

Supplement of

Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment

Bonaventure Ntirugulirwa et al.

Correspondence to: Bonaventure Ntirugulirwa (ntirugulirwabonaventure@gmail.com) and Göran Wallin (goran.wallin@bioenv.gu.se)

The copyright of individual parts of the supplement might differ from the article licence.

Table of supplement contents

Table S1. Information about the germplasm material and propagation in the nursery prior toplantation at the sites.

 Table S2. Stem base diameter (5 cm above soil) at planting in Dec 2017/Jan 2018.

Table S3. Stem height at planting in Dec 2017/Jan 2018.

Table S4. Classification of species into the successional groups (SG) early (ES) and late successional(LS) and the references supporting the classification.

Table S5. P-values and total degrees of freedom (df Tot) of one-way ANOVA for species-specific site effects on *D*_{base}; *h*; D-RGR_{D10-25}; D-RGR_{D10-25}, H-RGR_{H75-100}; H-RGR_{H250-300}; stems#), and tree mortality.

Table S6. Number of individuals recorded dead at each tri-monthly census of each species and site.

Figure S1. Schematic topographic map of Rwanda with the sites of the TRopical Elevation Experiment in Rwanda (Rwanda TREE)

Figure S2. Site map and experimental design at the high elevation site (Sigira).

Figure S3. Site map and experimental design at the mid elevation site (Rubona).

Figure S4. Site map and experimental design at the low elevation site (Makera).

Figure S5. The relation between height and base diameter and the relative growth rate (RGR) for height (H-RGR) and base diameter (D-RGR) in relation to height and base diameter, respectively, for all 20 species measured tri-monthly over two years at all three sites.

Figure S6 a-t. The development of the stem base diameter measured every third month over two years and the relative growth rate (RGR) between measurement intervals for 20 species grown at three sites along an elevation gradient

Figure S7 a-t. The development of the stem height measured every third month over two years and the relative growth rate (RGR) between measurement intervals for 20 species grown at 3 sites along an elevation gradient

Species:		Germpla	sm material:						Propagation i	n Nursery:			
Scientific name	Code	Prove-	-ocation of	Date of	No of	Type of	1000-seed 1	Moisture	Start of	Date of	Days in	Final S	urvival
		nance ¹	collection ¹	collection	mother	material ²	weight ³	content	propagation	transplanta-	seed-	no of	ra te ⁶
					trees		(g)	(%)	date	tion	beds ⁴ s	urvivals ⁵	(%)
Afrocarpus falcatus	Afa	NγU	RUH	2016-06-20	10-15	Seed	5 700	25	2016-08-03	2016-11-08	97	420	100
Albizia gummifera	Agu	NγU	RUB	2017-08-25	1	Seed	80	9	2017-08-31	2017-09-15	15	308	49
Bridelia bridelifolia	Bbr	NγU	NγU	2016-07-20	1-5	Seed	67	23	2016-08-03	2016-09-07	35	692	84
Bridelia micrantha	Bmi	RUB	RUB	2016-09-14	1-5	Seed	50	25	2016-10-03	2016-11-09	37	374	100
Carapa grandiflora	Cgr	NγU	NγU	2016-06-30	10-15	Seed	28 600	32	2016-08-03	2016-11-10	66	528	100
Chrysophyllum gorungosanum	Cgo	NγU	RUH	2016-11-21	5-10	Wildlings	600		2016-11-21	2016-11-21		378	100
Croton megalocarpus	Cme	NγU	RUB	2016-01-10	10-15	Seed	800	∞	2016-09-22	2016-10-10	18	562	66
Dombeya torrida	Dto	NγU	RUH	2016-11-24	20-30	Cuttings	4		2016-11-24	2016-11-24		630	100
Entandrophragma excelisum	Eex	NγU	RUH	2016-07-11	5-10	Wildlings	634		2016-11-07	2016-11-07		410	100
Faurea saligna	Fsa	NγU	NΥU	2016-04-02	1-5	Seed	4	4	2016-08-03	2016-10-19	77	304	87
Ficus thonningii	Fth	NYU	NYU	2016-09-20	1	Cuttings	11		2016-09-20	2016-09-20		1047	97
Harungana madagascariensis	Hma	RUB	RUH	2016-04-02	10-20	Seed	11	10	2016-08-16	2016-09-07	22	1050	71
Harungana montana	Hmo	NγU	NYU	2016-10-05	1-5	Seed	13	10	2016-08-16	2016-11-10	86	352	06
Macaranga kilimandscharica	Mki	IDN	IDN	2017-05-30	5-10	Seed	60	15	2017-07-01	2017-08-04	34	698	93
Maesa lanceolata	Mla	NγU	NγU	2016-06-20	1-5	Seed	6	9	2016-08-03	2016-10-27	85	454	98
Markhamia lutea	MIu	NγU	RUB	2016-01-06	1-5	Seed	40	10	2016-08-03	2016-09-14	42	1679	97
Newtonia buchananii	nqN	NΥU	NYU	2016-10-07	1-5	Seed	352	33	2016-09-13	2016-10-30	47	632	65
Polyscias fulva	Рfu	NΥU	NYU	2016-07-20	1-5	Seed	11	17	2016-08-03	2016-12-02	121	326	100
Prunus africana	Paf	NΥU	NYU	2017-04-28	1	Seed	200	19	2017-04-29	2017-05-17	18	1102	92
Syzygium guineense	Sgu	NΥU	NYU	2016-10-18	1-5	Wildlings	367		2016-10-20	2016-10-20		546	85
¹ NDI, Ndiz mountain; NYU, Nyur	ngwe trop	ical mont	ane forest; Rl	JB, Rubona re	search s	tation; RUH	H, Ruhande	arboretum	: All sites is in l	Rwanda.			
² Wildlings are naturally regen	erated se	edlings											

