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Abstract. Ecosystem manipulative experiments are a pow-
erful tool to understand terrestrial ecosystem responses to
global change because they measure real responses in real
ecosystems and yield insights into causal relationships. How-
ever, their scope is limited in space and time due to cost
and labour intensity. This makes generalising results from
such experiments difficult, which creates a conceptual gap
between local-scale process understanding and global-scale
future predictions. Recent efforts have seen results from such
experiments used in combination with dynamic global veg-
etation models, most commonly to evaluate model predic-
tions under global change drivers. However, there is much
more potential in combining models and experiments. Here,
we discuss the value and potential of a workflow for using
ecosystem experiments together with process-based models
to enhance the potential of both. We suggest that models can
be used prior to the start of an experiment to generate hy-
potheses, identify data needs, and in general guide exper-
imental design. Models, when adequately constrained with
observations, can also predict variables which are difficult to
measure frequently or at all, and together with the data they
can provide a more complete picture of ecosystem states.
Finally, models can be used to help generalise the experi-
mental results in space and time, by providing a framework
in which process understanding derived from site-level ex-
periments can be incorporated. We also discuss the potential
for using manipulative experiments together with models in
formalised model–data integration frameworks for parame-

ter estimation and model selection, a path made possible by
the increasing number of ecosystem experiments and diverse
observation streams. The ideas presented here can provide a
roadmap to future experiment–model studies.

1 Introduction

In the face of a changing climate, understanding how ecosys-
tems will respond to conditions that are unprecedented in the
observational record is one of the biggest challenges in Earth
system science. To meet this challenge, we must employ all
tools available to us – observations, experiments and meta-
analyses, and process- and data-based models. All these dif-
ferent tools have strengths and weaknesses in terms of spa-
tial and temporal scales, generality, and predictive capacity.
Therefore, using these tools, not only individually but also in
combination, is essential for bridging the gap between pro-
cess understanding and scalability.

Over the last few decades, there have been great advance-
ments in the types and quantity of available ecosystem data,
including large databases of field observations (Kattge et al.,
2020); continuous ecosystem monitoring (Baldocchi, 2020);
remotely sensed Earth observations (Xiao et al., 2019); and
spatial datasets with global coverage for climate (Fick and
Hijmans, 2017; Karger et al., 2020; Harris et al., 2020), soil
(Food and Agriculture Organization and Food and Agricul-
ture Organization of the United Nations, 2008; Hengl et al.,
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2017), and other spatially upscaled global ecosystem data
products (Jung et al., 2020; Poggio et al., 2021). In and of
themselves, such observational datasets provide a compre-
hensive picture of ecosystem properties and structure, as well
as carbon and water fluxes. However, the mounting data rich-
ness in ecosystem science has not led to a reduction in projec-
tion uncertainties in global biogeochemical cycles in a future
climate (Bastos et al., 2020; Piao et al., 2020; Arora et al.,
2020). Ecological and physiological process understanding –
key for predicting outside the domain of observed conditions
– often remains weakly constrained despite the large volume
of available ecosystem data collected over recent decades.
In this context, ecosystem manipulation experiments (EMEs)
have a unique and particularly valuable role to play (Stocker
et al., 2016; Wieder et al., 2019).

EMEs are outdoor experimental setups in which one or
multiple driving factors (e.g. water availability, temperature,
nutrient inputs, atmospheric CO2 concentration, perturba-
tions, species composition), or a combination of factors, are
controlled to study their separate or interactive effects on
ecosystem process subunits within ecosystems such as plants
or microbes. They are a useful tool because they contain
ecosystem process responses defined by treatments and hy-
potheses while minimising confounding factors and scaling
biases and experimental artefacts from smaller and more lim-
ited lab- or mesocosm-based experiments (Dalling et al.,
2013). EMEs provide a unique window into the responses of
ecosystems to a potential future environment and can reveal
complex responses at the level of plants, communities, and
ecosystems, shaped by feedbacks between soil and vegeta-
tion. While extremely valuable for understanding ecosystem
responses to future conditions, due to their realistic scale and
multidimensionality of observations, EMEs generate small
data – in contrast to, for example, Earth observation. There-
fore, it remains challenging to generalise from a relatively
small set of local observations to future global predictions.
EMEs are usually operated at spatial scales on the order of
1–100 m and are limited in time to typically 1–10 years due
to high operating costs and laborious measurements. Thus,
it can be difficult to scale the conclusions from experiments
with confidence, both in time and in space. Here, we propose
and discuss approaches for aiding generalisations from EME
observations in combination with process-based models as a
potential solution to overcome this scalability challenge.

