014; Huntzinger et al., 2012; Piao et al., 2013;
Zhao et al., 2016). These studies focus on differences be-
tween models and therefore model structural deficits. Those
studies highlight that (i) carbon flux predictions are gener-
ally highly uncertain, which contributes to the uncertainty
in climate change predictions, (ii) interactions of the dif-
ferent processes and drivers are not understood satisfacto-
rily and (iii) models require structural improvement to pro-
duce more consistent predictions. In order to improve LSM
model structure and thus model–data and inter-model consis-
tency, a more comprehensive understanding of model func-
tionality and the contribution and link of the different model
error sources is required. However, as highlighted by Xiao
et al. (2014), the uncertainty of carbon fluxes obtained by
ecosystem and land surface models has not been analyzed
and quantified enough, particularly in regional-scale studies.

Whereas the uncertainty of land surface model parame-
ters has been subject to intensive investigations (e.g., Ren
et al., 2013; Xiao et al., 2014), and several works are ded-
icated to reducing this uncertainty, for example by param-
eter estimation with data assimilation methods (e.g., Safta
et al., 2015), the other sources of uncertainty are less stud-
ied. Earlier work has concluded that parameter uncertainty
alone cannot explain observed deviations between measured
and simulated NEE (e.g., Pridhoko et al., 2008; Wang et al.,
2011), and the remaining deviations are often attributed to
model structural errors. However, uncertainty in atmospheric
forcings and initial conditions could also contribute to un-
explained deviations between simulated and measured NEE.
From global-scale studies it is known that NEE is sensitive to

Biogeosciences, 15, 187–208, 2018 www.biogeosciences.net/15/187/2018/



H. Post et al.: Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates 189

the climate scenario. For example, in a study the LSM LPJ-
GUESS was forced with output from 18 different coupled
atmosphere–ocean global circulation models or Earth system
models, and showed very different NEE responses depending
on the climate scenario. Of the 18 models, 10 project that the
land will become a carbon source in the 21st century, while
the other 8 indicate that the land will act as a carbon sink
(Ahlstrom et al., 2012). Very few studies analyzed the im-
pact of uncertainty in meteorological forcings on NEE at the
plot, catchment or regional scale and for shorter time periods
in the recent past. Studies which analyzed interannual vari-
ability in NEE detected the important role of temperature and
precipitation as drivers of this variability (e.g., Keppel-Aleks
et al., 2014). Gu et al. (2016) found that for the Missouri
Ozark AmeriFlux forest site, the interannual NEE variability
is smaller in simulations by CLM than in the data. On the
other hand, some field studies for pairs of monitoring sites
(Kwon et al., 2006) or experimentation sites (with temper-
ature increase and precipitation increase or decrease; Xu et
al., 2016) found a limited impact of temperature and precipi-
tation differences (or changes) on NEE. Zhang et al. (2012) is
one of the few studies that analyzed the role of uncertain me-
teorological forcings (together with parameter uncertainty)
for calculating NEE with a process-based ecosystem model
in more detail. Their simulations for a Korean pine mixed
forest site with two different meteorological input data sets
revealed clear differences in model response. Spadavecchia
et al. (2011) performed a rigorous uncertainty analysis for
the combination of parameter and forcing uncertainty with a
simple LSM for a pine stand in Oregon, USA. They found
that the contribution of parameter uncertainty to NEE uncer-
tainty is larger than the contribution of forcing uncertainty,
although it also has a significant impact. If meteorological
stations are located more than 100 km away from the study
site, forcing uncertainty starts to dominate parameter uncer-
tainty. The relative contribution of initial state uncertainty
to prediction uncertainty of LSMs has not been thoroughly
studied, although it has been recognized as one of the ma-
jor challenges in model–data fusion studies (Williams et al.,
2009). Richardson et al. (2010) performed Monte Carlo in-
verse modeling to assimilate many different data types in a
forest carbon cycle model for the Howland AmeriFlux site in
Maine, USA. They estimated jointly model parameters and
initial carbon pools. Although they found that model per-
formance improved strongly, they also concluded that car-
bon pools are more difficult to constrain than ecosystem pa-
rameters. Peylin et al. (2016) updated jointly parameters and
carbon pools with the land surface model ORCHIDEE for
a large-scale application. These last two studies explicitly
considered initial state uncertainty together with other uncer-
tainty sources, but did not focus on the relative contribution
of the different uncertainty sources.

As atmospheric forcings and initial state uncertainty, ex-
cept parameter uncertainty, have not received much consid-
eration in the literature until now, we investigate the uncer-

tainty of model predictions in relation to uncertain model pa-
rameters, initial conditions and atmospheric forcings in this
work.

Accordingly, this study has two main objectives. The first
objective is to investigate to what extent can the parameter
estimates based on the Markov chain Monte Carlo (MCMC)
method enhance the model–data consistency of NEE and
LAI for a small European catchment. The model used was
CLM4.5 and compared with EC measurements and LAI from
the RapidEye satellite. We applied successfully validated pa-
rameter estimates from Post et al. (2016) for C3 grass, ever-
green coniferous forest and broadleaf deciduous forest. For
C3 crops, we estimated a new set of parameters as the es-
timated parameters by Post et al. (2016) did not improve
the model–data fit in verification experiments, using the Dif-
feRential Evolution Adaptive Metropolis (DREAM; Vrugt,
2015). Main advantages of a multi-chain MCMC approach
like DREAM are its robustness to find the global minimum
and that it is not limited to Gaussian distributed states and
parameters. The model performance with the new param-
eter estimates was then compared to a reference run with
global default parameters. The second objective was to in-
vestigate the uncertainty of modeled NEE and LAI resulting
from uncertain model parameters, atmospheric forcings and
initial states. We set up three different ensembles with dif-
ferent combinations of perturbed model input data in order
to obtain insight into the contribution of these three main
sources of model uncertainty to the uncertainty of the final
model output.

2 Data and methods

2.1 The Rur catchment

The Rur catchment (Fig. 1) is located around the Belgian–
Dutch–German border region and covers an area of
2354 km2. It is characterized by two distinctly different ar-
eas of land use and climate. In the northern lowland part,
precipitation amounts are lower (650–850 mmyr−1), and po-
tential evapotranspiration is higher (580–600 mmyr−1) com-
pared to the mountainous Eifel region in the south where an-
nual precipitation is 850–1300 mmyr−1 and potential evapo-
transpiration is 450–550 mmyr−1 (Montzka et al., 2008a, b).
The annual mean temperature in the catchment ranges from
about 7.5 ◦C in the south of the catchment to about 10.3 ◦C
in the north (Baatz et al., 2014). The northern part is domi-
nated by fertile loess soils and is intensely used for agricul-
ture. Sugar beet and cereals (winter wheat, barley) are the
most cultivated crops in the catchment (Fig. 1). In the moun-
tainous southern part shallow, less fertile soils dominate. It
is mainly covered by meadows and forests. The Rur catch-
ment is one of four central research regions of the TERENO
project (Zacharias et al., 2011). The main goal of TERENO
is to determine global change impacts across different ter-
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Figure 1. Land cover (Waldhoff, 2010) and eddy covariance tower sites in the Rur catchment.

restrial compartments at the regional level. Therefore, com-
prehensive input and evaluation data are available for the
catchment, including information on land use (Lussem and
Waldhoff, 2013), LAIs (Ali et al., 2015; Reichenau et al.,
2016) and EC data (Schmidt et al., 2012; Graf et al., 2014;
Kessomkiat et al., 2013; Post et al., 2015).