40nly Afa seeds require pretreatment (scarification & soaking in Cold water for 24 h)

³Litterature values

 5 Out of theses 270 individual were radomly selected for plantation at the sites 6 Surviaval of plants from prick out to selection for plantation

Table S1. Information about the germplasm material and propagation in the nursery prior to plantation at the sites.

Table S2. Stem base diameter (5 cm above soil) at planting in Dec 2017/Jan 2018. Mean and standard deviations as well as P-values from one-way ANOVA tests are calculated on plot means (n=18) based on five individuals, i.e. 90 trees per species and site. All individuals within species were randomly selected from the nursery. Full name of species is given in Table S1. Different letters for sites indicate significant differences (P<0.05).

	F	łΕ			Ν	ЛE			I	E				ME	LE
														(% of	(% of
Species	Mean		SD		Mear	۱	SD		Mear	۱	SD		P-value	HE)	HE)
Afa	4.6	±	0.5		4.9	±	0.4		4.8	±	0.7		0.31	6	5
Agu	1.0	±	0.0		1.0	±	0.1		1.0	±	0.0		0.77	1	0
Bbr	4.4	±	0.3	а	5.0	±	0.4	b	4.3	±	0.4	а	<0.001	14	-2
Bmi	4.5	±	0.4	а	4.5	±	0.4	а	4.2	±	0.4	b	0.010	0	-8
Cgo	3.0	±	0.5		2.9	±	0.6		3.0	±	0.5		0.92	-2	0
Cgr	7.7	±	0.9		7.8	±	0.8		7.5	±	0.8		0.49	1	-3
Cme	4.0	±	0.2		3.9	±	0.3		4.0	±	0.3		0.71	-2	0
Dto	9.6	±	1.4		9.0	±	1.3		8.9	±	1.7		0.38	-6	-7
Eex	8.5	±	1.4		8.8	±	1.6		8.7	±	1.6		0.78	4	2
Fsa	2.9	±	0.5		3.1	±	0.6		3.4	±	0.6		0.06	7	16
Fth ¹	14.2	±	3.3		14.8	±	2.3		13.9	±	2.3		0.61	4	-2
Hma	4.7	±	0.5		4.8	±	0.5		4.5	±	0.5		0.15	1	-6
Hmo	5.2	±	0.6		5.1	±	1.0		5.4	±	0.4		0.37	-3	4
Mki	1.3	±	0.2		1.3	±	0.3		1.3	±	0.2		0.99	0	-1
Mla	5.4	±	0.3		5.5	±	0.5		5.5	±	0.3		0.76	2	1
Mlu	4.3	±	0.4		4.3	±	0.4		4.3	±	0.3		0.96	-1	-1
Nbu	3.1	±	0.5		3.1	±	0.5		3.2	±	0.5		0.83	1	3
Paf	3.4	±	0.4		3.3	±	0.3		3.4	±	0.4		0.56	-4	-1
Pfu	4.6	±	0.6		4.6	±	0.7		4.2	±	0.4		0.052	0	-9
Sgu	4.3	±	0.3	а	4.7	±	0.4	b	4.3	±	0.6	а	0.018	10	2