Process-based ecosystem models are mathematical repre-
sentations of how plant traits and soil characteristics deter-
mine water, energy, and biogeochemical fluxes, as well as
the accumulation of organic matter in a cascade of ecosystem
pools, given a set of environmental boundary conditions. De-
pending on the scale and processes represented, such mod-
els are termed terrestrial biosphere models, dynamic vege-
tation models, mechanistic ecosystem models, or land sur-
face models and are implemented as coupled components in
Earth system models (Prentice et al., 2007). Irrespective of
what we call them, all such models face similar challenges

in that they need to balance realism, robustness, and relia-
bility (Prentice et al., 2015), as well as computational effi-
ciency, to achieve reliable predictions for ecosystem fluxes
and pools across the globe and across decades into the fu-
ture. To achieve this, such models need to be confronted with
diverse data to leverage complementary constraints. Obser-
vations of traits, fluxes, and biomass, obtained at different
scales in space and time and across diverse ecosystem types,
provide complementary information for calibrating and test-
ing terrestrial biosphere models (Keenan et al., 2012). Re-
cent efforts have been made in using large observational
datasets for validating and benchmarking these models (Col-
lier et al., 2018; Seiler et al., 2022). However, as outlined
above, model projections remain divergent (Friedlingstein et
al., 2022; Bastos et al., 2020), pointing to remaining gaps
in critical process understanding from such datasets, and ex-
trapolating observations from past climate conditions to the
future often comes with increased uncertainty.

EMEs have been used to parameterise, validate, and test
models, ranging from drought (McDowell et al., 2013; Pow-
ell et al., 2013) or warming (Parton et al., 2007; Zaehle et
al., 2010; Ma et al., 2022) to fertilisation (Meyerholt and Za-
ehle, 2015; Thomas et al., 2013) or decomposition (Bonan
et al., 2013) experiments. A step change came about with
the Free-Air CO2 Enrichment (FACE) Model Data Synthesis
(MDS) project (Medlyn et al., 2015; De Kauwe et al., 2014;
Zaehle et al., 2014; Walker et al., 2014) which synthesised
data from two temperate forest FACE EMEs. The project
asked not only if the models match the data but why the mod-
els match the data, making full use of manipulative experi-
ments and being able to plot a path to model improvement.
This approach led to both the identification of key processes
that need to be included in models to correctly capture re-
sponses to elevated CO2 (e.g. flexible but realistic tissue sto-
ichiometry, flexible biomass allocation, flexible leaf mass per
area, organic N uptake) and the identification of areas where
more data are needed to identify realistic and reliable process
representation (e.g. water limitation effects on photosynthe-
sis and transpiration, wood turnover, detailed photosynthesis
information, N losses). Other studies are now following up
on these results to further improve models (Caldararu et al.,
2020). Since then the FACE-MDS project, there have been
several other MDS studies following the same philosophy,
including other FACE experiments (Fleischer et al., 2019;
Medlyn et al., 2016) and FACE plus warming experiments
(De Kauwe et al., 2017). A few such modelling studies were
performed prior to the start of the actual experiment (Medlyn
et al., 2016; Fleischer et al., 2019; Parton et al., 2007) with
the aim of informing experimental design, and in the case of
Parton et al. (2007), their model predictions were later tested
against experimental results (Dijkstra et al., 2010), showcas-
ing the power of such a study.

There has been an increase in the number of EMEs glob-
ally, as well as in the quantity of open data and efforts to syn-
thesise and bring together existing experiments (Van Sundert
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Figure 1. Strengths and weaknesses of ecosystem manipulation ex-
periments, observations, and process-based models. “Progress bars”
indicate how strong or weak each tool is in any given area.

et al., 2023; Liang et al., 2020; Cleland et al., 2019). The
present special issue includes some examples of new exper-
iments including a large-scale drought and fertilisation ex-
periments (Vargas et al., 2023; Baer et al., 2023; Mendoza-
Martinez et al., 2023); a transplant and elevation gradient
experiment (Ntirugulirwa et al., 2023); and EME–model in-
tegration, including studies looking at new nutrient models
(Cornut et al., 2022a, b; Li et al., 2022; Eastman et al., 2023;
Raoult et al., 2023), the effects of root distribution of water
availability response (Kulmatiski et al., 2023), carbon stor-
age in grasslands (Wilcox et al., 2023), and extreme events
(Holm et al., 2023).