2.1.1 Eddy covariance data

Eddy covariance (EC) data in the Rur catchment were mea-
sured for four C3 crop sites for the evaluation periods sum-
marized in Table 1. The EC crop sites Merzenhausen (ME),
Niederzier (NZ), Selhausen (SE) and Engelskirchen (EN) are
located in the northern lowland region of the catchment. In
ME and SE winter wheat was grown during the measure-
ment period, and in EN and NZ sugar beet. The EC towers in
ME and SE were permanently installed. For those sites EC
data were available for more than 1 year. EC data at EN and
NZ were measured by a roving station, which was installed
for 2 to 3 months at each of the three sites (Table 1). The
complete processing of the raw data was performed with the
TK3.1 software (Mauder and Foken, 2011), using the qual-
ity flagging and uncertainty estimation scheme by Mauder
et al. (2013) as outlined in Post et al. (2015). Only non-
gap-filled data with quality flag 0 (high-quality data) and 1
(moderate-quality data) were included in this study.

Rollesbroich (RO) is an extensively used grassland site
(Korres et al., 2010; Post et al., 2015). Wüstebach (WÜ; Graf
et al. 2014) is located in the Eifel National Park and is largely
covered by evergreen coniferous forest, particularly spruce.
The parameters adopted for the current study were previously
estimated and validated at RO and WÜ in a previous study
(Post et al., 2016).

2.1.2 RapidEye-based leaf area index

RapidEye is a commercial satellite mission initiated by
RapidEye AG (Tyc et al., 2005) and consists of five identical
satellites, which were launched in August 2008. RapidEye
provides multi-spectral images of five spectral bands (blue,
green, red, red edge and near-infrared). The nominal tempo-
ral resolution is daily. The ground sampling distance is 6.5 m
and the pixel size is 5 m for the orthorectified Level 3A data
used here. The LAI data derived from satellite images are
determined based on the NDVI (normalized difference veg-
etation index), which is related to the chlorophyll content in
leaves. The NDVI is calculated based on the reflectances at
near-infrared (NIR) and red (RED). NDVI-based LAI data
(LAINDVI) are affected by various error sources, which can
result in high uncertainty of the LAI estimate. The ma-
jor error sources are summarized in Garrigues et al. (2008)
and include (i) uncertainties in surface reflectance measure-
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Table 1. Eddy covariance tower sites in the Rur catchment.

EC site name Latitude Longitude Altitude Land use NEE time series for parameter Towerb

(◦ N) (◦ E) (m) estimationa & model evaluation

Merzenhausen (ME) 50.9298 6.2970 93.3 agriculture 1 Dec 2011–30 Nov 2012a Per.t
1 Dec 2012–30 Nov 2013

Selhausen (SE) 50.8658 6.4474 103.0 agriculture 1 Dec 2012–30 Nov 2013 Per.t
Niederzier (NZ) 50.8795 6.4499 102.9 agriculture 5 Apr 2013 –10 Jul 2013 Rov.st.
Engelskirchen (EN) 50.9115 6.3090 108.9 agriculture 18 Aug 2012–24 Oct 2012 Rov.st.

a Parameter estimation
b Per.t.: Permanent EC tower; Rov.st.: roving station

ments resulting, for example, from calibration errors or cloud
contamination and (ii) deficiencies in the representation of
canopy architecture in the algorithms applied for the LAI
retrieval, for example, negligence of foliage clumping. This
can lead to gross underestimation of actual LAI, especially
for needleleaf forests (Chen et al., 1997). Clumping effects
on landscape scale are also related to the fact that LAI algo-
rithms have been calibrated at the plot scale, but are applied
over larger heterogeneous pixels, which can induce substan-
tial scaling biases on the LAI estimates (Garrigues et al.,
2006). The latter error source is assumed relatively small
for the LAI retrieval from RapidEye due to the high spa-
tial resolution (5 m) of the images. Studies on verification
or uncertainty quantification of LAI data derived from satel-
lite images are very rare (Garrigues et al., 2008), but they are
very important for land surface model applications. Ali et
al. (2015) used orthorectified and radiometrically corrected
Level 3A data to generate 5 m resolution LAI data for the Rur
catchment, with the same methodology previously applied
to MODIS data (e.g., Propastin and Erasmi, 2010). Those
LAI data were validated for two crop sites (Merzenhausen
and Selhausen) in the Rur catchment using in situ data mea-
sured with a destructive, ground-based method (Bréda, 2003)
at several equally distributed points within the fields at 6 and
11 days during the growing season. The results indicate that
LAI and LAINDVI measure in site, derived from RapidEye,
are highly consistent (Ali et al., 2015). Because only the two
crop sites were included in this evaluation approach, the LAI
data for crop sites (winter wheat) are considered most reli-
able. For this study, the LAINDVI data for the Rur catchment
obtained according to Ali et al. (2015) were aggregated from
the 5 m2 to the 1 km2 grid of the CLM Rur catchment domain
by arithmetic averaging.

2.2 Community Land Model setup

The Community Land Model (CLM) version 4.5 (Oleson et
al., 2013) with the active biogeochemistry model (CLM4.5-
BGC) is fully prognostic with respect to the seasonal tim-
ing of vegetation growth and litter fall. The day length, soil
and air temperature and soil water content are main deter-
minants of plant phenology. Plant phenology representation

follows three different schemes depending on the particu-
lar plant functional type (PFT): (1) evergreen phenology,
(2) seasonal deciduous phenology and (3) stress deciduous
phenology. The four most widespread CLM PFTs in the
Rur catchment are (1) needleleaf evergreen temperate trees,
(2) broadleaf deciduous temperate trees, (3) C3 non-Arctic
grass and (4) C3 crops. The average PFT coverage of the veg-
etated land in Rur catchment was ∼ 34 % C3 crops, ∼ 32 %
grassland, ∼ 17 % broadleaf deciduous forest and ∼ 14 %
coniferous forest. Evergreen coniferous trees follow phenol-
ogy scheme 1, deciduous broadleaf trees follow scheme 2
and C3 grass and C3 crops follow scheme 3 (Oleson et al.,
2013). The LAI and all carbon and nitrogen state variables
in the vegetation, litter and soil organic matter are calcu-
lated prognostically. NEE in CLM is calculated as the sum of
gross primary production (GPP) and total ecosystem respira-
tion (ER). Ecosystem respiration includes heterotrophic res-
piration (HR) and autotrophic respiration, the sum of mainte-
nance respiration (MR) and growth respiration (GR; Oleson
et al., 2013). Photosynthesis is determined at leaf scale (Dai
et al., 2004; Thornton and Zimmermann, 2007) and is up-
scaled by means of the LAI.

The definition of land use cover in CLM follows a nested
sub-grid hierarchy structure (Oleson et al., 2013). The main
land units, which are defined as percentage coverage per grid
cell are glacier, wetland, vegetated land, lake and urban area.
Each land unit follows a different sub-model scheme to cal-
culate the respective carbon, water and energy fluxes for a
certain grid cell. Each vegetated land unit has 15 soil columns
and can include different plant functional types. The PFTs
are also defined as percentage area of the vegetated area
within the grid cell.

To apply CLM for the Rur catchment domain, a land sur-
face input data set was generated with a spatial resolution
of 1 km2. The land unit for each grid cell and the PFT dis-
tribution of each vegetated land unit were defined based on
the land use classification derived from supervised, multi-
temporal remote sensing data analysis using RapidEye and
ASTER data (Waldhoff et al., 2012; Lussem and Waldhoff,
2013). In addition to the land use coverage, CLM requires
information on the percentages of clay and sand for each of
the 15 soil columns of the vegetated area per grid cell. For
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each soil layer, the soil texture was defined based on the Ger-
man soil map (BK50) provided by the Geological Survey of
North Rhine-Westphalia. Mean topographic slope, mean el-
evation and maximum fractional saturated area were deter-
mined for the 1 km2 grid from a 10 m resolution digital el-
evation model (scilands GmbH, 2010). Additional land sur-
face data required to run CLM4.5 such as soil color were
adopted from the default CLM4.5 0.9◦× 1.25◦ resolution
global land surface data file of year 2000 (surfdata_0.9×
1.25_simyr2000_c110921.nc).