¹The diameter measured was of the cutting (see Table S1) and not of the secondary shoot.

Table S3. Stem height at planting in Dec 2017/Jan 2018. Mean and standard deviations as well as P-values from one-way ANOVA are calculated on plot means (n=18) based on 5 individuals, i.e. 90 trees per species and site. All individuals within species were randomly selected from the nursery. Full name of species is given in Table S1. Different letters for sites indicate significant differences (P<0.05).

	HE				ME				LE				ME	LE
													(% of	(% of
Species	Mean	SD		Mear	า	SD		Mear	า	SD		P-value	HE)	HE)
Afa	40.5 ±	5.6		43.8	±	5.6		41.8	±	5.0		0.19	8	3
Agu	5.2 ±	0.5		5.0	±	0.5		5.0	±	0.4		0.63	-2	-3
Bbr	54.0 ±	3.9		52.8	±	2.1		55.1	±	2.4		0.06	-2	2
Bmi	54.2 ±	4.0		54.0	±	4.2		54.1	±	4.1		0.99	0	0
Cgo	16.2 ±	2.1		16.2	±	2.1		15.4	±	1.8		0.36	0	-5
Cgr	46.3 ±	4.3	ab	47.8	±	3.7	а	43.8	±	5.8	b	0.037	3	-5
Cme	45.4 ±	2.2		45.6	±	2.8		45.4	±	3.1		0.96	1	0
Dto	43.3 ±	10.5		43.9	±	10.3		41.0	±	10.7		0.67	1	-5
Eex	33.2 ±	3.7		35.0	±	3.8		35.0	±	3.7		0.27	5	5
Fsa	26.3 ±	4.5		27.1	±	5.9		29.3	±	6.4		0.28	3	11
Fth	51.9 ±	12.2	а	62.0	±	10.7	b	62.0	±	10.7	b	0.012	19	19
Hma	53.3 ±	2.9		53.4	±	2.9		52.1	±	2.7		0.32	0	-2
Hmo	55.7 ±	4.0		55.4	±	3.7		56.4	±	2.9		0.70	-1	1
Mki	7.5 ±	0.8		7.4	±	1.2		7.7	±	0.8		0.60	-1	3
Mla	75.9 ±	5.3		76.5	±	4.4		74.7	±	4.4		0.50	1	-2
Mlu	22.6 ±	2.9		22.8	±	2.1		22.7	±	2.3		0.99	1	0
Nbu	18.6 ±	3.3		18.9	±	4.5		18.5	±	3.6		0.95	2	0
Paf	41.4 ±	4.5		38.1	±	3.6		39.7	±	3.9		0.057	-8	-4
Pfu	29.6 ±	3.3		30.8	±	3.0		29.9	±	2.3		0.41	4	1
Sgu	43.5 ±	3.7		42.3	±	3.5		43.5	±	4.3		0.57	-3	0

Table S4. Classification of species into the successional groups (SG) early (ES) and late successional (LS) and the references supporting the classification. For most species, the classification was based on both how it was determined in the literature and observations of the abundance in forests with different degree of disturbances. The country where each study was conducted is given in brackets.