Global observations, ecosystem experiments, and process-
based models all have their strengths and weaknesses in
terms of scalability and process understanding (Fig. 1). To
advance ecosystem science, an integration of complemen-
tary sources of observations and models is needed to achieve
the full predictive potential of the tools available. The major-
ity of EME–model integration studies have focused on con-
straining or evaluating models with experimental data; how-
ever, there is a large untapped potential to use models and
EMEs bidirectionally to bridge the process understanding–
scalability gap. While models are capable of making global-
scale predictions on long timescales, they also include a de-
tailed process representation which can be a reflection of the
insight gained from EMEs. In this paper we set out a roadmap
to using models in combination with EMEs not only as a
one-way street for validating models but also as an integrated
workflow aimed at improving experimental design and gen-
eralising experimental conclusions.

2 Not a one-sided relationship: what can models do for
experiments?

In past studies, the focus has been on integrating conclusions
from EMEs into models and evaluating such models against
experimental data to improve model process representation
(Medlyn et al., 2015; Norby et al., 2016). However, this re-
lationship can easily be turned around. Models can be used
as digital twins (digital representations of physical objects
or environments) or sandboxes to explore different possibili-
ties for experimental design; set realistic and practical treat-
ment levels; and formulate quantitative, defensible hypothe-
ses. Models can also be used to integrate observations gained
from one or more experiments for generalising in time and
space.

2.1 Hypothesis generation and experimental design

Ecosystem manipulation experiments are designed around
testable research questions and hypotheses, following estab-
lished theory. Hypotheses are generally of a qualitative and
first-order nature; i.e. “if higherA, then B”. For example, nu-
trient addition leads to increased growth and photosynthesis
or drought reduces growth. However, ecosystem responses
are affected by multiple feedbacks, operating at diverse
timescales. Responses can be non-linear, even threshold-like,
and interactive, and they can be affected by plant adapta-
tions, species-specific responses, and plant–soil interactions.
Certain processes saturate at higher levels reached over time,
such as nutrient addition or elevated CO2, where continued
application of the treatment does not lead to a further ecosys-
tem response, as systems become limited by other factors.
In the case of edaphic factors, such as nutrient availability,
spatial factors, such as the underlying fertility and history of
nutrient deposition, interact with future loading. Ecosystem
responses have also been shown to vary with the intensity
and duration of the treatment (Niu et al., 2022). This means
that it is often difficult to (explicitly) generate hypotheses
that reflect multiple known individual processes and their
(unknown) interactive effects. Using a model, multiple mod-
els, or multiple process representations within one modelling
framework can aid hypothesis generation.

As many responses to environmental drivers are non-
linear, it can be uncertain when designing an experiment
what and how many treatment levels are necessary, espe-
cially if choosing a response surface rather than a replicated
approach (Kreyling et al., 2018). This is particularly impor-
tant as ecosystem-level experiments are technically challeng-
ing and expensive, especially those on the scale of FACE
experiments. There are financial, logistical, and practical
constraints on how many treatment levels can be consid-
ered. Models can easily be run with multiple treatment lev-
els, which would allow for the identification of key non-
linearities, and a defined response surface that can be used
as a basis for choosing experimental treatments.

https://doi.org/10.5194/bg-20-3637-2023 Biogeosciences, 20, 3637–3649, 2023



3640 S. Caldararu et al.: Beyond model evaluation

Models can also potentially be used to define a sampling
strategy. Initial model simulations can help identify which
variables are likely to respond to the experimental treatment
and at what timescales treatment responses are likely to be
detected. If using multiple models or a model with multiple
alternative process representations, this can also help iden-
tify variables that would help test the proposed hypotheses,
by looking at model variables that respond differently for dif-
ferent model formulations. We propose a workflow (Fig. 2)
in which one or multiple models are run with local site con-
ditions with multiple treatment levels. This then allows us to
identify hypotheses based on predicted responses, ideal treat-
ment levels, and key variables to measure. This can be done
multiple times to explore different experimental setups and
ideas.