The atmospheric forcing data used to run CLM are hourly
time series of precipitation (mms−1), incoming shortwave
radiation (Wm−2), incoming longwave radiation (Wm−2),
atmospheric pressure (Pa), air temperature (K), specific hu-
midity (kgkg−1) and wind speed (mms−1) at the lowest at-
mospheric level. The data were obtained for the years 2008–
2013 from the reanalysis COSMO-DE data set provided by
the German Weather Service (DWD) in 2.8km×2.8km res-
olution (Baldauf et al., 2009). The COSMO-DE data were
downscaled to 1 km2 using natural neighbor interpolation
based on Delaunay triangulation.

To generate the initial state variables such as the carbon
and nitrogen pools, CLM was spun up over a period of
1200 years, using COSMO-DE data of the years 2008–2010.
According to DWD (http://www.dwd.de/DE/klimaumwelt/
klimaatlas/klimaatlas_node.html), the annual average tem-
perature in the years 2008 and 2009 was∼ 0.5–1.0 ◦C higher
than the long-term average (1961–1990) and the mean annual
temperature in 2010 was ∼ 0.5–1.0 ◦C lower. Mean precipi-
tation amounts and freezing days were representative for the
long-term average. We also studied the effect of the forcing
data used for the model spin-up. For example, we tested us-
ing a longer time series (1998–2004) of global climate data.
However, we found that using more recent, regional forcing
data during the spin-up resulted in carbon and energy fluxes
in better agreement with the observations. The model states
obtained after the 1200-year spin-up were then used as input
for a second 3-year “exit spin-up” also using the meteorolog-
ical data for the years 2008–2010. The exit spin-up in CLM
is necessary for technical reasons and switches the CLM set-
tings from the (accelerated) spin-up mode to the “normal”
mode in terms of the calculated carbon–nitrogen cycling. A
longer exit spin-up period of 100 years was tested, but results
and model states differed only minimally from the case with
a 3-year exit spin-up.

2.3 Parameter estimation and evaluation of model
performance

2.3.1 Parameter estimation with DREAM(zs)

In this study, we estimated the posterior probability den-
sity functions (pdfs) of five PFT-specific CLM4.5 parameters
for C3 crops using the adaptive Markov chain Monte Carlo
(MCMC) method DREAM(zs) (Ter Braak and Vrugt, 2008;

Laloy and Vrugt, 2012; Vrugt, 2015), according to the ap-
proach presented in Post et al. (2016). DREAM(zs) is based
on the Bayes’ theorem (A1). In multi-chain MCMC meth-
ods like DREAM(zs), different (in our case three) Markov
chains generate random walks through the parameter space
and successively visit solutions with stable frequencies stem-
ming from a stationary distribution. It is assumed herein
that the prior distribution is uniform (non-informative) using
ranges of the predefined upper and lower bounds for each
parameter according to Post et al. (2016). The use of mul-
tiple chains offers robust protection against premature con-
vergence and thus the probability of becoming stuck in lo-
cal minima is considerably reduced compared to single-chain
methods (Vrugt, 2015). The convergence of the parameters is
monitored with the R̂ convergence diagnostic of Gelman and
Rubin (1992) which is computed for each dimension as the
ratio of variance within one chain and the variance between
different chains. Convergence is achieved if R̂ is smaller than
1.2 for all parameters. Because every point in the parameter
space is hit with a frequency proportional to its probability,
the random walk allows one to iteratively find a stable poste-
rior distribution. Hence, after convergence, the density of the
acceptance points in the parameter space approximates the
posterior pdf according to Bayes’ theorem (see Appendix).
DREAM exhibits excellent sampling efficiencies for multi-
modal and high-dimensional posterior distributions (Vrugt,
2015), which is an important advantage if applied to com-
plex models like CLM. A full description of the DREAM(zs)
algorithms can be found in Vrugt (2015).

To constrain the C3 crop parameters, a 1-year time series
of non-gap-filled, half-hourly NEE data from the EC tower
at the ME site (1 December 2011–30 November 2012) was
used. The five key parameters are (1) the fraction of leaf
N in Rubisco enzyme (flNR), (2) the growth respiration fac-
tor (gR), (3) the rooting distribution parameter (1 m−1) (rb),
(4) the specific leaf area at top of canopy (m2 gC; slatop) and
(5) the soil water potential at full stomatal closure (mm; ψc).
This selection is based on Post et al. (2016) and previous
studies which highlighted the sensitivity of these parameters
(Foereid et al., 2014; Göhler et al., 2013).

Parameter estimates for C3 grass, evergreen coniferous
forest and broadleaf deciduous forest have been successfully
estimated and validated for central European sites by Post
et al. (2016) with DREAM(zs)-CLM4.5 and are therefore
adopted in this study. Post et al. (2016) used NEE data from
the RO and WÜ sites to estimate parameters for C3 grass
and coniferous forest, as well as FLUXNET data from the
Fontainebleau site (FR-Fon) in France, located about 300 km
southwest of the Rur catchment (48.4763◦ N, 2.7801◦ E; e.g.,
Migliavacca et al., 2015). The validation was based on NEE
data from EC sites of corresponding PFTs that were located
∼ 600 km away from the parameter estimation sites. Post et
al. (2016) estimated the parameters flNR , gR, rb, slatop and
ψc jointly with three more parameters: the temperature coef-
ficient (Q10), the base rate for maintenance respiration (mrb)
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and the Ball–Berry slope of conductance–photosynthesis re-
lationship (bs). Q10 quantifies the fractional change of the
respiration rate in response to a 10 ◦C temperature rise. Q10,
mrb and bs in CLM4.5 are by default hard-wired in the
CLM4.5 source code and not defined separately for each PFT
like the other five parameters. This implies that one single
value of those parameters is defined globally, which is then
applied to all PFTs. However, Post et al. (2016) found that
values of the estimated hard-wired parameters, especially
Q10, varied for different PFTs or sites. The fact thatQ10, mrb
and bs are hard-wired in CLM imposes a challenge when ap-
plying the jointly estimated parameter sets on regional scale
because it requires thatQ10, mrb and bs be defined separately
for each PFT. Therefore, we modified CLM in order to input
the PFT-specific values for Q10, mrb and bs of the jointly es-
timated parameter sets by Post et al. (2016). Post et al. (2016)
showed that the estimated parameter values for C3 crops did
not enhance model performance compared to the default pa-
rameter values, if applied to an evaluation year or another C3
crop site. This applies to the parameter values that were esti-
mated and applied using a 1-year time series of NEE data, as
done in this study. Therefore, we estimated a new set of C3
crop parameters.

2.3.2 Evaluation of parameter estimates with eddy
covariance NEE data

In order to evaluate the performance of the estimated CLM
C3-crop-specific parameters in terms of the consistency of
modeled and measured data, two CLM cases were defined
and compared: (i) a reference run (CLM-Ref), which is a
forward run for the years 2011–2013 with default parame-
ters and the atmospheric input data and initial conditions as
described in Sect. 2.2, and (ii) an ensemble run with 60 real-
izations, for the same time period, same initial conditions and
same atmospheric input data as CLM-Ref, but with param-
eters sampled randomly from the DREAM(ZS) multivariate
posterior pdfs (CLM-EnsP). Thus, we did not perform a sep-
arate model spin-up for each of the estimated set of parame-
ters, as this was computationally too expensive. The param-
eter estimates for ME were evaluated with eddy covariance
NEE data from four different C3 crop sites in the Rur catch-
ment (ME, SE, NZ and EN). For ME, the NEE observation
time series of the year that followed the parameter estimation
year were used for evaluation (Table 1).

The evaluation was conducted with time series of half-
hourly NEE data measured at the EC tower sites. First it was
verified that the PFT coverage of one CLM grid cell coin-
cided with the dominant PFT at the respective EC tower site.
More than 80 % of each of the four grid cells was covered
by C3 crops. This was considered sufficient for grid-based
model evaluation. In the following, the subscript “gc” is used
to refer to the grid cell in which one of the EC towers is
located; e.g., MEgc refers to the respective grid cell of the
ME site. The length of the available NEE time series differed

among the EC sites, ranging from 2 to 12 months (including
data gaps). See Fig. 1. Accordingly, only the model output
that coincides with the observed NEE data was used.