Code	Scientific name	SG	References for successional group
Afa	Afrocarpus falcatus	LS	Hundera et al., 2013a (Ethiopia); Tesfaye et al., 2010 (Ethiopia)
Agu	Albizia gummifera	LS	Chapman & Chapman (Uganda); Eilu and Obua, 2005 (Uganda); Hundera et al., 2013a, b (Ethiopia); Mutiso et al., 2013 (Kenya)
Bbr	Bridelia brideliifolia	ES	Fisher & Killman, 2008 (Rwanda); African Plant Database, https://africanplantdatabase.ch/
Bmi	Bridelia micrantha	ES	Eilu & Obua, 2005 (Uganda); Fashing et al., 2004 (Kenya); Mutiso et al., 2013 (Kenya)
Cgo	Chrysophyllum gorungosanum	LS	Chapman & Chapman (Uganda); Fisher & Killman, 2008 (Rwanda); Eilu & Obua, 2005 (Uganda)
Cgr	Carapa grandiflora	LS	Fisher & Killman, 2008 (Rwanda); Momo et al., 2016 (Cameroon); Nyirambangutse et al., 2017 (Rwanda)
Cme	Croton megalocarpus	ES	Mutiso et al., 2013 (Kenya); Fashing et al., 2004 (Kenya)
Dto	Dombeya torrida	ES	Eilu & Obua, 2005 (Uganda); Fisher & Killman, 2008 (Rwanda); Tesfaye et al., 2002 (Ethiopia)
Eex	Entandrophragma excelsum	LS	Fisher & Killman, 2008 (Rwanda); Hemp et al., 2017 (Tanzania)
Fsa	Faurea saligna	LS	Eilu & Obua 2005 (Uganda); Fisher & Killman, 2008 (Rwanda); Nyirambangutse et al., 2017 (Rwanda)
Fth	Ficus thonningii	LS^1	Hundera et al., 2013b (Ethiopia); Kirika et al., 2008 (Kenya)
Hma	Harungana madagascariensis	ES	Mutiso et al., 2013 (Kenya); Fashing et al., 2004 (Kenya)
Hmo	Harungana montana	ES	Fisher & Killman, 2008 (Rwanda); Nyirambangutse et al., 2017 (Rwanda)
Mki	Macaranga kilimandscharica	ES	Eilu & Obua, 2005 (Uganda); Hundera et al., 2013b (Ethiopia); Nyirambangutse et al., 2017 (Rwanda); Ssali et al., 2019, Rutten et al., 2015 (Tanzania)
Mla	Maesa lanceolata	ES	Eilu & Obua 2005 (Uganda); Fashing et al., 2004 (Kenya); Hundera et al., 2013b (Ethiopia); Momo et al., 2016 (Cameroon); Mutiso et al. 2013 (Kenya): Butten et al. 2015 (Tanzania)
Mlu	Markhamia lutea	ES ²	Chapman & Chapman (Uganda); Mutiso et al 2013; Fashing et al., 2004 (Kenya)
Nbu	Newtonia buchananii	LS	Chapman & Chapman (Uganda); Eilu & Obua, 2005 (Uganda); Fisher & Killman, 2008 (Rwanda)
Paf	Prunus africana	LS	Hundera et al., 2013a, b (Ethiopia); Tesfaye et al., 2010 (Ethiopia)
Pfu	Polyscias fulva	ES	Eilu & Obua, 2005 (Uganda); Fashing et al. 2004 (Kenya); Hundera et al., 2013b (Ethiopia); Mutiso et al., 2013 (Kenya); Nyirambangutse et al., 2017 (Rwanda); Tesfaye et al., 2010 (Ethiopia)
Sgu	Syzygium guineense	LS	Hundera et al., 2013a, b (Ethiopia); Nyirambangutse et al., 2017 (Rwanda); Rutten et al., 2015 (Tanzania); Tesfaye et al., 2010 (Ethiopia); Ssali et al., 2019 (Uganda)

¹Also defined as ES (Hundera et al., 2013b), but here considered as LS species as it mainly occurs in nondisturbed areas, but as a potential epiphyte and strangler the successional strategy is special.