There is often a gap between the optimum sampling strat-
egy and what is feasible in field experiments – variables of-
ten cannot be measured with a sufficient temporal or spatial
frequency due to either costs or technical constraints. While
we as a community have come a very long way in automat-
ing certain measurements – carbon and water fluxes, spectral
properties, soil moisture – many remain time- and labour-
intensive, such as direct measurements of biomass above-
and belowground or of plant and soil chemical composition.
Furthermore, other quantities which might be useful to know
are not possible to measure; that is, they are latent or concep-
tual variables such as plant nutrient demand. Such variables
are often key in explaining the observed responses but can
usually only be guessed at.

In contrast, models estimate variables consistently at regu-
lar intervals, including conceptual or latent quantities which
can be expressed mathematically and can be used to quantify
and explain ecosystem states but cannot be measured. These
can therefore be used alongside experimental results to ex-
plain observed responses. For example, the issue of nutrient
limitation under elevated CO2 involves many plant and soil
processes, some of which cannot be monitored easily but are
included in nutrient-enabled models (Caldararu et al., 2022).
One potential issue with this approach is that to have suffi-
cient confidence in these essentially impossible to measure
quantities, models need to be able to accurately represent
ecosystem processes at a given particular experimental site.
Before being used in such a scenario, models should be eval-
uated or even calibrated for the site using variables that can
commonly be measured to ensure the model performance.

2.2 Generalising in time and space

Most manipulative ecosystem experiments are commonly
performed at the plot level and are only maintained for a short
time period (1–5 years), with a few exceptional experiments
lasting in the range of 10 years or more (Magill et al., 2004;
Eastman et al., 2021). While a particular experiment can tell
us a lot about the mechanistic process involved, it remains
an open question how scalable they are in time and space.

While there are increasing efforts to standardise experimental
treatments through initiatives such as the Nutrient Network
(Borer et al., 2014), only a small and inevitably imperfectly
distributed area of the Earth’s vegetated surface can ever be
covered by experimental treatments. However, models can be
run over relatively long periods of time and globally, helping
to test the generality of the process understanding informed
by EMEs.

The problem of spatial scaling is obvious. Can the particu-
lar ecosystem studied represent other ecosystems of the same
type, and can plant or soil processes inferred from observed
responses be generalised? Upscaling of ecosystem experi-
mental results has been previously performed by accounting
for moderating factors of the response, such as climate or soil
conditions (Terrer et al., 2021). However, such approaches
lack the mechanistic and dynamic underpinning provided by
a process-based model and could thus miss important feed-
backs.

A particular challenge is posed by the step shape of im-
posed environmental change in EMEs, which contrasts with
the gradual decadal-scale environmental change to which
ecosystems are exposed. Several processes make the re-
sponses to a continuous change potentially different from
those to a step change. Plants acclimate to the new condi-
tions over time (Reich et al., 2018), a process that has been
primarily studied for changes in temperature but is likely to
occur for most environmental drivers. Species composition
is likely to change under different environmental conditions,
but it can likely only be observed during the duration of
the experiment in systems with high species turnover such
as grasslands (Avolio et al., 2014). Although ecosystem re-
sponses in observable quantities often cannot be assumed to
be time-invariant, particularly if slow plant–soil feedbacks
are involved and even if conditions are held constant after a
step change, underlying processes often can be. Mechanis-
tic models that simulate responses to step changes and that
are constrained by data from step-change experiments are
thus a device for translating empirical insights gained from
step-change experiments into predictions that respect a pri-
ori knowledge of slow processes and their role in shaping
decadal-scale ecosystem dynamics.

A challenge for model-enabled temporal upscaling is slow
processes that are not represented in models or are insuffi-
ciently constrained by relatively short-term observations (1–
10 years in EMEs) but can modify ecosystem responses in
the longer term. Acclimation of photosynthesis and respira-
tion to changes in temperature and CO2 (Way and Yamori,
2014; Prentice et al., 2014) and plasticity in allocation and
effects on plant–soil interactions in response to carbon–
nutrient balance changes (Zaehle et al., 2014; Poorter et al.,
2012) largely lack reliable representations in models, and
they may have a strong influence on decadal to centennial
carbon, nitrogen, and phosphorous supply and demand, as
well as ecosystem dynamics. On even longer timescales, ge-
netic adaptation through selection under new environmental
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Figure 2. Classic workflow (a) contrasted with proposed workflow (b) for using models together with ecosystem manipulative experiments
for experimental design and hypothesis generation. Through iterative synthesis of models and experiments in (b) and tuning of experimental
parameters based on modelled feedback, stronger predictions are generated.