The calculated NEE output was evaluated based on the fol-
lowing indices:

The root mean square error (RMSEm):

RMSEm =

√√√√1
n

n∑
i=1
(mi − yi)

2, (1)

where y is measured half-hourly NEE (µmolm−2 s−1) at time
step i for the given time series of length n and m is the mod-
eled equivalent.

The mean absolute difference of the mean diurnal NEE
cycle (MADdir):

MADdiur =
1

48

48∑
i=1
|m̄d − ȳd |, (2)

where ȳ is average measured NEE at a given time d dur-
ing the day (µmolm−2 s−1) and m̄ is the modeled equiva-
lent. This performance measure is evaluated half-hourly (48
times per day). For the sites ME and SE, where a complete
year of NEE data was available, the mean diurnal NEE cycle
and the index MADdiur calculated separately for each of the
four seasons within the evaluation year (winter: December–
February; spring: March–May; summer: June–August; au-
tumn: September–November). In order to summarize the
four seasonal MADdiur indices to one MADdiur index rep-
resentative for the whole evaluation year, the four seasonal
indices were averaged. For the other sites where only NEE
data for ∼ 2–3 months were available, the indices including
MADdiur were calculated for this shorter time series.

The relative difference (%) of the NEE sum (
∑

NEE) was
calculated for all half-hourly data available in the respective
evaluation period (RD∑

NEE):

RD∑
NEE =

n∑
i=1
(mi)−

n∑
i=1
(yi)

n∑
i=1
(yi)

× 100, (3)

where y is measured NEE (non-gap-filled) andm is modeled
equivalent.

All evaluation indices were determined for both CLM-Ref
and for the ensemble mean of CLM-EnsP. Post et al. (2016)
showed that parameters estimated for the forest sites WÜ
and FR-Fon are well transferable to other FLUXNET sites
of corresponding PFTs located more than 600 km from WÜ
and FR-Fon: Tharandt in Germany (DE-Tha; e.g., Grünwald
and Bernhofer, 2007) and Hainich in Germany (DE-Hai; e.g.,
Knohl et al., 2003). Because WÜ is the only forested EC
tower site in the Rur-catchment and no additional EC tow-
ers were available for the validation of the estimated param-
eters, we assume the parameter estimates provide more re-
liable NEE data for a large part of the forested area in the
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Rur catchment. We also adopted successfully estimated and
validated parameters for the C3 grass site RO from Post et
al. (2016).

2.3.3 Evaluation of LAI predictions

Various studies highlight current deficits to accurately esti-
mate and validate LAI derived from multispectral satellite
images for deciduous and needleleaf forest (Ganguly et al.,
2012; Tillack et al., 2014; Härkönen et al., 2015). In addi-
tion, the LAI data derived from RapidEye (LAIRapidEye) used
herein have not yet been validated for the forest PFTs. Thus,
the model performance in terms of the LAI was only evalu-
ated for grid cells with more than 80 % C3 grass or C3 crop
coverage, not for the forest PFTs. The effect of the parame-
ter estimates on LAI was evaluated for the 1 km2 grid of the
Rur catchment domain. LAIRapidEye data of about 18 days
(depending on the location) between 1 November 2011 and
16 September 2012 were used for the LAI evaluation and
compared with modeled LAI data on those days and those
grid cells for which RapidEye data were available. The LAI
was evaluated separately for C3 grass and C3 crops, and both
for the winter half-year (November–April) and summer half-
year (May–October). To evaluate and compare modeled LAI
for CLM-EnsP and CLM-Ref, the mean absolute difference
between simulated LAI and measured LAI (MADLAI) was
calculated over all grid cells with more than 80 % C3 grass
(npft = 224) or C3 crop (npft = 404) coverage:

MADLAI =
1

ndays · npft

ndays·npft∑
i=1
|mi − yi |, (4)

where m is the modeled daily LAI (m2 m−2 day−1) and y is
the measured equivalent, ndays is number of days and npft is
number of grid cells for which LAIRapidEye data were avail-
able at a particular day. RMSELAI was calculated according
to Eq. (1).

The mean LAI for each PFT was calculated by

LAIPFT =
1

ndays · npft

ndays·npft∑
i=1

LAIi, (5)

where ndays is the number of days RapidEye data for a given
PFT were available, and LAIi is the LAI observed or mod-
eled at a particular day (m2 m−2 day−1). For each LAIPFT
value, a respective standard deviation was calculated.

2.4 Uncertainty estimation

2.4.1 Perturbation of atmospheric input data

In order to take the uncertainty of the meteorological input
data into account, a 60-member ensemble of perturbed me-
teorological forcings was generated for the years 2008–2012
using hourly COSMO-DE data. The approach used to gener-
ate the perturbation fields has previously been applied in soil

moisture data assimilation studies (Reichle et al., 2007, 2010;
Kumar et al., 2012; Han et al., 2012, 2013, 2014). Pertur-
bation fields were applied to air temperature (K), incoming
longwave radiation (Wm2), incoming shortwave radiation
(Wm2) and precipitation (mms−1). Normally distributed ad-
ditive perturbations were applied to longwave radiation (LW)
and air temperature (Temp). Log-normally distributed multi-
plicative perturbations were applied to precipitation (Prec)
and shortwave radiation (SW). The parameters used for the
perturbations were adapted from Han et al. (2014) and are
listed in Table 2. The perturbations for the different atmo-
spheric variables are cross-correlated in order to generate
physically plausible perturbations of the atmospheric forc-
ings. We considered spatial correlation in addition to tem-
poral correlation of the meteorological variables. The multi-
plicative perturbations are truncated by a defined maximum
of 2.5 standard deviations, to remove outliers from the gen-
erated perturbation fields (Reichle et al., 2007). The spatially
correlated noise is calculated first using the fast Fourier trans-
form approach (Park and Xu, 2013) with a 10 km spatial cor-
relation scale. Next, the temporally correlated noise is added
to the spatially correlated noise. The temporal correlation for
all perturbed variables is imposed using a first-order AR(1)
autoregressive model (Reichle et al., 2007). The AR(1) tem-
poral correlation coefficient for a time lag of 1 day was 0.368
for all variables.

2.4.2 Generation of perturbed initial state input files
and the perturbed forward run for the Rur
catchment

As shown in various studies, carbon fluxes predicted by
land surface models strongly depend on the carbon–nitrogen
pools generated during the model spin-up (Carvalhais et al.,
2010; Kuppel et al., 2012). In order to take the uncertainty
of initial states into account, a 60-member ensemble of per-
turbed initial states was generated. This was done via a 15-
year spin-up using perturbed atmospheric forcings for the
years 2008–2010 (Sect. 2.4.1) and parameter values sam-
pled randomly from the joint DREAM posterior pdfs. The
initial conditions used at the beginning of the 15-year per-
turbed spin-up were taken from the end of the main 1200-
year spin-up plus 3-year exit spin-up. This perturbation takes
into account the uncertainty of the less stable carbon and ni-
trogen pools, but uncertainty with respect to the stable and
resistant carbon and nitrogen pools is not taken into account.
As the stable nitrogen pool is not perturbed, the availability
of N from mineralization is very similar across the ensemble
members. This might be an unproblematic assumption given
N fertilization by agriculture and atmospheric deposition, but
it also implies that the uncertainty of the net N availability at
the sites is likely underestimated.
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Table 2. Parameters applied for the perturbation of the meteorological input data, adapted from Han et al. (2014).

