

Supplement of

Evaluating the response of δ^{13} C in *Haloxylon ammodendron*, a dominant C₄ species in Asian desert ecosystems, to water and nitrogen addition as well as the availability of its δ^{13} C as an indicator of water use efficiency

Zixun Chen et al.

Correspondence to: Guoan Wang (gawang@cau.edu.cn) and Jiazhu Li (leejzids@caf.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Treatments	N contents (mg/g)	chlorophyll a (mg/g)	chlorophyll b (mg/g)
W0N0	21.19 ± 3.12^{b}	0.154 ± 0.023^{b}	$0.042\pm0.002^{\rm a}$
W0N1	$29.40\pm1.05^{\rm a}$	$0.204\pm0.029^{\text{a}}$	0.049 ± 0.003^{a}
W0N2	21.00 ± 1.41^{b}	0.146 ± 0.013^{b}	$0.039\pm0.003^{\text{a}}$
W1N0	19.70 ± 0.89^{ab}	0.168 ± 0.013^{ab}	$0.045\pm0.004^{\rm a}$
W1N1	22.93 ± 1.74^{ab}	0.164 ± 0.014^{ab}	$0.044\pm0.004^{\rm a}$
W1N2	23.41 ± 1.17^{ab}	0.170 ± 0.016^{ab}	$0.044\pm0.002^{\rm a}$

Table S1 Variations in N contents and chlorophyll contents across water (W) and nitrogen (N) additions.

Note. Data are the mean value \pm standard error (SE). Different lowercase letters indicate significant differences across treatments by LSD (least significant difference) test (p < 0.05).

Table S2 The p values of N contents and chlorophyll contents in plants under two-way ANOVA analysis of water (W) and nitrogen (N) additions

	W	Ν	W*N
N contents	0.181	0.010*	0.043*
chlorophyll a	0.957	0.235	0.131
chlorophyll b	0.856	0.396	0.379

Note. *, **, *** indicates a significant influence.

Fig. S1 A picture of the assimilation branches of Haloxylon ammodendron