pressures and changes in species compositions may emerge
as strong drivers of ecosystem responses. Some experiments
on shorter-lived herbaceous species have shown shifts in
species composition in response to elevated CO2 (Reich et
al., 2018); similar changes in longer-lived organisms are
harder to observe in EMEs. These types of responses and
their lack of representation in ecosystem models imply lim-
its for data-constrained and model-based temporal upscaling.
In terms of short-term plasticity or acclimation, recent ad-
vances in using eco-evolutionary optimality in models (Har-
rison et al., 2021) can represent plastic plant responses, and
they have successfully been used in combination with EMEs
(Caldararu et al., 2020; Sabot et al., 2022). However, cur-
rent ecosystem models are not well suited for dealing with
changes in species composition, demography, and competi-
tion processes. However, trait-based, individual, or cohort-
based vegetation demography models (Fisher et al., 2015)
have the potential to resolve this limitation. Particularly for
evaluating simulated acclimation and other phenotypic plas-
ticity that operates at timescales of months to years, it will
be important to make targeted use of insights gained from
EMEs. Since this is a knowledge gap in both EMEs and mod-
els, it is an opportunity for both communities to work side by

side, rather than sequentially, to advance our knowledge of
plant adaptation.

In recent years, there has been a global effort to over-
come the limitations of the different approaches and try to
solve the need for standardised controlled experiments on
wide temporal and spatial scales. Fraser et al. (2013) coined
the term “coordinated distributed experiments” (CDEs) to
describe a global network of standardised experiments dis-
tributed across a wide range of ecosystems and climate zones
to account for issues of spatial and temporal scales. While
initial CDEs were limited in their spatial coverage to Europe
or North America, recent ones are striving to be truly global.
Examples of global CDEs include the International Drought
Experiment (Knapp et al., 2017), which studies the sensitiv-
ity of ecosystems to extreme drought events; the Nutrient
Network (Borer et al., 2014), which addresses how grass-
lands are affected by eutrophication and grazing; or the Tree
Diversity Network (Paquette et al., 2018), which includes
a global collection of tree biodiversity experiments. Coor-
dinated EME networks with standardised protocols and ho-
mogenised compilations of published EME data (Van Sun-
dert et al., 2023) can drastically facilitate model–data inte-
gration studies, performed for an extended set of sites and ex-
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periments. Multi-experiment modelling may be essential for
powerful generalisability tests and uncertainty quantification
of model predictions, e.g. by a leave-experiment-out cross-
validation (see also Sect. 3). Thus, using experiment net-
works and compilations together with models would increase
confidence in the generality of model predictions and par-
tially deal with the upscaling issues. The use of CDE results
could also help to improve the parameterisation of process-
based models in ecosystems that are underrepresented, but
this would require better coordination between response vari-
ables measured in the field and those processes included in
the models (Smith et al., 2014).

3 Model–data integration

Data assimilation (DA) and model–data integration (MDI)
are broad umbrella terms for a variety of statistical meth-
ods that fit process-based models to observations. The meth-
ods are well established and widely used with remote sens-
ing (Smith et al., 2020; Exbrayat et al., 2019) and eddy co-
variance data (Kuppel et al., 2012; Fox et al., 2009), at both
site and global scales. There are now several DA methods
available to the community (Fer et al., 2021; Anderson et al.,
2009; Huang et al., 2019), which significantly lowers the bar-
rier to entry for those who want to use such tools.

One of the main issues with using DA methods is that the
data used to constrain models are observations in present or
past conditions, raising questions about the capacity of re-
sulting models to predict ecosystem responses under future
conditions. Therefore, using data from manipulative experi-
ments can be extremely valuable in providing information of
as yet unobserved conditions. One other common issue with
using remote sensing data to parameterise models is that the
observations used in DA need to be variables that are rep-
resented in models (MacBean et al., 2022), so most remote
sensing indices need to be processed further before they can
be used. In contrast, experimental observations provide in-
formation that can easily be mapped to model variables –
biomass, ecosystem fluxes, soil pools, etc.