Variables Additive (A) or Standard Cross correlation
[unit] multiplicative (M) deviation coefficients

T SW LW

Air temperature (T) [K] A 1 – 0.4 0.4
Incoming shortwave radiation (SW) [Wm−2] M 0.3 0.4 – −0.5
Incoming longwave radiation (LW) [Wm−2] A 20 0.4 −0.5 –
Precipitation (P) [mms−1] M 0.5 0 −0.8 0.5

2.4.3 Evaluation of model uncertainty

In order to evaluate the effect of uncertain CLM parameters,
meteorological input data and initial model states, we set up
four CLM ensembles with 60 ensemble members each:

1. CLM-EnsP: ensemble model runs for 1 Decem-
ber 2012–30 November 2013 with deterministic (non-
perturbed) initial states and non-perturbed input data
from COSMO-DE (Sect. 2.2). The initial states are the
outcome of the default 1203-year spin-up, without per-
turbations. The parameter values were sampled ran-
domly from the DREAM(zs) multivariate posterior pdfs
(Table 3), which were estimated for C3 crops or adopted
from Post et al. (2016) for C3 grass, evergreen conifer-
ous forest and broadleaf deciduous forest. For C3 crops,
the setup of CLM-EnsP was identical to the one used for
the evaluation of the estimated C3 crop parameters in
terms of the NEE model–data consistency (Sect. 2.3.2).

2. CLM-EnsPA: ensemble model runs for 1 Decem-
ber 2012–30 November 2013 with parameter values
sampled according to CLM-EnsP and perturbed atmo-
spheric forcings, but using deterministic initial states.

3. CLM-EnsPAI: ensemble model runs according to CLM-
EnsPA, but starting from perturbed initial states.

4. CLM-EnsP+Q10: a forward run for the period 1 Decem-
ber 2012–30 November 2013 with deterministic forc-
ings, deterministic initial states and parameters sampled
according to CLM-EnsP, except forQ10.Q10 values for
C3 crop and forest PFTs were sampled from a normal
distribution with a mean of 2.0 and a standard devia-
tion of 0.5 with a minimum and maximum bound set to
1.3 and 3.0. We choose Q10 because of its central role
in carbon stock and flux predictions and the respective
uncertainties in most land surface models (Post et al.,
2008; Hararuk et al., 2014), including CLM (Post et al.,
2016). The objective of ensemble CLM-EnsP+Q10 was
to estimate the uncertainty of the CLM output induced
by the prior uncertainty of one single key parameter, and
compare it to the posterior uncertainty from CLM-Ensp.

The modeled NEE sum (gCm−2 yr−1) for the period 1 De-
cember 2012–30 November 2013 was calculated for each

Figure 2. NEE sum (
∑

NEE) determined for the evaluation peri-
ods (see Table 1) including all half-hourly time steps where eddy
covariance data (Obs) were available, for the CLM ensembles EnsP
with estimated parameters and EnsPAI with additional perturbed at-
mospheric forcings and perturbed initial states (including standard
deviations of the 60 ensemble members), in comparison to a ref-
erence run with default parameters (CLM-Ref). In all CLM cases
time series were subsetted according to available Obs.

ensemble member using the complete time series of daily
outputs. The PFT-specific NEE sum (

∑
NEEPFT) was then

calculated separately for each of the four main PFTs by av-
eraging the simulated NEE sum over all grid cells with more
than 80 % coverage by the particular PFT. The analysis of
model uncertainty was then based on the standard deviation
(σ ) of

∑
NEEPFT between the different ensemble members,

σ(
∑

NEEPFT). Accordingly for GPP and ER, σ(
∑

GPPPFT)

and σ(
∑

ERPFT) were calculated.

3 Results

Evaluation of simulated NEE and LAI with estimated
parameter values

As shown in Table 4, CLM parameter estimates notably re-
duced the mismatch between modeled and measured NEE
data in comparison with the reference run (Ref), where global
default parameter values were used.

MADdiur was reduced by 7 % (SEgc), 25 % (NZgc) and
35 % (MEgc) and increased by 7 % for ENgc. Thus, the mean
diurnal NEE cycles were closer to the observed ones for all
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Table 3. Lower and upper bound of 95 % confidence intervals of CLM4.5 parameter estimates estimated with DREAM(zs) (C3 crop) or
adapted from Post et al. (2016).

Year flNR slatop gR rb ψc Q10 mrb bs

CLM4.5 default values 0.14 0.030 0.30 2.00 −2.75× 105 1.50 2.53× 10−6 9.0
RO (C3 grass) 2011/12 0.13,

0.15
0.010,
0.010

0.39,
0.40

1.01,
1.27

−3.79× 105,
−1.65× 105

1.39,
1.44

4.48× 10−6,
4.50× 10−6

6.1,
6.9

CLM4.5 default values 0.18 0.030 0.30 3.00 −2.75× 105 1.50 2.53× 10−6 9.0
ME (C3 crop) 2011/12 0.09,

0.10
0.010,
0.010

0.40,
0.40

1.00,
1.04

−3.94× 105,
−2.62× 105

– – –

CLM4.5 default values 0.05 0.010 0.30 2.00 −2.55× 105 1.50 2.53× 10−6 9.0
WÜ (coniferous forest) 2011/12 0.05,

0.07
0.005,
0.006

0.29,
0.40

0.75,
3.95

−3.91× 105,
−2.07× 105

2.50,
2.99

2.13× 10−6,
3.48× 10−6

5.0,
6.2

CLM4.5 default values 0.05 0.010 0.30 2.00 −2.55× 105 1.50 2.53× 10−6 9.0
FR-Fon (deciduous forest) 2006/07 0.12,

0.12
0.010,
0.010

0.39,
0.40

1.00,
1.17

−3.89× 105,
−2.57× 105

1.87,
1.97

3.47× 10−6,
3.50× 10−6

5.7,
6.0

Table 4. Root mean square error RMSEm (µmolm−2 s−1), mean absolute difference for the mean diurnal NEE cycle MADdiur
(µmolm−2 s−1) and relative difference of the NEE sum over the evaluation period RD∑NEE (%) for the CLM ensemble with estimated
parameters (EnsP) in comparison to the reference run (Ref) with default parameters. Results are given for ME (Merzenhausen), SE (Sel-
hausen), NZ (Niederzier) and EN (Engelskirchen). Here, n is the number of non-gap-filled half-hourly measurement data that were available
to calculate these evaluation indices.

Grid n MADdiur RMSE RD∑NEE
cells (µmolm−2 s−1) (µmolm−2 s−1) (%)

EnsP Ref EnsP Ref EnsP Ref

ME 10 157 1.5 2.30 5.95 6.74 11 79
SE 9597 3.22 3.45 8.20 9.41 81 94
NZ 2772 2.70 3.61 10.71 9.37 33 99
EN 2272 4.83 4.53 8.83 8.93 87 82

evaluation grid cells dominated by C3 crops, except ENgc, if
estimated parameters were used. The RMSEm was reduced
by up to 13 % (SEgc) for all sites except NZgc. RD∑

NEE was
most notably reduced compared to the other evaluation in-
dices. The measured

∑
NEE was negative for each of the four

EC sites and for all of the respective model outputs (Fig. 2).
This would imply that all sites were net carbon sinks dur-
ing the evaluation period. However, because data gaps were
included in the NEE time series and because more EC data
were available for summer and daytime than for winter and
nighttime, those values do not represent the true NEE sum
of the evaluation period. For CLM-Ref and all evaluation
sites,

∑
NEE differed notably from the observed data (Fig. 2,

Table 4). For MEgc, SEgc and NZgc, the predicted
∑

NEE
was significantly closer to the observations for CLM-EnsP
than for CLM-Ref, and RD∑

EE was reduced by a factor
of 1.2 (SEgc) to 7.2 (MEgc). RD∑

EE was 13 % (SEgc) to
68 % (MEgc) lower for CLM-EnsP compared to CLM-Ref.
For ENgc, RD∑

EE was slightly lower for CLM-Ref, but as
indicated in Fig. 2, the difference of

∑
NEE was not signif-

icant. Overall, results indicate that NEE sums over a time
period from several months to 1 year were better represented

with estimated values than with global default values. Fig-
ure 2 highlights that the uncertainty of modeled NEE is prob-
ably underestimated if the uncertainty of meteorological in-
put data and initial states is not taken into account. The stan-
dard deviation of CLM-EnsPAI is notably higher compared to
CLM-EnsP, where only parameter uncertainty is considered.