²Mentioned as a possible LS species in Mutiso et al. (2013) and both in disturbed and non-disturbed forests (Chapman & Chapman, 1995) but it has mostly been defined as an ES species.

References to Table S4.

- Chapman, C.A. & Chapman, L.J. (1997) Forest regeneration in logged and unlogged forests of Kibale National Park, Uganda. *Biotropica*, 29, 396-412. <u>https://doi.org/10.1111/j.1744-7429.1997.tb00035.x</u>
- Eilu, G. & Obua, J. (2005) Tree condition and natural regeneration in disturbed sites of Bwindi Impenetrable Forest National Park, southwestern Uganda. *Tropical Ecology*, 46, 99-111.
- Fashing, P.J., Forrestel, A, Scully, C. & Cords, M. (2004) Long-term tree population dynamics and their implications for the conservation of the Kakamega Forest, Kenya. *Biodiversity and Conservation* 13, 753–771. <u>https://doi.org/10.1023/B:BIOC.0000011724.34275.73</u>
- Fischer E. & Killman D. (2008) Illustrated Field Guide to the Plants of Nyungwe National Park Rwanda. *Koblenz Geographical Colloquia, Series Biogeographical Monographs 1*, 771p.
- Hemp, A., Zimmermann, R., Remmele, S., Pommer, U., Berauer, B., Hemp, C. & Fischer, M. (2017) Africa's highest mountain harbours Africa's tallest trees. *Biodiversity Conservation*, 26, 103–113. <u>https://doi.org/10.1007/s10531-016-1226-3</u>
- Hundera, K., Aerts, R., Fontaine, A., Van Mechelen, M., Gijbels, P., Honnay, O. & Muys, B. (2013a) Effects of coffee management intensity on composition, structure, and regeneration status of Ethiopian moist evergreen Afromontane forests. *Environmental Management*, 51, 801–809. <u>https://doi.org/10.1007/s00267-012-9976-5</u>
- Hundera, K., Honnay, O., Aerts, R. & Muys, B. (2013b) The potential of small exclosures in assisting regeneration of coffee shade trees in South-Western Ethiopian coffee forests. *African Journal of Ecology*, 53, 389–397. <u>https://doi.org/10.1111/aje.12203</u>
- Kirika, J.M. Bleher, B., Bohning-Gaese, K., Chira, R. & Farwig, N. (2008) Fragmentation and local disturbance of forests reduce frugivore diversity and fruit removal in *Ficus thonningii* trees. Basic Applied Ecology, 9, 663-672. <u>https://doi.org/10.1016/j.baae.2007.07.002</u>
- Momo, S.M.C., Temgoua, L.F., Ngueguim, J.R. & Nkongmeneck, B-A. (2016) Comparison of plant communities between primary and secondary tropical forests of Mount Oku, Cameroon. *Journal* of Ecology and The Natural Environment, F63DB9364239. <u>https://doi.org/10.5897/</u> JENE2016.0598
- Mutiso, F.M., Hitimana, J., Kiyiapi, J.L., Sang, F.K. & Eboh, E. (2013) Recovery of Kakamega tropical rainforest from anthropogenic disturbances. *Journal of Tropical Forest Science* 25, 566– 576. <u>https://www.jstor.org/stable/23616998</u>
- Nyirambangutse, B., Zibera, E., Uwizeye, F. K., Nsabimana, D., Bizuru, E., Pleijel, H., Uddling, J. & Wallin, G. (2017). Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest. *Biogeosciences*, 14, 1285–1303. <u>https://doi.org/10.5194/bg-14-1285-2017</u>
- Rutten, G., Ensslin, R., Hemp, A. & Fischer, M. (2015) Forest structure and composition of previously selectively logged and non-logged montane forests at Mt. Kilimanjaro. *Forest Ecology and Management* 337, 61–66. <u>http://dx.doi.org/10.1016/j.foreco.2014.10.036</u>
- Ssali, F., Moe, S.R., Sheil, D. (2019) The differential effects of bracken (*Pteridium aquilinum* (L.) Kuhn) on germination and seedling performance of tree species in the African tropics. *Plant Ecology*, 220, 41-55, <u>https://doi.org/10.1007/s11258-018-0901-8</u>
- Tesfaye, G., Teketay, D. & Fetene, M. (2002) Regeneration of fourteen tree species in Harenna forest, southeastern Ethiopia. *Flora*, 197, 461–474. <u>https://doi.org/10.1078/0367-2530-1210063</u>
- Tesfaye, G., Teketay, D., Fetene, M. & Beck, E. (2010) Regeneration of seven indigenous tree species in a dry Afromontane forest, southern Ethiopia. *Flora*, 205, 135-143. <u>https://doi.org/10.1016/j. flora.2008.12.006</u>