MDI provides a formalised approach to make best use of
naturally sparse EME observations and combine them with
a priori understanding embodied in model structures. Inte-
grating diverse ecosystem data can help in estimating the
system state, given physical constraints that are built into
the model (e.g. mass conservation) (Jiang et al., 2020). MDI
can also provide an approach to formalised model selection
(Mark et al., 2018) and a systematic treatment for trading
off model complexity and fit to the data. EMEs, in contrast
to observational data commonly used in MDI studies, often
have particularly strong leverage in discriminating between
predictions of alternative models, which other data types of-
ten lack. Only if an ecosystem’s slow biogeochemical cy-
cling is “hit hard”, with altered conditions in an experimental
setup, can underlying processes be revealed. EMEs can thus

help to resolve equifinality of model parameter combina-
tions that may not be sufficiently constrained by unperturbed
field observations (Keenan et al., 2012) and help to avoid
cases of getting the “right answer for the wrong reasons”,
where different model representations give the same over-
arching ecosystem-level state variables but can lead to dif-
ferent results under altered environmental conditions. Thus,
EMEs provide key information that is required for robust
model selection – the discrimination of alternatively formu-
lated model structures that reflect alternative hypotheses of
how ecosystem processes work.

However, typical models used for global biogeochemical
cycle and climate change impact simulations are often com-
plex and contain a large number of weakly constrained pa-
rameters. In view of the sparsity of EME data, this poses
a risk of overfitting. Overfitting may be mitigated using a
leave-experiment-out cross-validation approach, where one
experiment is systematically left out of the model fitting pro-
cedure and used as an out-of-sample test. This may be a way
to handle the overfitting risk, enable a more robust calibration
of model parameters, and provide a more reliable estimate of
the spatial generalisation error. However, the environmental
space currently covered by EMEs and their available data is
limited, and gaps remain particularly in the tropics and for
CO2 experiments in all biomes except temperate forests and
grasslands (Van Sundert et al., 2023).

4 New data for EME–model synthesis

Despite the potential for model-informed ecosystem experi-
ments discussed above, data availability still defines model
use because, without data, models are impossible to con-
strain. Advances in measurement techniques and data pro-
cessing offer an opportunity to increase the types and fre-
quency of measurement that can be gathered via EMEs.
The EMEs can be one of the best locations to develop new
data streams because EMEs are typically already well pa-
rameterised, offering established data in addition to those
from novel sources and potentially benefiting from frequent
site visits necessary for non-standard instrument develop-
ment. Thus in addition to the direct feedback with individ-
ual EMEs, models can set the agenda for data development
through transparent discussion of the uncertainty and param-
eter sensitivity.

Perhaps the most straightforward EME experiments can
be equipped with proximal sensing devices such as phe-
nocams (Brown et al., 2016) or sun-induced fluorescence
(SIF) sensors (Yang et al., 2015). These provide contin-
uous regular measurements of (generally) canopy proper-
ties. While these types of measurements are available from
spaceborne sensors, local measurements provide more spa-
tial detail and often the possibility of measuring each indi-
vidual plot separately, thus identifying treatment effects in
smaller-scale EMEs. Unlike spaceborne instruments, proxi-
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mal sensors usually require calibrating sensors between dif-
ferent treatments, but on the other hand they provide regu-
lar, location-specific information. Such continuous measure-
ments are extremely useful for model evaluation and devel-
opment as they are often made at a temporal frequency sim-
ilar to that of a model time step and can provide information
on short-term changes in vegetation responses. Additionally,
such data can also be used in DA contexts (Sect. 3) much
more easily than irregular spot measurements. One applica-
tion of note of such proximal sensing data on the horizon
is capturing patterns of functional diversity, specifically re-
lated to morphological, physiological, or phenological traits
that can be measured though reflectance. Such data can be
validated in the field (Pacheco-Labrador et al., 2022) and
through EMEs can be used to explore causative mechanisms
behind changes in environment, changes in function, and
changes in species or functional diversity. As models move
more towards representing species diversity (De Kauwe et
al., 2015) and new trait-based demographic models become
more widespread (Xu and Trugman, 2021), such measure-
ments in the context of EMEs can provide an invaluable
source of process understanding.