Table 5 summarizes the catchment average LAIs and
the corresponding mean absolute differences (MADLAI) and
RMSE between the observed and modeled LAIPFT. In the
summer half-year, LAIEns was closer to LAIRapidEye than
LAIRef, both for C3 grass and C3 crops. RMSELAI was on
average 1.5 for CLM-EnsP and 3.4 for CLM-Ref. MADLAI
for summer was 1.2 for CLM-EnsP and 3.4 for CLM-Ref on
average. In winter, the difference was only 0.2 (RMSELAI)

and 0.3 (MADLAI) and thus the improvement not significant.
While CLM-Ref overestimated LAIPFT, ENSP underesti-

mated LAIPFT. Overall, the standard deviation of LAIPFT,
i.e., the LAI variation over all included grid cells n through-
out the half-year period, was very high for both the observed
and the modeled data. The mean annual LAI cycles for MEgc
and SEgc (Fig. 3) indicate that the uncertainty of LAI was un-
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Table 5. Mean LAI values (LAIPFT) for the RapidEye data (Obs), the CLM ensembles with estimated parameters (EnsP) and the CLM
reference run (Ref) with default parameters, as well as the mean absolute differences (MADLAI) and root mean square error (RMSELAI). N
is the number of grid cells in the catchment with more than 80 % coverage of one particular PFT.

PFT LAIPFT RMSELAI MADLAI

N Obs EnsP Ref EnsP Ref EnsP Ref

C3 grass w 1667 2.7± 1.6 1.0± 0.8 2.6± 2.2 2.6 3.0 2.0 2.5
C3 grass s 1271 3.0± 1.4 1.8± 0.6 5.5± 1.4 1.9 3.2 1.5 2.6
C3 crop w 4392 2.3± 1.3 0.7± 0.5 2.4± 1.7 2.1 1.9 1.7 1.6
C3 crop s 2887 2.1± 0.9 1.5± 0.5 5.5± 0.8 1.0 3.6 0.8 3.5

w: winter half-year (November–April); s: summer half-year (May–October); ± standard deviation; EnsP: CLM ensemble with
estimated parameters.

Figure 3. Daily LAIs for the evaluation period 1 December 2011–
30 November 2013 for grid cells where the sites Merzenhausen
(ME) and Selhausen (SE) are located. Results are shown for
the 60 ensemble members of the CLM cases EnsPertP with es-
timated parameters, and EnsPAI with additional perturbed atmo-
spheric forcings and perturbed initial states, in comparison to a ref-
erence run with default parameters (CLM-Ref) and RapidEye data
(Obs.RapidEye; bold lines: ensemble mean).

derestimated for CLM-ENSP. The uncertainty of simulated
LAI was much higher for CLM-EnsPAI.

Figure 3 highlights that for C3 crops, the simulated yearly
LAI cycle did not match well the observed and expected an-
nual LAI course. The delay of the plant emergence indicated
by these LAI courses is related to the strong underestimation
of daytime NEE in spring 2013 (Figs. 4, 5). This underesti-
mation of NEE can mainly be attributed to an underestima-
tion of GPP, which is too low in spring because the simulated

plant onset was about 2 weeks later than observed. For CLM-
Ref and for most of the CLM-EnsPAI ensemble members, leaf
onset started in May. For those model realizations, the under-
estimation of daytime NEE in spring was highest. In contrast,
for CLM-EnsP and a small proportion of CLM-EnsPAI, leaf
onset started in March. For those cases, the underestimation
of daytime NEE in spring was notably lower. This elucidates
the close link of modeled NEE and LAI and highlights that
errors in the timing of leaf onset can lead to substantial errors
in simulated NEE. The evaluation of simulated LAI showed
that modeled and observed LAI are closer for simulations
with estimated CLM parameters than for simulations with
default parameters and that for C3 crops, simulated leaf on-
set was better represented.

Uncertainties of simulated carbon fluxes on
catchment scale

In this section, results of modeled NEE, GPP and ER are
summarized and compared for the CLM ensembles CLM-
EnsP, CLM-EnsPA, CLM-EnsPAI and CLM-EnsP+Q10 with
focus on the model uncertainty. The uncertainty is evaluated
with the standard deviations σ(

∑
NEEPFT), σ(

∑
GPPPFT)

and σ(
∑

ERPFT) of the 60 ensemble members. In this case
the time series from 1 December 2012 to 30 November 2013
of the simulated fluxes was used to calculate the PFT-
specific, catchment-average sums

∑
NEEPFT,

∑
GPPPFT and∑

ERPFT (gCm−2 yr−1).
Figure 6 shows the means and standard deviations of∑
NEEPFT for the four CLM ensembles and for CLM-

Ref. The sign of
∑

NEEPFT indicates that for CLM-Ref, all
PFTs in the catchment act as net carbon sources.

∑
NEEPFT

changed significantly if estimated parameter values were
applied (CLM-EnsP). In that case, all PFTs except C3
grass acted as carbon sink. Figure 7 illustrates how esti-
mated parameters affected the modeled annual NEE sum
(gCm−2 yr−1) for the Rur catchment. With default param-
eter values, the annual NEE was positive for most of the grid
cells, particularly in the northern part of the catchment which
is dominated by agriculture. In terms of NEE, the catchment
is a net CO2 source. With estimated parameters from CLM-
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Figure 4. Mean diurnal course of half-hourly NEE for winter 2012/13 (a), spring 2013 (b), summer 2013 (c) and autumn 2013 (d) for
the Merzenhausen site (ME). Results are shown for the 60 ensemble members of the CLM cases EnsP with estimated parameters, and
EnsPAI with additional perturbed atmospheric forcings and perturbed initial states, in comparison to a reference run with default parameters
(CLM-Ref) and EC data (EC-Obs.; bold lines: ensemble mean).

Figure 5. As Fig. 4, but for the Selhausen site (SE).

EnsP, the NEE sum became negative for most grid cells in
the catchment including a large part of the northern low-
land area (Fig. 7). Thus, with estimated parameters the catch-
ment became a net CO2 sink (disregarding CO2 fluxes due to
harvesting, land use change or fossil fuel combustion). Fig-
ure 7 indicates that both GPP and ER increased with esti-
mated parameters. However, GPP increased more than ER.
Since we found that at verification sites simulations with es-
timated parameters gave NEE sums closer to the observed
NEE sums than simulations with default parameters, we as-

sume the catchment-scale NEE sum (Fig. 7) and
∑

NEEPFT
(Fig. 6) are more reliable for CLM-EnsP than for CLM-Ref.

As indicated in Fig. 6, for C3 grass and C3 crops,
σ(
∑

NEEPFT)was significantly higher for CLM-EnsPA com-
pared to CLM-EnsP. For CLM-EnsPA, σ(

∑
NEEPFT) was ∼

45 gCm−2 yr−1 (C3 grass) and∼ 75 gCm−2 yr−1 (C3 crops)
compared to ∼ 2–3 gCm−2 yr−1 for CLM-EnsP. Thus, ap-
plying perturbed forcings led to a very strong increase in
the uncertainty of simulated

∑
NEEPFT by a factor of ∼ 14

(C3 grass) and ∼ 42 (C3 crops). This finding reveals that
C3 grass and C3 crops in CLM were extremely sensitive
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Figure 6. Ensemble mean and standard deviation of carbon fluxes
simulated by four different CLM ensembles: (i) with estimated pa-
rameters (EnsP) and (ii) additional perturbation ofQ10 (EnsP+Q10)
or atmospheric forcings (EnsP) or atmospheric forcings and initial
states (EnsPAI), in comparison to the reference run with default
parameters (Ref). Plotted are the PFT-specific, catchment-average
sums of NEE, GPP and ER.

to minor differences in the meteorological input data. In
comparison, the differences of σ(

∑
NEEPFT) between CLM-

EnsPA and CLM-EnsPAI were minor. Thus, the much higher
σ(
∑

NEEPFT) for CLM-EnsPAI compared to CLM-EnsP can
mainly be ascribed to the perturbed meteorological input
data, rather than the perturbed initial states. Due to the large
uncertainty of

∑
NEEPFT for both CLM-EnsPA and CLM-

EnsPAI, differences of the ensemble mean
∑

NEEPFT were
not significant between the different two CLM ensembles.
For C3 crops and C3 grass,

∑
GPPPFT and

∑
ERPFT were

strongly sensitive to the perturbed forcings such that the
strong increase in σ(

∑
NEEPFT) for CLM-EnsPA compared

to CLM-EnsP is related to changes in both ER and GPP
(Fig. 6).