Table S5. P-values and total degrees of freedom (df Tot) of one-way ANOVA for species-specific site effects on tree diameter at base (D_{base}), tree height (H), standardised relative growth rates (RGR) of D_{base} at a D_{base} of 10-25 mm (D-RGR_{D10-25}) and 50-75 mm (D-RGR_{D10-25}), of height at a height of 75-100 cm (H-RGR_{H75-100}) and 250-300 cm (H-RGR_{H250-300}), number of stems per individual (stems#), and tree mortality. Df for site was always 2. The analysis was based on plot averages of each species (maximum 18 plots, 20 species and 3 sites). Species that did not meet the criterion for sufficient number of plot replicates (i.e. at least one individual on \geq 12 plots per site) were not included in the analysis, indicated by NA (not applicable) in the table. ND, no dead individuals and thus no variance analysis could be conducted.

	D_{base}		Height		D-RGR _{D10})-25	D-RGR _{D50}	+75	H-RGR _{H75}	-100	H-RGR _{H250}	-300	Stems#		Mortality	
Species	P-value	df Tot	P-value	df Tot	P-value	df Tot	P-value	df Tot	P-value	df Tot	P-value (df Tot	P-value	df Tot	P-value	df Tot
Bbr	<0.001	54	<0.001	54	<0.001	54	0.001	54	<0.001	53	<0.001	54	0.26	54	ND	54
Hmo	<0.001	54	<0.001	54	<0.001	54	<0.001	54	<0.001	54	0.68	54	0.50	54	0.36	54
Mki	<0.001	54	0.008	54	0.090	54	0.064	51	0.17	47	0.35	53	0.32	54	<0.001	54
Mla	<0.001	54	0.22	54	<0.001	54	<0.001	52	0.94	54	0.70	54	0.004	54	0.057	54
Pfu	0.001	54	<0.001	54	0.011	54	0.018	54	<0.001	54	0.003	53	0.32	54	0.13	54
Agu	<0.001	54	<0.001	54	0.20	20	NA	12	NA	40	NA	24	0.93	54	<0.001	54
Bmi	<0.001	54	<0.001	54	<0.001	54	0.095	53	<0.001	53	0.033	54	0.009	54	0.172	54
Cme	<0.001	54	<0.001	54	<0.001	54	<0.001	54	<0.001	54	<0.001	54	0.25	54	0.012	54
Dto	<0.001	54	<0.001	54	<0.001	54	0.024	53	<0.001	53	0.002	54	<0.001	54	QN	54
Hma	<0.001	54	<0.001	54	<0.001	54	0.005	54	<0.001	54	0.54	54	0.89	54	0.35	54
Mlu	<0.001	54	<0.001	54	<0.001	54	NA	43	<0.001	44	0.003	47	0.004	54	QN	54
Afa	<0.001	54	<0.001	54	0.14	54	0.49	46	0.23	54	0.008	54	0.45	54	0.157	54
Cgr	<0.001	51	<0.001	51	<0.001	50	NA	6	ΝA	45	ΝA	12	0.33	54	<0.001	51
Fsa	<0.001	54	<0.001	54	<0.001	54	0.029	43	<0.001	54	ΝA	43	0.010	54	<0.001	54
Paf	<0.001	54	<0.001	54	<0.001	54	NA	32	<0.001	53	ΝA	39	0.002	54	0.013	54
Sgu	0.012	54	0.084	54	0.32	54	0.014	50	0.16	54	0.19	54	0.035	54	0.58	54
Cgo	0.001	54	0.003	54	<0.001	49	ΑN	0	ΝA	38	ΑN	2	0.71	54	<0.001	54
Eex	0.001	54	0.11	54	0.006	54	ΝA	24	0.13	41	ΝA	0	0.19	54	<0.001	54
Fth	<0.001	54	<0.001	54	0.002	54	<0.001	52	0.50	52	<0.001	53	0.001	54	0.81	54
Nbu	0.002	54	0.15	54	NA	41	NA	Ч	0.088	44	NA	15	1.00	54	<0.001	54