Given widespread coverage, data captured from proximal
sensing devices or field measurements may also potentially
be upscaled via wide networks (which do not necessarily rely
on EMEs). Many modern approaches to this problem rely
on machine learning (ML) methods to reach from regional
or global scales (Lapeyre et al., 2020; Poggio et al., 2021).
But in EMEs and similar contexts, ML also offers another
complementary tool: data streams which are difficult to ei-
ther capture or process (Nair et al., 2023) can be gap-filled
or interpreted with higher confidence and representativeness.
Further development of techniques currently only possible
at a laboratory or homogenous agricultural scale may allow
dynamic subannual time series of parameters that are diffi-
cult to measure such as photosynthetic capacity (Heckmann
et al., 2017); nutrient pools both in biomass and available
in soil (Tan et al., 2022); or phenological dynamics beyond
leaves, especially those belowground (Wang et al., 2022).
This is particularly relevant belowground, where data are
particularly sparse. However, technical and logistical limi-
tations remain and on-site instrumentation is considerably
more challenging than that of laboratory studies. A key chal-
lenge here is capturing both spatial and temporal dynamics
at the same time. In many cases, many sensor nodes are
preferable because ecosystem properties in general and be-
lowground properties in particular are very heterogeneous.
However, when such technologies are fully deployable in the
field and an EME context, they can provide data streams for
models which were not previously available, reducing uncer-
tainty in difficult-to-measure processes.

Eddy covariance (EC) data are one of the most frequently
used data streams for model evaluation, parameterisation,
and data assimilation, yet pairings of EMEs with such mea-
surements are rare even though they could be potentially ex-

tremely useful. The advantage of using EC data is their high
temporal frequency and the large number of globally dis-
tributed sites where such data are available. However, as de-
tailed above (Fig. 1), they are purely observational measure-
ments and lack the specific advantages of an EME. A small
number of EC sites do use a treatment, albeit on an unrepli-
cated treatment scale (Zhao et al., 2022; El-Madany et al.,
2021; Gough et al., 2021). EC experiments are laborious to
construct and expensive to operate in tall-stature ecosystems,
and even in shorter ecosystems the footprint of an EC tower
is a challenge for the application of many treatments relevant
to global change. Indeed, only a small number of manipula-
tions can be conducted effectively on this scale and thus far
are limited to nutrient treatments and mortality disturbance.
These designs also necessitate a well-supported baseline of
major ecosystem parameters before treatments to partially
substitute for replication. This is a necessary compromise
considering the scale and unprecedented realism which can
be achieved.

A key aspect of several modern designs is the dispens-
ing of replication. While this is controversial in the clas-
sic model of the scientific methods, as we highlighted with
the EC measurement example, it offers advantages in this
case in terms of a level of realism which could not reason-
ably be captured by other approaches. Similarly, quantita-
tive gradients allow for parameterisation of response surfaces
(as opposed to step changes in standard EMEs) but limit
possible replication (Kreyling et al., 2018), and they have
successfully been used in ecosystem-scale experiments in-
cluding a multi-factorial grassland experiment (Piepho et al.,
2017) and a warming-peatland experiment (Hanson et al.,
2020). In a model–EME context, this allows for the mod-
els to be evaluated at multiple treatment levels, circumvent-
ing the step-change issues. Large, full ecosystem level ex-
periments with sometimes ground-breaking treatments, such
as the TEMPEST flooding experiment (Hopple et al., 2023),
are also not replicated but provide invaluable insights into
ecosystem functioning. An alternative example is the unique
Biosphere 2 setup, which allowed for a fully traceable ex-
periment on a “whole ecosystem”, albeit without replication
(Werner et al., 2021). This would allow for the intensive
tracing of treatment effects in models through a process-by-
process validation, rather than the usual validation against
end results such as biomass responses.

5 Conclusions and outlook

Ecosystem manipulative experiments and process-based
models are both powerful tools for understanding how terres-
trial ecosystems are going to respond to future global change.
However, on their own, they each suffer from their own par-
ticular shortcomings, including a lack of generality in time
and space in the case of experiments and lack of process
realism in the case of models. We propose that, when used
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in combination, experiments and models can achieve their
full potential. Going beyond a one-sided process where data
from experiments are used to inform models, we lay out a
roadmap (Fig. 2) for using experiments and models alongside
each other, as well as alongside new types of measurements
and techniques, as complementary sources of information.
This approach will further our understanding of how terres-
trial ecosystems work and increase our predictive capability
of the future of terrestrial ecosystems.
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