Figure 7. Annual sum of net ecosystem exchange (NEE), gross
primary production (GPP) and ecosystem respiration (ER) deter-
mined with CLM4.5-BGC for the Rur catchment (December 2012–
November 2013) with default parameters (CLM-Ref.) and with es-
timated parameters (CLM-Ens).

For coniferous forest and deciduous forest, σ(
∑

NEEPFT)

for CLM-EnsPA and CLM-EnsPAI were ∼ 4.0–
13.5 gCm−2 yr−1 and thus considerably lower in comparison
to C3 grass and C3 crops. The increase in σ(

∑
GPPPFT)

and σ(
∑

ERPFT) with perturbed forcings and perturbed
initial states was also minor in comparison to CLM-EnsP.
This indicates that the carbon cycle of the forest PFTs
in CLM is much less sensitive to the atmospheric input
data compared to C3 grass and C3 crops. However, when
comparing CLM-EnsPA and CLM-EnsPAI, the additional
effect of the perturbed initial states was notably higher for
forest compared to C3 grass and C3 crops. For the forest
PFTs, the ensemble mean

∑
NEEPFT changed significantly

if initial states were perturbed (Fig. 6). This was related to
the fact that estimated parameters and perturbed atmospheric
forcings disrupted the steady state of the forest carbon pools.
Hence, carbon pools increased relatively rapidly during the

www.biogeosciences.net/15/187/2018/ Biogeosciences, 15, 187–208, 2018



200 H. Post et al.: Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates

perturbed spin-up (Sect. 2.4.2), which was not the case for
C3 grass and C3 crop. As already shown in the previous
section, the spread of CLM-EnsP was low, indicating that
the uncertainty of simulated NEE induced by the posterior
parameter values that were sampled from the estimated pdfs
was low. This is, however, related to the fact that parameters
were already conditioned to NEE data, which reduced
the parameter uncertainty. The additional perturbation of
Q10 (CLM-EnsP+Q10) increased σ(

∑
NEEPFT) by a factor

of ∼ 6 (C3 grass, coniferous forest) to ∼ 19 (deciduous
forest) in comparison to CLM-EnsP. This highlights the
strong effect of an uncertain Q10 parameter on the uncer-
tainty of predicted carbon fluxes in CLM. As shown in
Fig. 6, the perturbed Q10 parameter strongly affected both∑

ERPFT and
∑

GPPPFT. For the forest PFTs, the effect of
Q10 (EnsP+Q10) on the uncertainty of the regional-scale∑

GPPPFT,
∑

ERPFT and
∑

NEEPFT was much stronger than
the effect of both uncertain meteorological forcings and ini-
tial states (CLM-EnsPAI). The ensemble mean

∑
ERPFT did

not change significantly, except for C3 grass. However, for
coniferous forest, the ensemble means for CLM-EnsP+Q10
of

∑
ERPFT and

∑
NEEPFT were significantly different

from CLM-EnsP. This is not surprising, since the mean of
Q10 = 2.0 for CLM-EnsP+Q10 was considerably lower than
the Q10 values of CLM-EnsP sampled from the estimated
parameter sets (Table 3).

4 Discussion

The results of the study showed that the model–data con-
sistency was enhanced with estimated parameters for ROgc,
MEgc, WÜgc, SEgc and NZgc. For KAgc and ENgc, not all
evaluation indices indicated an improvement of modeled
NEE or the improvement was not significant. For the rov-
ing station sites NZ, KA and EN, NEE time series of only
2–3 months were available for evaluation in contrast to the
other sites, where time series of a whole year were available.
Accordingly, evaluation results were not directly comparable
between those sites. Post et al. (2016) showed that the eval-
uation runs with parameter estimates had a strongly varying
performance over the year. Thus, if a complete year of NEE
data had been available for evaluation of the roving station
sites, evaluation results for those sites would have been more
informative. Particularly the transfer of parameters estimated
for C3 grass and C3 crops to the catchment domain was found
to be critical. As expected, parameter values estimated for the
winter wheat site ME did not enhance the model performance
at the grid cell ENgc which was dominated by sugar beet. Ac-
cordingly, results showed that parameter values estimated for
one C3 crop site are not necessarily transferable to other C3
crop types characterized by different physiology and man-
agement. This highlights the limitations of large-scale mod-
eling with land surface models that only distinguish between
very broad groups of PFTs. For SEgc, where winter wheat

was grown during the evaluation period like in ME, param-
eter estimates clearly improved the model performance in
terms of NEE. Several studies have emphasized that LSM
parameters can vary within one group of PFT such that the
transfer from single site estimates to other sites with the same
PFT is not trivial (Groenendijk et al., 2011; Xiao et al., 2011).
In addition to deficits in the representation of plant phenol-
ogy, management (harvesting, cutting, etc.) is not explicitly
considered for C3 crops and C3 grass in CLM although it has
a significant impact on NEE (Borchard et al., 2015). There-
fore, observed temporal LAI variations in the growing sea-
son were not well represented in the default model simu-
lations. However, estimated parameters by CLM-EnsP pro-
vided more reliable estimates of the NEE sums for ME and
SE than the default run because the modeled plant emergence
was shifted ahead. Therefore, we expect that the performance
of CLM can be improved if it is coupled to a crop model
which can treat specific plant traits and include management
practices. Li et al. (2011) found that crop variety and man-
agement factors like irrigation, fertilization and planting date
have a significant impact on NEE (and evapotranspiration)
for the coupled LSM–crop model ORCHIDEE-STICS. Wu
et al. (2016) showed that a crop model coupled to the LSM
ORCHIDEE, combined with assimilation of many different
data types, was able to reproduce many measurement data
up to the measurement uncertainty, whereas other remaining
errors could be related to management activities which were
not correctly represented in the model.

For the forest PFTs, the uncertainty of the Q10 parameter
had the largest impact on NEE, followed by uncertainty of
the initial states and uncertainty of meteorological forcings.
The crucial role of the Q10 parameter in carbon stock and
flux predictions and the respective uncertainties in most land
surface models has been highlighted in previous studies (Post
et al., 2008, 2016; Hararuk et al., 2014). Post et al. (2016)
showed that Q10 correlates strongly with other CLM4.5
key parameters like flNR and the Ball–Berry slope of stom-
atal conductance as well as with the initial carbon–nitrogen
pools. This may explain why the spread of the regional-scale∑

GPPPFT,
∑

ERPFT and
∑

NEEPFT in EnsP+Q10 was no-
tably higher for coniferous forest than for the other PFTs
(Fig. 6).