Table S6. Number of individuals recorded dead at each tri-monthly census of each species and site. The graded colour scale from light red to bright red indicate an increasing number of dead individuals. Newly dead trees recorded at each census in percent of remaining trees are presented graphically below the table. Grey marked dates in the table head indicate first census after the annual dry period. However, all trees were irrigated during the entire dry period in 2018, but not in 2019. During the first census after planting (Mar-18) only six trees were recorded dead, but five of them were replaced by new individuals from the nursery and was not included in the mortality data. #, number of dead trees. Full species names are given in Table 2.

Figure S1. Schematic topographic map of Rwanda with the three sites of the TRopical Elevation Experiment in Rwanda (Rwanda TREE; <u>www.rwandatree.com</u>) using native tropical species from montane rainforest and Lake Victoria transitional rainforests. Nyungwe (1600-2950 m a.s.l) is a national park in south-west Rwanda dominated by montane rainforest species, but also include transitional rainforest species at lower elevations. HE, high elevation site; ME, mid elevation site; LE, low elevation site.

Figure S2. Site map and experimental design at the high elevation site (Sigira). Water and nutrient treatments started late in 2019 and had no effect on the results in this study.

Figure S3. Site map and experimental design at the mid elevation site (Rubona). Water and nutrient treatments started late in 2019 and had no effect on the results in this study.

Figure S4. Site map and experimental design at the low elevation site (Makera). Water and nutrient treatments started late in 2019 and had no effect on the results in this study.

Figure S5. The relation between height and base diameter and the relative growth rate (RGR) for height (H-RGR) and base diameter (D-RGR) in relation to height and base diameter, respectively, for all 20 species measured tri-monthly over two years at all three sites. The grey marked height and base diameter intervals are used to calculate the standardised H-RGR and D-RGR, respectively. Negative height RGR of small trees are mainly due to soil erosion effects between the census while negative height and diameter RGR on larger trees mainly are due to broken stems causing shorter trees and/or for multistem trees changes of stem used for the measurements.

Figure S6 a-t. The development of the stem base diameter measured every third month over two years and the relative growth rate (RGR) between measurement intervals for 20 species grown at three sites along an elevation gradient (High, blue square/bar; Mid, orange circle/bar; Low, red triangle/bar). Each marker and bar show site level mean, including standard errors for bars. Full species names are given in Table 2.

Figure S7 a-t. The development of the stem height measured every third month over two years and the relative growth rate (RGR) between measurement intervals for 20 species grown at 3 sites along an elevation gradient (High, blue square/bar; Mid, orange circle/bar; Low, red triangle/bar). Each marker and bar show site level mean, including standard errors for bars. Full species names are given in Table 2.