It is important to stress again that uncertainty in initial
states was considered by an additional 15-year spin-up with
perturbed parameters and meteorological forcings. This short
additional spin-up does not consider uncertainty of the most
stable carbon and nitrogen pools. In addition, carbon and ni-
trogen pools are influenced by changing land use in recent
centuries and by management practices, which were not con-
sidered here. Therefore, the true uncertainty related to the
initial states will be larger than in these simulation exper-
iments. The simulation results for C3 grass and C3 crops
were surprising as uncertainty in the meteorological forcings
had a much larger impact on uncertainty of NEE than the
uncertainty of initial states and Q10 had. We argue that the

Biogeosciences, 15, 187–208, 2018 www.biogeosciences.net/15/187/2018/



H. Post et al.: Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates 201

applied meteorological perturbations (standard deviations of
1.0 K for air temperature, 30 % of the incoming shortwave
radiation and 50 % of precipitation amount) are realistic for
meteorological reanalysis products, and in correspondence
with other studies. The perturbations (which are also tem-
porally correlated) result in considerable variations, between
ensemble members, of leaf onset and senescence. The stress
deciduous phenology scheme (which determines plant onset
and offset for C3 crops and C3 grass in CLM as outlined in
Sect. 2.2) is strongly determined by various arbitrary thresh-
olds such as “crit_offset_swi” (water stress days for offset
trigger) or “crit_onset_fdd” (critical number of freezing de-
gree days to trigger onset). The phenology representation of
C3 crops and C3 grass could be too sensitive to those thresh-
olds (Dahlin et al., 2015). Verheijen et al. (2015) argue that
the use of PFTs instead of plant traits in LSMs reduces the
adaptive response of vegetation to environmental drivers.

A second possible reason for the large impact of the pertur-
bation of meteorological forcings on NEE uncertainty is the
preferential location of the C3 crops and C3 grass in the drier,
northern part of the catchment, which sometimes experiences
drought stress during summer. The perturbation of the pre-
cipitation amounts affects drought stress and can enhance
the variability in simulated NEE and LAI for C3 crops and
C3 grasses in drier areas. Thus, the impact of the uncertainty
of meteorological forcings depends on the local conditions.
Jung et al. (2011) already showed that interannual variability
of NEE is larger in semi-arid and semi-humid areas than in
other regions. In summary, the large impact of uncertainty of
meteorological input on NEE uncertainty is likely primarily
model specific, but also related to the semi-humid conditions
in the agricultural part of the region. High impact of uncer-
tainty of meteorological conditions can be expected in other
semi-humid and semi-arid regions and should be taken into
account in simulation studies.

In order to better estimate the uncertainty of the initial car-
bon and nitrogen pools, it is necessary to include the spin-up
(for each of the ensemble members) in the data assimilation
experiments where parameters are estimated. As model runs
have to be repeated thousands of times, this would be ex-
tremely CPU expensive. The spin-up should also consider
uncertainty of historical land use and uncertainty of histori-
cal meteorological conditions. In particular, land use and me-
teorological conditions of the last few centuries impact ini-
tial states. We believe that it is important to jointly consider
the uncertainty of initial conditions and parameters in LSM
forward and inverse modeling runs. Pinnington et al. (2016)
already pointed towards the importance of considering corre-
lations between initial states and parameters in inverse mod-
eling studies.

5 Conclusions

This study evaluated ecosystem parameters estimated with
DREAM(zs) for the Community Land Model (CLM4.5) and
analyzed the uncertainty of modeled NEE and LAI at re-
gional scale for a catchment in the border region of west-
ern Germany. The ecosystem parameters were estimated for
EC sites with different plant functional types (PFTs) in west-
ern Germany and northern France by conditioning them to
time series of NEE data. These parameters were assigned to
a high-resolution (1 km2) CLM4.5 setup for the Rur catch-
ment in Germany. It was evaluated whether the distributed
land surface model reproduced measured NEE and LAI bet-
ter with estimated parameters than with default parameters.
Moreover, a comprehensive model uncertainty analysis was
done for the four main PFTs in the catchment, comparing
the effect of different model error sources (parameters, at-
mospheric forcings and initial states) on the CLM ensemble
spread.

Parameter estimation using NEE data was found suit-
able to improve LAI predictions. For C3 crop, the timing
of plant emergence in spring was more accurate. This re-
sulted in an improved characterization of NEE, which by de-
fault was highly overestimated in spring in cases where the
plant emergence was delayed. This highlights the potential
of DREAM-CLM parameter estimates for utilizing individ-
ual observations at a minimal number of grid cells to improve
catchment-wide predictions of LAI and carbon fluxes.

Estimated parameters reduced the relative difference be-
tween the observed and modeled NEE sum significantly for
most evaluation sites compared to a reference run with de-
fault parameters. For all PFTs except C3 grass, the sign of the
mean annual NEE sum over the catchment was reversed from
positive to negative with estimated parameters compared to
default parameters. This implies that forest and C3 crop ar-
eas in the catchment were predicted as net CO2 sources with
global default parameter values and as net CO2 sinks with the
successfully validated parameter estimates. This elucidates
the potential and relevance of parameter estimation in terms
of obtaining more reliable estimates of regional carbon bal-
ances.

If estimated parameters were sampled without additional
consideration of uncertain atmospheric input data and un-
certain initial conditions, the uncertainty of predicted NEE
and LAI was underestimated. Constraining CLM parameters
with DREAM(zs) resulted in a very low uncertainty of the
predicted NEE and LAI. However, with additional consider-
ation of uncertainty in the initial model conditions and atmo-
spheric input data, the uncertainty of NEE was significantly
higher. Thus it is essential to take into account the uncer-
tainty of parameters, atmospheric input data and initial states
for predictions of carbon fluxes or stocks with CLM4.5.

The effect of uncertainty of atmospheric forcing data on
the LAI and NEE uncertainty was considerably higher for
C3 grass and C3 crops than for the forest PFTs. This is re-
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lated to the specific C3 crop/C3 grass phenology representa-
tion and internal model thresholds in CLM. Many of these
thresholds relate to temperature and strongly control leaf on-
set and senescence. The strong effect of the perturbed forcing
data on modeled carbon fluxes in CLM4.5 is closely linked to
the effect of uncertain model parameters like the temperature
coefficient Q10.

The model uncertainty resulting from uncertain atmo-
spheric forcing data for C3 grass and C3 crops is addition-
ally enhanced because these crops are located in the northern
part of the catchment, which is prone to some drought stress
in summer. In combination with soil-moisture-related model
thresholds, the effect of the perturbed precipitation on mod-
eled NEE and LAI can be regionally different due to differ-
ences in the regional climate. This stresses the importance of
regional-scale modeling.

This study demonstrated that if different crop types are
grown in a region, it is particularly important to parameter-
ize them independently in order to obtain reliable carbon flux
estimates with a land surface model like CLM. Separate dif-
ferentiation of different crop types including a crop-specific
representation of phenology and management is very impor-
tant for obtaining more reliable carbon flux and stock esti-
mates in the future, and it is foreseen for future CLM ver-
sions (personal communication with collaborators from the
CLM development team at NCAR, 2016).

Code and data availability. Data sets or codes can be made avail-
able upon request (hanna.post@t-online.de).
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Appendix A: The DREAM(zs) parameter estimation
approach

The adaptive Markov chain Monte Carlo (MCMC) method
DREAM(zs) (Ter Braak and Vrugt, 2008; Laloy and Vrugt,
2012; Vrugt, 2015) estimates the posterior pdf of model pa-
rameters based on Bayes’ theorem:

p(x|Ỹ )=
p(x)p(Ỹ |x)

p(Ỹ )
, (A1)

where x is the model parameters to be estimated, Ỹ =

{ỹ1, . . ., ỹn} is a n vector of measured data, p(x|Ỹ ) is the pos-
terior probability density function (pdf), L(x|Ỹ )≡ p

(
Ỹ |x

)
the likelihood function, p(x) the prior distribution and p

(
Ỹ
)

the normalizing constant. In practice, statistical inferences
about p(x|Ỹ ) are made from its unnormalized density,
p(x|Ỹ )∝ p(x)L(x|Ỹ ).

Whether a proposal point of chain i at iteration t is ac-
cepted and thus

Xi
p =Xi

+ dXi (A2)

is determined with the Metropolis acceptance ratio:

Paccept

(
xit−1→Xi

p

)
=min

[
1,
p(Xi

p)

p(xit−1)

]
. (A3)

If the candidate point is accepted, then the ith chain moves
to the new position, that is, xit−1 =Xi

p, otherwise xit = xit−1
(Vrugt, 2015).
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